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CAT
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Serverless Platforms
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Supported Languages
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model = CatOrDogModel ();
function catOrDog (req, res) {

if (req.type === train) {
model.train (req.data);

} else {
res.write (model.predict (req.data));}}

Store trained model

Takes a HTTP Req

Train Model

Predict Cat or Dog
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DOG
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model = CatOrDogModel ();
function catOrDog (req, res) {

if (req.type === ‘train’) {
model.train (req.data);

} else {
res.write (model.predict (req.data));}}

Ephemeral State
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DOG
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DOG
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model = CatOrDogModel ();
function catOrDog (req, res) {

if (req == ‘train’) {
model.train (req.data);

} else {
res.write (model.predict (req.data));}}

Single event processed to 
completion multiple times

15



DOG
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model = CatOrDogModel ();
function catOrDog (req, res) {

if (req.type === ‘train’) {
model.train (req.data);

} else {
res.write (model.predict (req.data));}}

More than one instances of 
function can be running in 
parallel.

18



CAT
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let Datastore = require('@google-cloud/datastore');
Function catOrDog(req, res) {
  let ds = new Datastore({ projectId: 'cat-app' });
  let dst = ds.transaction();
  dst.run(function() { 
    let tId = ds.key(['Transaction', req.body.transId]);
    dst.get(tId, function(err, trans) {
    if (err || trans) {
      dst.rollback(function() { res.send(false); });
    } else if (req.body.type === ‘train') {
      let data = ds.key(['model', req.body.data]);
      dst.get(data, function(err, model) {
      model.train (data)
      dst.save({ key: data, data: model });
      dst.save({ key: tId, data: {} });
      dst.commit(function() { res.send(true); });});
    } else if (req == ‘test’) {
      let data = ds.key(['prediction’, req.body.data]);
      dst.get(data, function(err, model) {
      prediction = model.predict (data)
      dst.save({ key: data, data: prediction });
      dst.save({ key: tId, data: {} });
      dst.commit(function() { res.send(prediction); });});
    } else {
        dst.rollback(function(){res.send(false);});}});}}});});};

model = CatOrDogModel ();
function catOrDog (req, res) {

if (req.type == ‘train’) {
model.train (req.data);

} else {
res.write (model.predict (req.data));}}

= x 4
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Serverless Programming is Hard

- Challenges
- Ephemeral State

- Need for transactions

- Concurrency

- Need a deep understanding of serverless platforms to provide robust tools to 

programmers for writing correct code.

“Serverless functions are not functions in an ordinary sense”
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Our Contributions
- Operational semantics to model essential details of serverless platforms.

- Three case studies to show that the semantics is useful:
- Idealized Semantics

- Key Value Store

- Serverless Programming Language for composing functions
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Operational Semantics of Serverless System

23



Operational Semantics of Serverless System

REQUEST

+
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Operational Semantics of Serverless System

COLD-START

++

New NodeJS

+

WARM-START

+
+

Idle NodeJS

Idle NodeJS processing 
request
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Summary

Operational semantics models all details of serverless platforms:
1. New instance creation

2. Instance reuse

3. Ephemeral and persistent state

Ideally: Provide programmers higher-level abstractions
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1st Case Study: Idealized Serverless Semantics

Models an idealized serverless platform with:

Failures
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1st Case Study: Idealized Serverless Semantics
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1st Case Study: Idealized Serverless Semantics

N-Start N-Step

REQUEST COLD-START HIDDEN RESPOND DIE

N-Step N-Stop

≈ ≈ ≈ ≈

Theorem: If certain conditions are met, then Idealized Semantics is weakly bisimilar to Operational 
Semantics.
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2nd Case Study: Semantics with Key Value Store 

+

+

≈
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3rd Case Study: Serverless Programming Language

1. Extend Operational Semantics with a serverless composition language

2. Inspired by OpenWhisk Conductor and IBM Composer
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Serverless Compositions

BlackOrWhite

Black
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Serverless Compositions

BlackOrWhiteCatOrDog

Black Cat
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3rd Case Study: Serverless Programming Language

a <- invoke catOrDog (in);
return invoke blackOrWhite (a.animal);

catOrDog(in) blackOrWhite(a.animal)

in a a.animal
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Serverless Programming Language (SPL)

1. OpenWhisk Conductor is executed in a 

docker container.

2. SPL’s JSON Transformation can be 

executed directly in OpenWhisk 

Controller.
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Contributions

1. Writing correct code for serverless platform is hard

2. We present Operational Semantics of serverless platform

3. We present 3 case studies to show these semantics are useful
a. Naive Semantics are abstractions of operational semantics

b. Operational Semantics are extended with a Key Value store

c. Serverless Programming Language can be used to compose existing serverless functions efficiently.
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1st Case Study: Naive Serverless Semantics

N-Start N-Step

REQUEST COLD-START HIDDEN RESPOND DIE

N-Stop

≈ ≈ ≈ ≈

Theorem: If certain conditions are met, then Naive Semantics is weakly bisimilar to 
Operational Semantics.
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3rd Case Study: Serverless Compositions

Sufficient to 
describe 
control flow

f

invoke

f

f

>>>

f

g

g

f

first

f
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Issues

let accounts = new Map();

exports.bank = function(req, res) {

      accounts.set(req.body.name, req.body.value);

      res.send(true);

  };

➢ Ephemeral State

➢ More than one instances 
of function can be running 
in parallel.

➢ Re-invoke functions when a 
failure is detected.
A single event may be 
processed to completion 
multiple times.
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Operational Semantics of Serverless System
➢ Based on experiences with major serverless computing platforms.
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Operational Semantics of Serverless System

+ R(f, id, v)
+ R(f, id, v) 
+ F(f,  busy(id),  σ)

COLD-START A new Function instance of f with 
initial state σ for id has started

+ R(f, id, v)
+ F(f,  idle,  σ)

+ R(f, id, v) 
+ F(f,  busy(id),  σ)

WARM-START Start executing f on an 
idle function instance
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Operational Semantics of Serverless System

+ F(f, m, σ) 

DIE
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Introduction to Serverless Computing

Deploys JavaScript function, 
foo on the cloud server

Receives data after 
executing function foo

Calls function foo on the 
server
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➢ Focus on application code only ➢ Compiles code
➢ Configures OS
➢ Manages resource allocation.
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Serverless Function Example

let accounts = new Map();

exports.bank = function(req, res) {

        accounts.set(req.body.name, req.body.value);

        res.send(true);

    };

Store account data

Takes a HTTP Req

Deposit the amount
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Serverless Programming Language

a <- invoke f (in);
return invoke g (a.x);

[in, {input: in}] >>> first (invoke f) >>> [a.x, {a: in, input: in}] >>> 
first (invoke g) >>> in[0]

in is the input to the 
composition

First element of array as the input 
to the composition

Perform JSON Transformations 
to store the state of 
composition
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Serverless Programming Language

a <- invoke f (in);
return invoke g (a.x);

f(x)
[in, {}]

g(y)
in

{}

a [a, {}] [a.x, {a}] a.x
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Operational Semantics of Serverless System

+ F(f, idle, σ) 

RESPOND

+ R(f, id, v) 
+ F(f,  busy(id),  σ)

Function instance has 
turned idle.
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Operational Semantics of Serverless System

+ F(f, idle, σ) 
S(result)

RESPOND
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Operational Semantics of Serverless System

+ R(f, id, v)
+ F(f,  idle,  σ)

+ R(f, id, v) 
+ F(f,  busy(id),  σ)

WARM-START

Start executing f on an 
idle function instance

50



Need for Serverless Compositions

Scheduler

f(x) g(y)

Scheduler spends most of the time idle. Leading to double billing

x

x
y

z

y

z

f(x) g(y)
x y z
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Need for Serverless Compositions
Merge f and g into one function

f(x) g(y)

1. Hinders code-reuse
2. Does not work when

a. source code is unavailable or 
b. the serverless functions are written in different languages

x y z

fg (x)
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Need for Serverless Compositions
The solution should

● not lead to double billing
● does not hinders code-reuse
● be language agnostic

53



Serverless Programming Language
Composition primitives for serverless platforms based on Haskell Arrows

f

invoke

f

f

>>>

f

g

g

f

first

f

Sufficient to 
describe 
control flow
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Serverless Programming Language
Implementations:

1. Integrated in a fork of OpenWhisk
2. Portable implementation to communicate with other public cloud providers
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Serverless Programming Language

1. Comparison to OpenWhisk Conductor
2. Increasing Request Sizes
3. 6-core Intel Xeon E5-1650 with 64 GB 

RAM with Hyper-Threading enabled.
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