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Store trained model
Takes a HTTP Req

Train Model

Predict Cat or Dog
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Ephemeral State
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model = CatOrDogModel ();
function catOrDog (req, res) {

__________________________________

________________________________________________________

Single event processed to
completion multiple times
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model = CatOrDogModel ();
function catOrDog (req, res) {

__________________________________

________________________________________________________

More than one instances of
function can be running in
parallel.

18



CAT

19



let Datastore = require('@google-cloud/datastore');
Function catOrDog(req, res) {

let
let
dst

ds = new Datastore({ projectId: 'cat-app' });
dst = ds.transaction();

.run(function() {

let tId = ds.key(['Transaction', req.body.transId]);
dst.get(tId, function(err, trans) {
if (err || trans) {

}

dst.rollback(function() { res.send(false); });

else if (req.body.type === ‘train') { —

let data = ds.key(['model', req.body.data]);

dst.get(data, function(err, model) {

model.train (data)

dst.save({ key: data, data: model });

dst.save({ key: tId, data: {} });

dst.commit(function() { res.send(true); });});

else if (req == ‘test’) {

let data = ds.key(['prediction’, req.body.data]);

dst.get(data, function(err, model) {

prediction = model.predict (data)

dst.save({ key: data, data: prediction });

dst.save({ key: tId, data: {} });

dst.commit(function() { res.send(prediction); });});

else {
dst.rollback(function(){res.send(false);});}});}}}):}):};

model = CatOrDogModel ();
function catOrDog (req, res) {

if (req.type == ‘train’) {
model.train (req.data);

X 4
} else {

res.write (model.predict (req.data));}}
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Serverless Programming is Hard

- Challenges
Ephemeral State
Need for transactions
Concurrency

- Need a deep understanding of serverless platforms to provide robust tools to
programmers for writing correct code.

o . . . . V4
Serverless functions are not functions in an ordinary sense
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Our Contributions

- Operational semantics to model essential details of serverless platforms.

- Three case studies to show that the semantics is useful:
- ldealized Semantics
- Key Value Store
- Serverless Programming Language for composing functions
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Operational Semantics of Serverless System
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Operational Semantics of Serverless System

REQUEST
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Operational Semantics of Serverless System
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Summary

Operational semantics models all details of serverless platforms:
1. New instance creation

2. Instance reuse
3. Ephemeral and persistent state

Ideally: Provide programmers higher-level abstractions
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15* Case Study: Idealized Serverless Semantics

Models an idealized serverless platform with:

CONCURRENCY

-
‘ PROCESS 1
.

@
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15* Case Study: Idealized Serverless Semantics

N-START x is fresh recv(v,o0p) = o’
(f,idle,7) =Y, (£, busy(z), 00, 0'])
N-STEP steplo) = (o',)

(f,busy(z),5+[o]) = (f,busy(z), 7+ o, o'])

NoSrop __ Step(o) = (o', return(v))

stop(x,v )

(f, busy(z),o +[o])

(£, idle, [o])
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15* Case Study: Idealized Serverless Semantics

REQUEST COLD-START HIDDEN RESPOND DIE

R
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as as JS JAX
N-Start N-Step N-Step N-Stop

Theorem: If certain conditions are met, then Idealized Semantics is weakly bisimilar to Operational
Semantics.



2"d Case Study: Semantics with Key Value Store
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3 Case Study: Serverless Programming Language

1. Extend Operational Semantics with a serverless composition language
2. Inspired by OpenWhisk Conductor and IBM Composer
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Serverless Compositions
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Serverless Compositions
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34 Case Study: Serverless Programming Language

a <- invoke catOrDog (in);
return invoke blackOrWhite (a.animal);

catOrDog(in) o blackOrWhite(a.animal)

o gy ——/JqQ e
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Serverless Programming Language (SPL)

© Conductor
1. OpenWhisk Conductor is executed in a 90| A SPL ; 8
docker container. 0 8 8 8 8
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Contributions

1. Writing correct code for serverless platform is hard
2. We present Operational Semantics of serverless platform

3. We present 3 case studies to show these semantics are useful
a. Naive Semantics are abstractions of operational semantics
b. Operational Semantics are extended with a Key Value store
c. Serverless Programming Language can be used to compose existing serverless functions efficiently.
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18t Case Study: Naive Serverless Semantics

REQUEST COLD-START HIDDEN RESPOND DIE
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N-Start N-Step N-Stop

Theorem: If certain conditions are met, then Naive Semantics is weakly bisimilar to
Operational Semantics.
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3rd Case Study: Serverless Compositions
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Issues

___________________________________

Ephemeral State

____________________ ! > More than one instances
naccounts set(req.body.name, req.body.value); of function can be running

res.send(true); in parallel.
b > Re-invoke functions when a
failure is detected.
A single event may be
processed to completion
multiple times.
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Operational Semantics of Serverless System

> Based on experiences with major serverless computing platforms.
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Operational Semantics of Serverless System

) +  R(f, id, v)
R(, id, v) - +  F(f, busy(id), o)
COLD-START — A new Function instance of f with
initial state o for id has started
R(f, id, v) +  R(f, id, v) _
F(f, idle, o) +  F(f, busy(id), o)

WARM-START Start executing fon an
idle function instance
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Operational Semantics of Serverless System

DIE
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Introduction to Serverless Computing

JavaScript

Deploys JavaScript function,
foo on the cloud server

Calls function foo on the

Receives data after
executing function foo
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> Focus on application code only

> Compiles code
> Configures OS

> Manages resource allocation.

44



Serverless Function Example

_____________________________

_____________________________________________________________

s

Store account data
Takes a HTTP Req

Deposit the amount
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Serverless Programming Language

a <- invoke f (in);
return invoke g (a.x);

_______________________________________

in is the input to the First element of array as the input Perform JSON Transformations

composition to the composition to store the state of
composition
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Serverless Programming Language

a <- invoke f (in);
return invoke g (a.x);

) )

[in, {}1 in ==k, )2 [a{} [ax, {a}] ax, s g

{1
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Operational Semantics of Serverless System

+ F(f. busy(id), o) + F(f, idle, o)

Function instance has

RESPOND turned idle.
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Operational Semantics of Serverless System

RESPOND

S(result)
N\ + F(f, idle, o)
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Operational Semantics of Serverless System

_ + R(f,id, v)
+ F(f, busy(id), o)

Start executing fon an

idle function instance
WARM-START
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Need for, Serverless Compositions

f(x) g(y)

a(y)

N\ 7

X Z

Scheduler

Scheduler spends most of the time idle. Leading to double billing



Need for Serverless Compositions

Merge f and g into one function

————————————

________________

1.  Hinders code-reuse
2. Does not work when
a. source code is unavailable or
b. the serverless functions are written in different languages
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Need for Serverless Compositions

The solution should

e not lead to double billing
e does not hinders code-reuse
e Dbe language agnostic
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Serverless Programming Language

Composition primitives for serverless platforms based on Haskell Arrows

-
1
*

Sufficient to
describe
control flow
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Serverless Programming Language

Implementations:

1. Integrated in a fork of OpenWhisk
2. Portable implementation to communicate with other public cloud providers
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Serverless Programming Language

1. Comparison to OpenWhisk Conductor

2. Increasing Request Sizes
3. 6-core Intel Xeon E5-1650 with 64 GB
RAM with Hyper-Threading enabled.

Response Time (s)

=
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=
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O Conductor
A SPL

Request Size (KB)
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