Formal Foundations of
Serverless Computing

Abhinav Jangda, Donald Pickney, Samuel Baxter, Joseph Spitzer,
Breanna Devore-McDonald, Yuriy Brun, Arjun Guha

¢

Input Hidden Output
layer layer layer

Input #1 —

Input #2 —

e
4»'ﬂ Output
/

Input #3 —

Input #4 —

e e

Tnput Hidden Output
layer layer layer

Input #1 —

Tnput #2
4.7 Output.
Tuput #3 —

Input #4

T,
CAT

Serverless Platforms

A Google Cloud Platform

| (

}g J\ Azure

Supported Languages

__

Store trained model
Takes a HTTP Req

Train Model

Predict Cat or Dog

10

11

2
“‘:
DOG

Ephemeral State

12

13

2
“‘:
DOG

model = CatOrDogModel ();
function catOrDog (req, res) {

__

Single event processed to
completion multiple times

15

16

2
“‘:
DOG

model = CatOrDogModel ();
function catOrDog (req, res) {

__

More than one instances of
function can be running in
parallel.

18

CAT

19

let Datastore = require('@google-cloud/datastore');
Function catOrDog(req, res) {

let
let
dst

ds = new Datastore({ projectId: 'cat-app' });
dst = ds.transaction();

.run(function() {

let tId = ds.key(['Transaction', req.body.transId]);
dst.get(tId, function(err, trans) {
if (err || trans) {

}

dst.rollback(function() { res.send(false); });

else if (req.body.type === ‘train') { —

let data = ds.key(['model', req.body.data]);

dst.get(data, function(err, model) {

model.train (data)

dst.save({ key: data, data: model });

dst.save({ key: tId, data: {} });

dst.commit(function() { res.send(true); });});

else if (req == ‘test’) {

let data = ds.key(['prediction’, req.body.data]);

dst.get(data, function(err, model) {

prediction = model.predict (data)

dst.save({ key: data, data: prediction });

dst.save({ key: tId, data: {} });

dst.commit(function() { res.send(prediction); });});

else {
dst.rollback(function(){res.send(false);});}});}}}):}):};

model = CatOrDogModel ();
function catOrDog (req, res) {

if (req.type == ‘train’) {
model.train (req.data);

X 4
} else {

res.write (model.predict (req.data));}}

20

Serverless Programming is Hard

- Challenges
Ephemeral State
Need for transactions
Concurrency

- Need a deep understanding of serverless platforms to provide robust tools to
programmers for writing correct code.

o V4
Serverless functions are not functions in an ordinary sense

21

Our Contributions

- Operational semantics to model essential details of serverless platforms.

- Three case studies to show that the semantics is useful:
- ldealized Semantics
- Key Value Store
- Serverless Programming Language for composing functions

22

Operational Semantics of Serverless System

x 18 Iresh

REQ

start(x,v)

C ===24 CR(f, z,v)

y is fresh recv(v,o0) =0

CR(f,z,v) = CR(f, z,v)F(f,busy(z),o,y)

CoLD

!
i, recv(v,o) = 0o
WARM ()

CR(f,z,v)F(f,idle,o,y) = CR(f,z, v)F(f, busy(z),o’, y)

step(a) = (0',¢)

HIDDEN -
CF(f,busy(z),0,y) = CF(f, busy(z),0’,y)

e o
RESsP step(o) = (o', return(v’))

stop(z,v’)

CR(f,z,v)F(f,busy(z),0,y) =———= CF(f,idle, o, y)S(z, ")

DiE

CF(f,m,o,y) =C

23

Operational Semantics of Serverless System

REQUEST

24

Operational Semantics of Serverless System

COLD-START

WARM-START

+ n o
o@dc

Idle NodelS

+ NOYC
\@dc

New NodelS

+ ﬂ -
o@d &

Idle NodelS processing
request

25

Summary

Operational semantics models all details of serverless platforms:
1. New instance creation

2. Instance reuse
3. Ephemeral and persistent state

Ideally: Provide programmers higher-level abstractions

26

15* Case Study: Idealized Serverless Semantics

Models an idealized serverless platform with:

CONCURRENCY

-
‘ PROCESS 1
.

@

27

15* Case Study: Idealized Serverless Semantics

N-START x is fresh recv(v,o0p) = o’
(f,idle,7) =Y, (£, busy(z), 00, 0'])
N-STEP steplo) = (o',)

(f,busy(z),5+[o]) = (f,busy(z), 7+ o, o'])

NoSrop __ Step(o) = (o', return(v))

stop(x,v)

(f, busy(z),o +[o])

(£, idle, [o])

28

15* Case Study: Idealized Serverless Semantics

REQUEST COLD-START HIDDEN RESPOND DIE

R

. ~ = ~) ~

5 ; ~. —~

as as JS JAX
N-Start N-Step N-Step N-Stop

Theorem: If certain conditions are met, then Idealized Semantics is weakly bisimilar to Operational
Semantics.

2"d Case Study: Semantics with Key Value Store

Value
5555555555 H Jon Doe, Pre-Paid, 40.00 }
+ AAASSS H Mazda, Black, 626]
: 651A]—p[dom Dat: }
~
~
Value

J : 5555555555

30

3 Case Study: Serverless Programming Language

1. Extend Operational Semantics with a serverless composition language
2. Inspired by OpenWhisk Conductor and IBM Composer

S
o,

| (

-

31

Serverless Compositions

Input Hidden Output
layer layer layer

Input #1 —

Input #2 —
» Output
Input #3 —

—_— Black

Input #4 —

BlackOrWhite

Serverless Compositions

Input #1

Input #2

Input #3

Input #4

Input Hidden
layer layer

CatOrDog

Output Input Hidden Output
layer layer layer layer

Input #1

é Input #2

Input #3

+ Output

Input #4

BlackOrWhite

> Output

—> Black Cat

33

34 Case Study: Serverless Programming Language

a <- invoke catOrDog (in);
return invoke blackOrWhite (a.animal);

catOrDog(in) o blackOrWhite(a.animal)

o gy ——/JqQ e

34

Serverless Programming Language (SPL)

© Conductor
1. OpenWhisk Conductor is executed in a 90| A SPL ; 8
docker container. 0 8 8 8 8
0]
2. SPL’s JSON Transformation can be GE) ° 8 9
executed directly in OpenWhisk 60 s i
]
Controller. g § i g
o3 g & 2 A a2
n A A
g 30 o 8
A
s & B4
o an A
Q ™ ? ,;1/ ,\'(o ’1/0

Concurrent Requests

Contributions

1. Writing correct code for serverless platform is hard
2. We present Operational Semantics of serverless platform

3. We present 3 case studies to show these semantics are useful
a. Naive Semantics are abstractions of operational semantics
b. Operational Semantics are extended with a Key Value store
c. Serverless Programming Language can be used to compose existing serverless functions efficiently.

36

18t Case Study: Naive Serverless Semantics

REQUEST COLD-START HIDDEN RESPOND DIE

—8-8-8-8

A4X

R
0
R

as as

N-Start N-Step N-Stop

Theorem: If certain conditions are met, then Naive Semantics is weakly bisimilar to
Operational Semantics.

37

3rd Case Study: Serverless Compositions

f . . . Sufficient to
@ describe
% ‘ control flow

4 4 U
e ol il

-

38

Issues

Ephemeral State

____________________ ! > More than one instances
naccounts set(req.body.name, req.body.value); of function can be running

res.send(true); in parallel.
b > Re-invoke functions when a
failure is detected.
A single event may be
processed to completion
multiple times.

39

Operational Semantics of Serverless System

> Based on experiences with major serverless computing platforms.

40

Operational Semantics of Serverless System

) + R(f, id, v)
R(, id, v) - + F(f, busy(id), o)
COLD-START — A new Function instance of f with
initial state o for id has started
R(f, id, v) + R(f, id, v) _
F(f, idle, o) + F(f, busy(id), o)

WARM-START Start executing fon an
idle function instance

41

Operational Semantics of Serverless System

DIE

42

Introduction to Serverless Computing

JavaScript

Deploys JavaScript function,
foo on the cloud server

Calls function foo on the

Receives data after
executing function foo

43

> Focus on application code only

> Compiles code
> Configures OS

> Manages resource allocation.

44

Serverless Function Example

s

Store account data
Takes a HTTP Req

Deposit the amount

45

Serverless Programming Language

a <- invoke f (in);
return invoke g (a.x);

in is the input to the First element of array as the input Perform JSON Transformations

composition to the composition to store the state of
composition

46

Serverless Programming Language

a <- invoke f (in);
return invoke g (a.x);

))

[in, {}1 in ==k,)2 [a{} [ax, {a}] ax, s g

{1

47

Operational Semantics of Serverless System

+ F(f. busy(id), o) + F(f, idle, o)

Function instance has

RESPOND turned idle.

48

Operational Semantics of Serverless System

RESPOND

S(result)
N\ + F(f, idle, o)

49

Operational Semantics of Serverless System

_ + R(f,id, v)
+ F(f, busy(id), o)

Start executing fon an

idle function instance
WARM-START

50

Need for, Serverless Compositions

f(x) g(y)

a(y)

N\ 7

X Z

Scheduler

Scheduler spends most of the time idle. Leading to double billing

Need for Serverless Compositions

Merge f and g into one function

————————————

1. Hinders code-reuse
2. Does not work when
a. source code is unavailable or
b. the serverless functions are written in different languages

52

Need for Serverless Compositions

The solution should

e not lead to double billing
e does not hinders code-reuse
e Dbe language agnostic

53

Serverless Programming Language

Composition primitives for serverless platforms based on Haskell Arrows

-
1
*

Sufficient to
describe
control flow

54

Serverless Programming Language

Implementations:

1. Integrated in a fork of OpenWhisk
2. Portable implementation to communicate with other public cloud providers

55

Serverless Programming Language

1. Comparison to OpenWhisk Conductor

2. Increasing Request Sizes
3. 6-core Intel Xeon E5-1650 with 64 GB
RAM with Hyper-Threading enabled.

Response Time (s)

=
Ul

=
o

Q
U

O Conductor
A SPL

Request Size (KB)

56

