
Tackling	Lack	of	Software	Specifications
A	Sustained,	Sustainability	and	Productivity	Crisis	

Hridesh	Rajan
Collaboration	with	Hoan A.	Nguyen,	Tien Nguyen,	Gary	Leavens,	Samantha	
Khairunnesa,	 John	Singleton,	Hung	Phan,	Robert	Dyer,	and	Vasant Honavar

Sustainability	and	productivity	challenge

• To	produce	critical	software	infrastructure	so	it	is:
– of	highest	quality	and	free	of	defects,
– produced	ethically	and	within	budget,	and
– maintainable,	upgradeable,	portable,	scalable,	secure.

• Pervasiveness	of	software	infrastructures	in	such	critical	
areas	as	power,	banking	and	finance,	air	traffic	control,	
telecommunication,	transportation,	national	defense,	and	
healthcare	need	us	to	address	this	challenge.

Software	specifications*	can	help	achieve	this	
sustainability	and	productivity	challenge.

*	Software	specifications:	formal,	often	machine	
readable,	description	of	software’s	intended	behavior,	
e.g.	{Pre}	S	{Post} behavioral	specifications

Sustainability	and	productivity	challenge

• If	specifications	are	widely	available,	a	wide	variety	
of	techniques	for	addressing	the	sustainability	and	
productivity	crisis	can	be	enabled.	
–Maintenance	of	code	can	become	easier
– Lower	cost	of	code	understanding	&	total	lifecycle	cost	
– Specification-guided	code	optimization
– Prevent	introducing	new	bugs	during	maintenance
– Code	reuse
– Specification-guided	synthesis
–Modular	analysis	and	verification,	scalable	tools

Sustainability	and	productivity	challenge

• If	specifications	are	widely	available,	a	wide	variety	of	
techniques	for	addressing	the	sustainability	and	
productivity	crisis	can	be	enabled.	
– Maintenance	of	code	can	become	easier,	because	engineers	
will	not	need	to	spend	time	reverse	engineering	code.	

– Lower	cost	of	code	understanding,	lower	total	lifecycle	cost.	
– Optimization	of	code	will	be	greatly	facilitated
– Prevent	introducing	new	bugs	during	maintenance
– Code	reuse
– Synthesis	of	code
– Modular	analysis	and	verification	leading	to	scalable	tools

Despite	these	benefits
useful,	non-trivial	

specifications	aren’t	widely	
available	

Sustainability	and	productivity	challenge

• If	specifications	are	widely	available,	a	wide	variety	of	
techniques	for	addressing	the	sustainability	and	
productivity	crisis	can	be	enabled.	
– Maintenance	of	code	can	become	easier,	because	engineers	
will	not	need	to	spend	time	reverse	engineering	code.	

– Lower	cost	of	code	understanding,	lower	total	lifecycle	cost.	
– Optimization	of	code	will	be	greatly	facilitated
– Prevent	introducing	new	bugs	during	maintenance
– Code	reuse
– Synthesis	of	code
– Modular	analysis	and	verification	leading	to	scalable	tools

Why	aren’t	software	
specifications	widely	

available?

Sustainability	and	productivity	challenge

• If	specifications	are	widely	available,	a	wide	variety	of	
techniques	for	addressing	the	sustainability	and	
productivity	crisis	can	be	enabled.	
– Maintenance	of	code	can	become	easier,	because	engineers	
will	not	need	to	spend	time	reverse	engineering	code.	

– Lower	cost	of	code	understanding,	lower	total	lifecycle	cost.	
– Optimization	of	code	will	be	greatly	facilitated
– Prevent	introducing	new	bugs	during	maintenance
– Code	reuse
– Synthesis	of	code
– Modular	analysis	and	verification	leading	to	scalable	tools

Cost	
Education	
Tools

Libraries

Sustainability	and	productivity	challenge

• If	specifications	are	widely	available,	a	wide	variety	of	
techniques	for	addressing	the	sustainability	and	
productivity	crisis	can	be	enabled.	
– Maintenance	of	code	can	become	easier,	because	engineers	
will	not	need	to	spend	time	reverse	engineering	code.	

– Lower	cost	of	code	understanding,	lower	total	lifecycle	cost.	
– Optimization	of	code	will	be	greatly	facilitated
– Prevent	introducing	new	bugs	during	maintenance
– Code	reuse
– Synthesis	of	code
– Modular	analysis	and	verification	leading	to	scalable	tools

Cost	
Education	
Tools

Libraries

Sustainability	and	productivity	challenge

• If	specifications	are	widely	available,	a	wide	variety	of	
techniques	for	addressing	the	sustainability	and	
productivity	crisis	can	be	enabled.	
– Maintenance	of	code	can	become	easier,	because	engineers	
will	not	need	to	spend	time	reverse	engineering	code.	

– Lower	cost	of	code	understanding,	lower	total	lifecycle	cost.	
– Optimization	of	code	will	be	greatly	facilitated
– Prevent	introducing	new	bugs	during	maintenance
– Code	reuse
– Synthesis	of	code
– Modular	analysis	and	verification	leading	to	scalable	tools

Unspecified	libraries	are	root	cause
- increase	cost	of	specification	

- make	education	harder
- make	tool	support	difficult

- make	specifying	libraries	harder

Sustainability	and	productivity	challenge

• If	specifications	are	widely	available,	a	wide	variety	of	
techniques	for	addressing	the	sustainability	and	
productivity	crisis	can	be	enabled.	
– Maintenance	of	code	can	become	easier,	because	engineers	
will	not	need	to	spend	time	reverse	engineering	code.	

– Lower	cost	of	code	understanding,	lower	total	lifecycle	cost.	
– Optimization	of	code	will	be	greatly	facilitated
– Prevent	introducing	new	bugs	during	maintenance
– Code	reuse
– Synthesis	of	code
– Modular	analysis	and	verification	leading	to	scalable	tools

How	to	Solve	it?	Specify	key	libraries
- decrease	cost	of	specification	

- make	education	easier	(examples)
- make	tool	support	easier

- make	specifying	libraries	easier

Sustainability	and	productivity	challenge

• If	specifications	are	widely	available,	a	wide	variety	of	
techniques	for	addressing	the	sustainability	and	
productivity	crisis	can	be	enabled.	
– Maintenance	of	code	can	become	easier,	because	engineers	
will	not	need	to	spend	time	reverse	engineering	code.	

– Lower	cost	of	code	understanding,	lower	total	lifecycle	cost.	
– Optimization	of	code	will	be	greatly	facilitated
– Prevent	introducing	new	bugs	during	maintenance
– Code	reuse
– Synthesis	of	code
– Modular	analysis	and	verification	leading	to	scalable	tools

How	to	Solve	it?	Specify	key	libraries
Challenge	#1:	lower	manual	cost	of	

specifying	libraries,	infer	most
Challenge	#2:	infer	rich,	but	practical	
specifications,	allow	code	evolution

Key	Ideas

Preconditions	can	be	
mined	from	guarded	
conditions	at	the	call	
sites	of	the	code	using	
the	APIs

Preconditions	mined	from	multiple	
projects in	a	large-scale	code	corpus	can	
be	used	to	filter	out	chaff

void	m(…)	{
…
if	(pred)
lib.api();

…
}

Mining	Preconditions	
of	APIs	in	Large-scale	
Code	Corpus,	FSE’14.

Hoan Nguyen	Robert	Dyer*	 Tien N.	Nguyen	

Client	 code	of	API	String.substring(int,int) in	project	SeMoA at	revision	1929

completePath_.substring(servletPathStart,	extraPathStart)

servletPathStart >=	0
extraPathStart >=	0
servletPathStart <=	completePath_.length()
extraPathStart <=	completePath_.length()
servletPathStart <=	extraPathStart

Key	
Ideas

Preconditions	can	be	mined	from	guarded	conditions	at	the	call	
sites	of	the	code	using	the	APIs
Preconditions	mined	from	multiple	projects	 in	a	large-scale	 code	
corpus	can	be	used	 to	filter	out	chaff

completePath_.substring(servletPathStart,	extraPathStart)

completePath_.charAt(servletPathStart)	==	‘/’

completePath_.charAt(extraPathStart)	==	‘/’

Key	
Ideas

Preconditions	can	be	mined	from	guarded	conditions	at	the	call	
sites	of	the	code	using	the	APIs
Preconditions	mined	from	multiple	projects	 in	a	large-scale	 code	
corpus	can	be	used	 to	filter	out	chaff

Client	
method
M1

Conditions

0	<=	start
start	<=	end
end	<=	length
contains(‘@’)

Build	
CFG

Extract
and

Normalize

Infer
0	<=	start
start	<=	end
end	<=	length

Client	
method
MN

0	<	start
start	<=	end
end	<=	length
ends(‘\n’)

Client	
method
M2

...

Preconditions

0	=	start
start	<=	end
end	<=	length
starts(‘/’)

api(...)

Build	
CFG

Extract
and

Normalize

Build	
CFG

Extract
and

Normalize

Filter
and
Rank

Candidate
Preconditions

0	<=	start
start	<=	end
end	<=	length
contains(‘@’)

api(...)

api(...)

Key	
Ideas

Preconditions	can	be	mined	from	guarded	conditions	at	the	call	
sites	of	the	code	using	the	APIs
Preconditions	mined	from	multiple	projects	 in	a	large-scale	 code	
corpus	can	be	used	 to	filter	out	chaff:		a.	infer,	 b.	filter	and	rank

Evaluation	– Accuracy

Data	collection
SourceForge Apache

Projects 3,413 146

Total	source	files 497,453 132,951

Total	classes 600,274 173,120

Total	methods 4,735,151 1,243,911

Total	SLOCs 92,495,410 25,117,837

Total	used	JDK	classes 806	(63%) 918	(72%)

Total	used	JDK	methods 7,592	(63%) 6,109	(55%)

Total	method	calls 22,308,251 5,544,437

Total	JDK	method	calls 5,588,487 1,271,210

Almost	120	millions	SLOCs

Extracted	preconditions	 from	
published	 formal	specification	 for	
JDK	APIs	on	JML	website
• 797	Methods	
• 1155	preconditions

www.jmlspecs.org

Ground	Truth

/*@ public normal_behavior
@ requires 0 <= beginIndex
@ && beginIndex <= endIndex
@ && endIndex <= length();
@ …

/*@ public behavior
@ …
@ signals (NoSuchElementException) isEmpty();
@*/

Accuracy	of	Preconditions	Mining

17

Precision Recall Time

SourceForge 84% 79% 17h35m

Apache 82% 75% 34m

Both 83% 80% 18h03m

Performance	
- ~	1	minute/condition
- 5	preconditions	are	

newly	found	for	the	JDK	
API	methods	that	has	
already	had	JML	
specifications

- Effective	for	new	specs

Class Method Suggest Accept

StringBuffer delete(int,int) 3 Y

replace(int,int,String) 2 Y*

setLength(int) 1 Y

subSequence(int,int) 3 Y

substring(int,int) 3 Y

LinkedList add(int,Object) 2 Y

addAll(int,Collection) 3 Y

get(int) 2 Y

listIterator(int) 2 Y

remove(int) 2 Y

set(int,Object) 2 Y

2	classes 11	methods 25

Accuracy	by	size

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Data	size	(projects)

Precision Recall Fscore

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 4 8 16 32 64 Full

Data	size	(projects)

Precision Recall Fscore

SourceForge Apache

63%
19%

18%

Correctness

Correct	

Good	Starting	Point	

Incorrect	

33%

48%

13% 6%

Usefulness

Strongly	Agree	

Agree	

Disagree	

Strongly	Disagree	

Usefulness	Evaluation	
Web-based	Survey
http://boa.cs.iastate.edu/jml

Key	Ideas

Additional	labels	can	be	
mined	from	implicit	
beliefs	at	the	call	sites	of	
the	code	using	the	APIs

Implicit	beliefs	mined	from	multiple	
projects in	a	large-scale	code	corpus	can	
be	used	to	strengthen	explicit	labels

void	m(…)	{
…
O	o	=	new	O()
lib.api(o);
…

}

Exploiting	Implicit	Beliefs	to	
Resolve	Sparse	Usage	Problem	
in	Usage-based	Specification	

Mining,	OOPSLA’17.
Hoan Nguyen	S.	Khairunnessa Tien N.	Nguyen	

Problem:	Sparse	labels	in	mined	code	corpus

Key	Ideas

Strongest	postcondition
inference	produces	
implicitly	parallel	
formulas	

Flattening,	and	recombining	parallel	
formulas	can	lead	to	much	simpler	
inferred	specifications.

An	Algorithm	and	Tool	to	Infer	
Practical	Postconditions,	

Ongoing	work.
John	Singleton Gary	T.	Leavens

Problem:	Using	extant	work	,	e.g.	strongest	postcondition
(sp),	for	postcondition inference	produces	impractical	specs

sp (IF B THEN S1 ELSE S2) P = (sp S1(P ^B)) _ (sp S2(P ^ ¬B))

Specification	Reduction

Impact: 84%	of	specifications	<	¼	page	in	length

23

We	are	overcoming	lack	of	software	specifications,	a	
critical	hurdle	for	high	assurance	SE,	by	combining	

program	analysis	and	data	mining.

boa.cs.iastate.edu

hridesh@iastate.edu

