
Formal Foundations of
Serverless Computing

Abhinav Jangda, Donald Pickney, Samuel Baxter, Joseph Spitzer,
Breanna Devore-McDonald, Yuriy Brun, Arjun Guha

1

2

:)
3

4

5

CAT

6

Serverless Platforms

7

Supported Languages

8

model = CatOrDogModel ();
function catOrDog (req, res) {

if (req.type === train) {
model.train (req.data);

} else {
res.write (model.predict (req.data));}}

Store trained model

Takes a HTTP Req

Train Model

Predict Cat or Dog

9

10

DOG

11

model = CatOrDogModel ();
function catOrDog (req, res) {

if (req.type === ‘train’) {
model.train (req.data);

} else {
res.write (model.predict (req.data));}}

Ephemeral State

12

DOG

13

DOG

14

model = CatOrDogModel ();
function catOrDog (req, res) {

if (req == ‘train’) {
model.train (req.data);

} else {
res.write (model.predict (req.data));}}

Single event processed to
completion multiple times

15

DOG

16

17

model = CatOrDogModel ();
function catOrDog (req, res) {

if (req.type === ‘train’) {
model.train (req.data);

} else {
res.write (model.predict (req.data));}}

More than one instances of
function can be running in
parallel.

18

CAT

19

let Datastore = require('@google-cloud/datastore');
Function catOrDog(req, res) {
 let ds = new Datastore({ projectId: 'cat-app' });
 let dst = ds.transaction();
 dst.run(function() {
 let tId = ds.key(['Transaction', req.body.transId]);
 dst.get(tId, function(err, trans) {
 if (err || trans) {
 dst.rollback(function() { res.send(false); });
 } else if (req.body.type === ‘train') {
 let data = ds.key(['model', req.body.data]);
 dst.get(data, function(err, model) {
 model.train (data)
 dst.save({ key: data, data: model });
 dst.save({ key: tId, data: {} });
 dst.commit(function() { res.send(true); });});
 } else if (req == ‘test’) {
 let data = ds.key(['prediction’, req.body.data]);
 dst.get(data, function(err, model) {
 prediction = model.predict (data)
 dst.save({ key: data, data: prediction });
 dst.save({ key: tId, data: {} });
 dst.commit(function() { res.send(prediction); });});
 } else {
 dst.rollback(function(){res.send(false);});}});}}});});};

model = CatOrDogModel ();
function catOrDog (req, res) {

if (req.type == ‘train’) {
model.train (req.data);

} else {
res.write (model.predict (req.data));}}

= x 4

20

Serverless Programming is Hard

- Challenges
- Ephemeral State

- Need for transactions

- Concurrency

- Need a deep understanding of serverless platforms to provide robust tools to

programmers for writing correct code.

“Serverless functions are not functions in an ordinary sense”

21

Our Contributions
- Operational semantics to model essential details of serverless platforms.

- Three case studies to show that the semantics is useful:
- Idealized Semantics

- Key Value Store

- Serverless Programming Language for composing functions

22

Operational Semantics of Serverless System

23

Operational Semantics of Serverless System

REQUEST

+

24

Operational Semantics of Serverless System

COLD-START

++

New NodeJS

+

WARM-START

+
+

Idle NodeJS

Idle NodeJS processing
request

25

Summary

Operational semantics models all details of serverless platforms:
1. New instance creation

2. Instance reuse

3. Ephemeral and persistent state

Ideally: Provide programmers higher-level abstractions

26

1st Case Study: Idealized Serverless Semantics

Models an idealized serverless platform with:

Failures

27

1st Case Study: Idealized Serverless Semantics

28

1st Case Study: Idealized Serverless Semantics

N-Start N-Step

REQUEST COLD-START HIDDEN RESPOND DIE

N-Step N-Stop

≈ ≈ ≈ ≈

Theorem: If certain conditions are met, then Idealized Semantics is weakly bisimilar to Operational
Semantics.

29

≈ ≈

2nd Case Study: Semantics with Key Value Store

+

+

≈

30

3rd Case Study: Serverless Programming Language

1. Extend Operational Semantics with a serverless composition language

2. Inspired by OpenWhisk Conductor and IBM Composer

31

Serverless Compositions

BlackOrWhite

Black

32

Serverless Compositions

BlackOrWhiteCatOrDog

Black Cat

33

3rd Case Study: Serverless Programming Language

a <- invoke catOrDog (in);
return invoke blackOrWhite (a.animal);

catOrDog(in) blackOrWhite(a.animal)

in a a.animal

34

Serverless Programming Language (SPL)

1. OpenWhisk Conductor is executed in a

docker container.

2. SPL’s JSON Transformation can be

executed directly in OpenWhisk

Controller.

35

Contributions

1. Writing correct code for serverless platform is hard

2. We present Operational Semantics of serverless platform

3. We present 3 case studies to show these semantics are useful
a. Naive Semantics are abstractions of operational semantics

b. Operational Semantics are extended with a Key Value store

c. Serverless Programming Language can be used to compose existing serverless functions efficiently.

36

1st Case Study: Naive Serverless Semantics

N-Start N-Step

REQUEST COLD-START HIDDEN RESPOND DIE

N-Stop

≈ ≈ ≈ ≈

Theorem: If certain conditions are met, then Naive Semantics is weakly bisimilar to
Operational Semantics.

37

3rd Case Study: Serverless Compositions

Sufficient to
describe
control flow

f

invoke

f

f

>>>

f

g

g

f

first

f

38

Issues

let accounts = new Map();

exports.bank = function(req, res) {

 accounts.set(req.body.name, req.body.value);

 res.send(true);

 };

➢ Ephemeral State

➢ More than one instances
of function can be running
in parallel.

➢ Re-invoke functions when a
failure is detected.
A single event may be
processed to completion
multiple times.

39

Operational Semantics of Serverless System
➢ Based on experiences with major serverless computing platforms.

40

Operational Semantics of Serverless System

+ R(f, id, v)
+ R(f, id, v)
+ F(f, busy(id), σ)

COLD-START A new Function instance of f with
initial state σ for id has started

+ R(f, id, v)
+ F(f, idle, σ)

+ R(f, id, v)
+ F(f, busy(id), σ)

WARM-START Start executing f on an
idle function instance

41

Operational Semantics of Serverless System

+ F(f, m, σ)

DIE

42

Introduction to Serverless Computing

Deploys JavaScript function,
foo on the cloud server

Receives data after
executing function foo

Calls function foo on the
server

43

➢ Focus on application code only ➢ Compiles code
➢ Configures OS
➢ Manages resource allocation.

44

Serverless Function Example

let accounts = new Map();

exports.bank = function(req, res) {

 accounts.set(req.body.name, req.body.value);

 res.send(true);

 };

Store account data

Takes a HTTP Req

Deposit the amount

45

Serverless Programming Language

a <- invoke f (in);
return invoke g (a.x);

[in, {input: in}] >>> first (invoke f) >>> [a.x, {a: in, input: in}] >>>
first (invoke g) >>> in[0]

in is the input to the
composition

First element of array as the input
to the composition

Perform JSON Transformations
to store the state of
composition

46

Serverless Programming Language

a <- invoke f (in);
return invoke g (a.x);

f(x)
[in, {}]

g(y)
in

{}

a [a, {}] [a.x, {a}] a.x

47

Operational Semantics of Serverless System

+ F(f, idle, σ)

RESPOND

+ R(f, id, v)
+ F(f, busy(id), σ)

Function instance has
turned idle.

48

Operational Semantics of Serverless System

+ F(f, idle, σ)
S(result)

RESPOND

49

Operational Semantics of Serverless System

+ R(f, id, v)
+ F(f, idle, σ)

+ R(f, id, v)
+ F(f, busy(id), σ)

WARM-START

Start executing f on an
idle function instance

50

Need for Serverless Compositions

Scheduler

f(x) g(y)

Scheduler spends most of the time idle. Leading to double billing

x

x
y

z

y

z

f(x) g(y)
x y z

51

Need for Serverless Compositions
Merge f and g into one function

f(x) g(y)

1. Hinders code-reuse
2. Does not work when

a. source code is unavailable or
b. the serverless functions are written in different languages

x y z

fg (x)

52

Need for Serverless Compositions
The solution should

● not lead to double billing
● does not hinders code-reuse
● be language agnostic

53

Serverless Programming Language
Composition primitives for serverless platforms based on Haskell Arrows

f

invoke

f

f

>>>

f

g

g

f

first

f

Sufficient to
describe
control flow

54

Serverless Programming Language
Implementations:

1. Integrated in a fork of OpenWhisk
2. Portable implementation to communicate with other public cloud providers

55

Serverless Programming Language

1. Comparison to OpenWhisk Conductor
2. Increasing Request Sizes
3. 6-core Intel Xeon E5-1650 with 64 GB

RAM with Hyper-Threading enabled.

56

