
Team:
Yorktown:        Waldemar Hummer, Anupama Murthi, 

Kaoutar El Maghraoui, Benjamin Herta, Darrell Reimer,
Punleuk Oum, Gaodan Fang

Austin: Vinod Muthusamy
Cambridge:      Scott Boag

IBM Programming Languages Day
T.J. Watson Research Center
December 10, 2018
https://ibm.biz/plday2018

Contact: whummer@ibm.com

ModelOps
A programming model for reusable,

platform-independent, and composable AI workflows

Waldemar Hummer, Vinod Muthusamy
IBM Research AI

https://ibm.biz/plday2018
mailto:whummer@ibm.com


A principled approach to operationalizing AI in business apps

Business 
application Model

scoring request

response

AI models embedded in complex lifecycles
• Model versions matching business apps
• Monitoring and drift detection
• Active learning with human in the loop

Lots of moving parts
• Model and business KPIs
• Application and model logs
• Model proxies, evolving policies, …

Need a principled approach
• AI-aware staged deployments
• Reusable patterns

• Simple out-of-the-box solutions
• Customizable for concrete use

cases

Business 
application Model v1

Model v2

App
health

scoring request
primary

canary

Model proxy

Human
fallback

App
logs Model 

logs

Model
health

response

Bandit Service

choose
Policy

AI
-In

fu
se

d 
Bu

sin
es

s A
pp

 



AI Models become engrained in the Software Lifecycle

Classical Application Lifecycle AI Application Lifecycle 
Requires dev / ops skills Involves more diverse skill sets
Relatively short running Long-running, resource intensive
Human speed (low change frequency) Continuous (re-)training
Few versions of software artifacts Huge number of models
Linear evolution of artifacts Specialized models coexist
Configurations applied at runtime Parameters tuned at training time
Codebase changes trigger new builds Data/code changes trigger model re-training
Deterministic testing Statistical/probabilistic testing
Monitoring of application performance & KPIs Monitoring of model accuracy, drift, and KPIs

• What’s the difference to traditional DevOps?



AI Operations – Pipeline Scenario

Model Testing / Hardening / Deployment Pipeline

Model
Training

Bias 
Detection

Model
Hardening

Source Data

Model
Testing

Model/App.
Deployment

Quality
Gate

Application 
Artifacts

Model
Artifacts

CI/CD
Process

Change
Monitoring

Monitoring 
of KPIs

Build Time Runtime

Model
Drift

• AI models introduce risk to business applications
• Training and deployment pipelines can become quite complex
• Pipelines often hand-crafted

• Hard to maintain
• Hard to optimize or reason over



Core Problems Addressed

• Reusability
• Pipelines are often hand-crafted (shell scripts, Makefiles, Python scripts, …)
• Yet, there are common patterns: artifacts could be shared across users and teams

• Composability
• Despite the common patterns: hardly a one-size-fits-all solution
• Ability to compose pipelines and other features from building blocks is critical

• Platform Independence
• Different Cloud vendors use different APIs – yet very similar concepts

• E.g., “train model”, “deploy model” à map to different API calls in WML / AWS / GCP
• Parts of pipelines can run on various different environments

• On local machines, on smart phones, in the cloud, on edge devices, HPC clusters, …

• à Ability to Optimize and Reason over AI Pipelines
• E.g., Task pruning, task co-location, task scheduling



Approach



ModelOps: Towards a programming model for Operationalizing AI

Generic Pipeline Representation

Execution Platforms

Event 
Processors

Accounts

Models Deployments

Datastores

Domain-Specific
Languages

Pluggable Catalog of
Value-add Capabilities

Shared
Data Sets

Pipeline
Optimizers

Pipeline 
Capabilities
(e.g., bias)

…
Monitoring 
Capabilities
(e.g., drift)

Experiment 
Engines

(e.g., A/B tests)
operate

on

map to

map to

Airflow Argo Jenkins OpenWhisk



Generic AI Pipeline Representation
• Metamodel of apprx. 25 entities

• Pipelines (DAG of tasks with dependencies)
• Models (AI Classifier)
• Event Triggers / Subscribers
• Datastores
• Accounts
• Environments
• Code Plugins
• …

• Entites implemented as Python classes
• Attributes defined in JSON Schema
• Stored in markup files (e.g., YAML, JSON)

• Language features
• Plugin Imports
• Variable placeholders (lazy evaluation)
• Control flow (pipelines DAG)



Extensibility via Plugins

• Extensions as Plugins
• Pipeline tasks

• E.g. “Train Model”
• Subscribers

• E.g., “Detect Drift”
• Transformers

• (See following slides)

• Plugins can be 
referenced in the config

• Automatically loaded 
into Python path at 
runtime



Pipeline Executor

1. Generate Code (declarative spec à concrete code)
2. Deploy to target platform
3. Retrieve logs/metrics from platform

Target Platform
(Airflow)

ModelOps
Pipeline

Definition
(YAML/JSON/DB)

Airflow API

Concrete
Code

ModelOps API

Execution API

Code
Generation

Target Platform
(Argo)

Argo API



Generated Pipeline Code – Airflow



Generated Pipeline Code – Argo



Generated Pipeline Code – OpenWhisk Composer

Example Image, taken from: 
https://www.ibm.com/blogs/bluemix/2017/10/

serverless-composition-ibm-cloud-functions

https://www.ibm.com/blogs/bluemix/2017/10/serverless-composition-ibm-cloud-functions


Pipeline Transformers

à Enrich existing configurations with additional features

• Example: Add safeguards for deployment
• A/B testing with feedback and human in the loop

• Example: Plug in cross-cutting features for trusted AI
• Enable e2e lineage across all pipeline tasks

Pipeline Templates

à Parameterizable templates of common pipeline patterns

• Example: Preprocess/Train/Deploy Pipeline
• Easily bootstrap configurations with default values
• Users can customize and fine-tune the configuration

Composable Pipeline Templates

Extensible Catalog of Common Patterns

• Composability becomes critical
• Leverage techniques from BPM, service composition, and 

configuration management

Preprocess/Train/Deploy Pipeline

Train
Model

Deploy
Model

Preprocess
Data



Simple Demo – Pipeline Templates



Use domain knowledge to build smarts into the pipeline

Example:
• Seamlessly move between Public Cloud and ICP
• Automatically enrich and adjust the pipeline at runtime
• Managing all artifacts required to run the pipeline

Platform-independent pipeline tasks

Example:
• Generic pipelines allow easy on-ramp into our platform

Runtime View

Reusable domain abstractions

User View

mirror
data

Source Env
(Public Cloud)

Target Env
(ICP)

COS NFS

Generic Pipeline

AWS WML

Rollout to mobile and distributed deployments 

Use cases:
• VR models on mobile devices with automated 

retraining loop
• Patient-specific models for predicting hypoglocemia 

based on real-time data



Testing and Fine-Tuning Classifiers
– Context: Model training entails multiple specialized stages (e.g., data bias checks[1], model robustness checks [1], 

model compression)

– Problem: Each stage requires custom configuration, input-output mapping, etc, which can be tedious 

– Solution: Annotate the model entity with desired features – pipeline tasks will get inserted automatically

Model Training Pipeline

Model
Training

Model
Compression

Model
Testing

Model/App.
Deployment

Quality
Gate

Model
Hardening

[1] https://github.com/IBM/AIF360
[2] https://github.com/IBM/adversarial-robustness-toolbox

https://github.com/IBM/AIF360
https://github.com/IBM/adversarial-robustness-toolbox


Staged Deployments
– Context: Models are deployed into business-critical applications

– Problem: Need a controlled way to deploy, compare, and update model versions

– Solution: Hide new model deployments behind feature flags, gradually roll out the change

A/B Testing experiment configuration

Deployed feature flag for different model versions



Model Drift Detection
– Context: Models operate in dynamic environments 

à Data and conditions may change over time

– Problem: Models may result in incorrect or inaccurate predictions (denoted model or data “drift”)

– Solution: Monitor the runtime traffic and raise an alert if drift is detected

Ensemble Classifier

model1

model2

model3

input output

Drift detector configuration



Provider View

• Analyze execution traces to learn usage patterns
• Perform platform-level optimizations

• Task scheduling
• Task pruning
• Task colocation

Future Work: Dynamic pipeline generation and large-scale optimization

User View

• Two Flavors:
• Dynamic generation, static execution
• Ad-hoc generation, dynamic execution

Goal Specification

Example: “We need to deploy our model with bias checks and 
lineage enabled. If the runtime data starts drifting, we need 

to retrain and deploy a new version.“

1

2

3



Related Work

Pipelines in different Machine Learning environments
• ML Pipelines in Spark using MLlib [Meng’16]

• ML Pipelines in scikit-learn [Pedregosa’11]
• Transformers and estimators

Automated Machine Learning
• Efficient and robust automated machine learning [Feurer’15]

• AutoML as a Combined Algorithm Selection and Hyperparameteroptimization (CASH) problem

Production-grade machine learning platforms
• TFX: A TensorFlow-Based Production-Scale Machine Learning Platform [Baylor’17]
• Michelangelo: Uber’s Machine Learning Platform [Hermann’17]



ModelOps – Future Directions

• Domain Abstractions
• Cross-platform model train&deploy (hybrid/multi-cloud)
• Model versions, staged deployments, A/B testing (e.g., large-scale transfer learning pipelines)
• Multi-level pipelines in edge scenarios

• Usability / UX
• User study on UX and configuration formats
• Configuration CLI – (“modelops init”)

• Large-Scale Pipeline Scheduling & Optimization
• Looking at ModelOps pipelines from provider’s point of view
• Ad-hoc pipeline creation and scheduling under resource constraints
• Simulation, experimentation, and analytics environment to evaluate different strategies

• Extended Pipelines for Online and Reinforcement Learning
• Explore the computational model for stateful checkers, bandits, RL agents



Team:
Yorktown:        Waldemar Hummer, Anupama Murthi, 

Kaoutar El Maghraoui, Benjamin Herta, Darrell Reimer,
Punleuk Oum, Gaodan Fang

Austin: Vinod Muthusamy
Cambridge:      Scott Boag

IBM Programming Languages Day
T.J. Watson Research Center
December 10, 2018
https://ibm.biz/plday2018

Contact: whummer@ibm.com

ModelOps
A programming model for reusable,

platform-independent, and composable AI workflows

Waldemar Hummer, Vinod Muthusamy
IBM Research AI

https://ibm.biz/plday2018
mailto:whummer@ibm.com


Discussion



References

• Meng, X., Bradley, J., Yavuz, B., Sparks, E., Venkataraman, S., Liu, D., ... & Xin, D. (2016). Mllib: Machine learning in 
apache spark. The Journal of Machine Learning Research, 17(1), 1235-1241.

• Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., & Hutter, F. (2015). Efficient and robust automated 
machine learning. In Advances in Neural Information Processing Systems (pp. 2962-2970).

• Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... & Vanderplas, J. (2011). Scikit-learn: 
Machine learning in Python. Journal of machine learning research, 12(Oct), 2825-2830

• Baylor, D., Breck, E., Cheng, H. T., Fiedel, N., Foo, C. Y., Haque, Z., ... & Koo, C. Y. (2017, August). Tfx: A tensorflow-
based production-scale machine learning platform. In Proceedings of the 23rd ACM SIGKDD International Conference 
on Knowledge Discovery and Data Mining (pp. 1387-1395). ACM.

• Hermann, J., & Del Balso, M. (2017). Meet Michelangelo: Uber’s machine learning platform. URL 
https://eng.uber.com/michelangelo

https://eng.uber.com/michelangelo


Backup



ModelOps – Mission Statement

ModelOps
bridges the gap and
enables continuous
co-evolution in an

integrated lifecycle

Model Training
Lifecycle

AI Models AI Applications

Software / Devops
Lifecycle

Data
Preprocessing

Model
Training

Parameter
Tuning

Model
Hardening

Accuracy
Monitoring

Model
Serving

Continuous
Integration

Regression
Testing

A/B Testing
Experiments

Canary
Deployments

Dev/Stg/Prod
Environments

Service
Adaptations

Runtime
Monitoring

Continuous
Learning

Feature
Engineering



Generic AI Pipeline Representation - Python



Pipeline plugins from the community

• Lifecycle capabilities can be crowdsourced, based on the pluggable framework
• Analogy to Helm Charts

helm install elasticsearch modelops apply train-deploy

User-defined Config Parameters

Pipeline
Templates

ModelOps
Simple Train/Deploy Pipeline

Template Metadata and Dependencies



Environment Switches

• Import entities into an environment 
namespace

• Create a local name alias
• wml_account_dev à wml_account
• wml_account_stg à wml_account

• Local name “wml_account” can then be used in 
other parts of the configuration

• Activate different environments:

• ENV=dev modelops run

• ENV=stg modelops run



ModelOps – Lifecycle Event Processing

Event

EventBusRedis

Extensible Event Hierarchy

Event Processing Execution

EventBus-
OpenWhisk

Entity-
ChangedEvent

COSBucket-
ChangedEvent

…

EntityUpdate-
Subscriber

EventSubscriber

Event Subscriber Implementations

EventTrigger-
Subscriber

EventBus
publish(event)
subscribe(subscriber)
unsubscribe(subscr_id)

EventTrigger

User-Defined Event Triggers

Trigger-
Condition Action

User Facing

Platform Internal

*

…



ModelOps – Event Trigger Example

https://github.ibm.com/ModelOps/modelops-demo-titanic/blob/master/modelops.yml

https://github.ibm.com/ModelOps/modelops-demo-titanic/blob/master/modelops.yml

