
Sound, Complete, and Tractable
Linearizability Monitoring 

for Concurrent Collections

Michael Emmi	 	 SRI International

Constantin Enea	 Université Paris 7

Concurrent Objects
Abstract data type (Queue)

deq: 1 deq: 2enq: 2enq: 1

Efficient nonblocking implementation

enq: 1

enq: 2

deq: 2 deq: 1

Blocking reference implementation

deq: 2enq: 1

enq: 2(blocked)

deq: 1

Linearizability

Theorem (Herlihy and Wing, 1990)
Linearizability implies observational refinement

Theorem (Filipovic et al, 2010)
Observational refinement implies linearizability

Effects of each invocation appear to occur instantaneously

d:1d:2e:2 e:1

Execution history

Linearization admitted by Queue type

enq: 1

enq: 2

deq: 2 deq: 1

Hardness

Theorem (Gibbons and Korach, 1997)
Checking linearizability is NP-hard

Exponentially many linearizations to consider

d:2 e:2e:1 d:1d:2 d:1e:1 e:2 e:2 d:1e:1 d:2 e:2 d:2e:1 d:1

d:1 e:2e:1 d:2 d:1 d:2e:1 e:2 e:1 d:1e:2 d:2 e:1 d:2e:2 d:1

d:1 d:2e:2 e:1 e:1 e:2d:1 d:2 e:1 d:2d:1 e:2 e:2 d:2d:1 e:1

enq: 1

enq: 2

deq: 2

deq: 1Execution history

Result

Theorem
Checking linearizability is polynomial-time for collection types

enq: 1

enq: 2

deq: 2 deq: 1

Execution history / partial linearization

d:X d:Y

e:Ye:X

if

then

(partial) linearization

enq: 1enq: 2 deq: 2 deq: 1

Queue rule

Replace enumeration by monotonic deductive inference

Approach
Reduction to logical satisfiability problem

Theorem (Dowling and Gallier, 1984)
Horn satisfiability is solvable in linear time

P1 ∧ P2 ⇒ P3 
Q1 ∧ Q2 ⇒ Q3

…
propositional Horn

Hornification

abstract data types

collection types

Queue
Stack
Register

Set
Map
…

CAS Exchanger
Integer

first-order logic

∀x∀y∀z(x < y ∧ y < z ⇒ x < z) 
∀x∀y(x < y ∨ y < x)

…

Logical
characterization

…

Logical Characterization

Theorem
Linearizability equivalent to satisfiability 
for unambiguous histories

e:1

e:2

d:2 d:1
Execution history

d:X d:Y

e:Ye:X

if

then

Queue rules

e:1 < d:2 ∧ d:2 < d:1 ∧ match(e:1, d:1) ∧ match(e:2, d:2)
∧ …

Ground formula

∀x∀y∀z(x < y ∧ y < z ⇒ x < z) 
∀x∀y(x = y ∨ x < y ∨ y < x)
…

Total order axioms

∀x1∀x2∀y1∀y2(match(x1,x2) ∧ match(y1,y2) ∧ x1 < y1 ⇒ x2 < y2) 
∧ …

Queue axioms

d:1 d:1e:1 e:1

d:1 d:2e:1 e:2

ambiguous

unambiguous

Hornification

Theorem
Translation is equisatisfiable and polynomial-time computable

A < B ∨ B < C ∨ ¬(A < B)
Original clause

A < B ∨ ¬(C < B) ∨ ¬(A < B)
¬(B < A) ∨ B < C ∨ ¬(A < B)
¬(B < A) ∨ ¬(C < B) ∨ ¬(A < B)
¬(B < A) ∨ ¬(C < B) ∨ B < A

Translated clauses

Collection Types

Theorem
Restriction to unambiguous histories is sound for collections

Locality
{3,5} deq:3 {5}
{3,5} size:2 {3,5}

Parametricity
{3,5} deq:3 {5}
{7,5} deq:7 {5}

Value invariance
{3,5} deq:3 {5}
{3,5} sum:8 {}

Reducibility

{3,5,7} d:3; d:5; d:7 {}
{3,5} d:3; d:5 {}
{3,7} d:3; d:7 {}
{5,7} d:5; d:7 {}

2-reducibility

Bounded Violations

Theorem
Collections have bounded minimal violations

Minimal violation embedding

e:1

e:2

d:2

d:1

e:3

e:4e:0

d:0 d:3

d:4

Minimal violations

e:X e:Y

d:Y d:X

d:X e:X , , …

Logical Representation

Theorem
Collections have sound logical specifications

∀x1∀x2∀y1∀y2  

 ¬(m(x1,x2) ∧ x2 < x1)
 ∧ ¬(m(x1,x2) ∧ m(y1,y2) ∧ x1 < y1 ∧ y2 < x2)
 ∧ …

Quantified conjunction of negations

Minimal violations

e:X e:Y

d:Y d:X

d:X e:X , , …

Corollary
Linearizability is PTIME computable for collections

Empirical Evaluation

Scalability
Normalized by (collection size)2

Performance
Over 10 histories with 10K steps each

10 steps 100 steps 1000 steps

5s

25s

50s

75s

100s

18

22

30

32

32
Enumerate

37

53

60

65

70
Symbolic

75

216

296

333

382
Symbolic+R

357

585

710

790

854
Saturate

1303

2437

3165

3487

4070
Saturate+R

10 steps 100 steps 1000 steps

Enumerate
Symbolic
Symbolic+R
Saturate
Saturate+R

E
47

SY
47

SA
47 C4

44

C2
27

E
32

SY
33

SA
33

C4
25

C2
11

E
18

SY
18

SA
18 C4

15 C2
12

E
49

SY
49

SA
49

C4
49

C2
25

Bounded-Size k-FIFO Distributed Queue Random-Dequeue Queue Unbounded-Size k-FIFO

w/o removal w/ removal

Figure 13. The number of steps each algorithm is able to process in
time limits 5s, 25s, 50s, 75s, and 100s normalized by the square of
average capacity of a given run over 10 histories of Scal’s Michael-
Scott Queue implementation. Steps are plotted to a logarithmic scale
on the x-axis, and the y-axis represents normalized time.

the capacity6 of the given concurrent data structures, and the
capacities seen in our pseudo-random executions tend to grow as
time goes on. Figure 13 cancels out the effect of capacity growth by
normalizing data points against the square of the average capacity
throughout a run: for each data point hs, t, ci of s steps in time
t with average capacity c, we plot the point hs, t/c2i. Here we
clearly see that SATURATE scales linearly in the number of steps
when normalized against capacity-squared, whereas ENUMERATE
and SYMBOLIC continue to scale poorly despite normalization. The
apparent anomaly that SATURATE appears to scale linearly even
with match removal disabled is explained by the fact that unmatched
(add) operations, which could not have been removed in any case,
tend to outnumber matched operations in these recorded histories.

6.2 Completeness in Practice
Our second experiment measures the amount of violations each
algorithm is able discover across 100 histories of each of the ten
Scal implementations used. Six of the ten are linearizable, and, cor-
rectly, no algorithm reported a violation therein. The amount of
violations detected in the remaining four are plotted in Figure 14.
The ENUMERATE algorithm is the baseline being the most-obviously
complete algorithm, and detects all violations except 1 for which it
exceeds a 10s timeout. As expected, the SYMBOLIC algorithm, also
being theoretically complete, also detects all violations. Validating
our hypotheses that the SATURATE algorithm and match removal are
complete in practice, Figure 14 demonstrates that every single viola-
tion is also caught by SATURATE, and enabling removal furthermore
does not cause missed violations.

In order to compare the precision of our algorithms with Boua-
jjani et al. [5]’s parameterized approximation algorithms, we also
plot the number of violations caught using the k = 4 and k = 2
approximations. Essentially, their k-approximation abstract histo-
ries via weakening by forgetting ordering constraints such that the
resulting order is a k-length interval order. As Figure 14 demon-
strates, while small values of k can miss many violations, larger
values of k can catch increasingly more, at the expense of additional
runtime overhead. To avoid clutter in Figure 12, we did not plot
their runtimes, though we remark that Bouajjani et al.’s algorithms
perform on par with our SYMBOLIC algorithm.

Finally, we address the possible sources of incompleteness due to
match removal discussed in Section 5. Recall the history h1 and its

6 Here capacity means the number of values stored inside the data structure
at a given moment.

10 steps 100 steps 1000 steps

5s

25s

50s

75s

100s

18

22

30

32

32
Enumerate

37

53

60

65

70
Symbolic

75

216

296

333

382
Symbolic+R

357

585

710

790

854
Saturate

1303

2437

3165

3487

4070
Saturate+R

10 steps 100 steps 1000 steps

Enumerate
Symbolic
Symbolic+R
Saturate
Saturate+R

E
47

SY
47

SA
47 C4

44

C2
27

E
32

SY
33

SA
33

C4
25

C2
11

E
18

SY
18

SA
18 C4

15 C2
12

E
49

SY
49

SA
49

C4
49

C2
25

Bounded-Size k-FIFO Distributed Queue Random-Dequeue Queue Unbounded-Size k-FIFO

w/o removal w/ removal

Figure 14. The number of violations each algorithm is able to
detect across 100 histories of each of the four non-linearizable
Scal implementations. Algorithms are abbreviated: ENUMERATE,
SYMBOLIC, SATURATE, and COUNTING(k), for k = 2, 4.

extension h2 of Figure 11 from Example 5.8. Since the SATURATE
algorithm does not speculate on whether the pending rem operation
might match the add of 2 or 3 (or both!), it will not detect the
violation in h1 until the pending rem operation completes. Simply
removing the add-rem match of value 1 from h1 before the pending
rem operation completes would result in a non-violating history.
However, by applying the stack-theory axioms THEORY(Hst) to
completed operations before removing this match, the SATURATE
algorithm infers the constraints

add(2) < (rem) 1) < (rem) empty)

of which add(2) < (rem) empty) persists after the match
removal. Finally, when the pending rem-operation does complete,
returning 2, the SATURATE algorithm derives a contradiction, since

add(2) < (rem) empty) < (rem) 2).

The incremental nature of the SATURATE algorithm thus avoids
the practically-occurring sources of possible incompleteness due to
match removal of which we are aware.

7. Discussion
In this work, we do not claim theoretical completeness of the
SATURATE algorithm since we lack a formal completeness proof.
Such a proof appears to be very challenging, and would seem to
rely on yet-to-be-articulated assumptions on naturally-occurring
concurrent objects. However, our empirical experience, reported
in Section 6, suggests completeness, and we have no evidence to
suggest that SATURATE is incomplete, even with operation removal.

While the ENUMERATE algorithm is complete by definition,
it follows from Sections 3 and 4 that the SYMBOLIC algorithm
is also complete without operation removal, and it follows from
Section 5 that both ENUMERATE and SYMBOLIC are incomplete
with operation removal.

Based on our experience in this and prior works [4, 5], we
conjecture the theoretical completeness of SATURATE as well, with
and without operation removal, for naturally-occurring objects like
atomic stacks, queues, and locks, under the assumption that all
operations eventually return. This would imply that the propositional
backtracking thought to be inherent in linearizability is unnecessary,
and that linearizability is polynomial-time checkable for typical
concurrent objects. This insight has not been suggested by any
previous works of which we are aware.

Enumerate
SAT
SAT + opt
HORNSAT
HORN + opt

rem) empty

add(1) rem) 1

add(2) rem) 2

h1

add(3) rem) 3

h2

Figure 11. Two histories which are not admitted by the atomic
stack, h2 being an extension of h1.

6. Empirical Validation
To demonstrate the practical value of the theory developed in the
previous sections, we argue that our techniques
• scale far beyond existing algorithms, and
• are complete in practice.

To argue these points we have implemented three basic refinement-
checking algorithms.

ENUMERATE is our implementation of the classical linearizability-
checking algorithm [21] implemented by Line-up [6], checking
each history h by enumerating the linearizations h0 of h’s
completions. We check whether each h0 is included in the kernel
H by asking1 whether h0 |= THEORY(H). As soon as this check
succeeds, we conclude that h 2 H . Otherwise if this check fails
for all linearizations, we conclude h 62 H .

SYMBOLIC checks each history h by reduction to the satisfiability
of STRONGER(h)^THEORY(H), as described in Section 4, del-
egating the enumeration of both completions and linearizations
to an underlying solver. If the satisfiability check succeeds, or is
inconclusive, we conclude that h 2 H . Otherwise if unsatisfia-
bility is found, we conclude that h 62 H .

SATURATE avoids the expensive propositional backtracking inher-
ent to the aforementioned SYMBOLIC checker by limiting the
satisfiability check to Boolean constraint propagation. Essen-
tially, we implement a customized incremental solver which
only saturates with unit propagation, avoiding any propositional
branching. If a contradiction is found, we conclude that h 62 H .
Otherwise if saturation fails to reveal a contradiction, we con-
clude h 2 H .

Additionally, we have implemented the removal of obsolete matches
as outlined in Section 5, which can be enabled for the SYMBOLIC
and SATURATE algorithms.

We have studied ten concurrent data structure implementa-
tions from the Scal2 High-Performance Multicore-Scalable Com-
puting suite. Six of these implementations, such as the Michael-
Scott Queue [16], are meant to preserve observational refinement3

while the other four, such as the non-blocking bounded-reordering
queue [13], are meant to preserve weaker properties.

The input to our checking algorithms are histories given as text
files consisting of line-separated call and return actions. For the
selected set of concurrent object implementations, we generated
the histories of several executions under pseudo-random scheduling
by logging calls and returns in the order in which they occurred.

1 Classically this check is performed by set inclusion, as the length of h is
assumed to be bounded by some number n 2 N of operations, and the subset
Hn ✓ H of n-operation histories of H is computable in finite time. As we
assume no such bound on the number of operations, we perform this check
via theorem-prover query instead.
2 http://scal.cs.uni-salzburg.at
3 More precisely, they are designed to be linearizable.

10 steps 100 steps 1000 steps

5s

25s

50s

75s

100s

18

22

30

32

32
Enumerate

37

53

60

65

70
Symbolic

75

216

296

333

382
Symbolic+R

357

585

710

790

854
Saturate

1303

2437

3165

3487

4070
Saturate+R

10 steps 100 steps 1000 steps

Enumerate
Symbolic
Symbolic+R
Saturate
Saturate+R

E
47

SY
47

SA
47 C4

44

C2
27

E
32

SY
33

SA
33

C4
25

C2
11

E
18

SY
18

SA
18 C4

15 C2
12

E
49

SY
49

SA
49

C4
49

C2
25

Bounded-Size k-FIFO Distributed Queue Random-Dequeue Queue Unbounded-Size k-FIFO

w/o removal w/ removal

Figure 12. The number of steps each algorithm is able to process
in given time limits of 5s, 25s, 50s, 75s, and 100s over 10 histories
of Scal’s Michael-Scott Queue implementation. Whiskers indicate
minimums and maximums, numbers indicate medians, and box
extents indicate first and third quartiles. Steps are plotted to a
logarithmic scale.

While scanning an input history, the selected algorithm performs a
membership test at each prefix at which an operation completes —
i.e., at return actions.

Our first set of experiments (§6.1) demonstrates that our symbolic
algorithms are drastically more scalable than existing algorithms, in
that they are able to process vastly more history operations in much
shorter time. Our second set of experiments (§6.2) demonstrates that
our more efficient algorithms are complete in practice: the violations
surfacing in the logs of actual executions are consistently discovered.
We made all measurements on similar MacBook Pro 2.XGHz Intel
Core i5/i7 machines, and discharged theorem-prover queries with
an in-process instance of Z34.

Our implementation of the algorithms and all (generated) histo-
ries used in these experiments, are available on GitHub5.

6.1 Scalability of Symbolic Checking
Our first experiment measures the number of steps each algorithm
is able to process for varying time limits over 10 histories of Scal’s
Michael-Scott Queue implementation with 10000 steps each. We
used five per-history time limits of 5s, 25s, 50s, 75s, and 100s.
Results are shown in the graph of Figure 12 — results are similar for
the other nine Scal implementations. The ENUMERATE algorithm
performs worst, progressing only from median 18 steps in 5s to
median 32 steps in 100s. The SYMBOLIC algorithm is a significant
improvement, progressing from median 37 steps in 5s to median 70
steps in 100s. While adding match removal helps, achieving roughly
an order-of-magnitude improvement over ENUMERATE, the cost of
checking remains exponential in the number of steps.

Even without match removal, the SATURATE checker achieves a
drastic improvement over ENUMERATE, progressing from median
357 steps in 5s to median 854 steps in 100s. Most impressively,
adding match removal to the SATURATE checker allows it to process
median 1303 steps in under 5s.

While the measurements of Figure 12 do demonstrate that
SATURATE is more scalable than ENUMERATE and SYMBOLIC,
they do not reveal whether SATURATE scales linearly in the number
of steps when match removal is enabled. This is not visible since
the asymptotic complexity of SATURATE grows polynomially in

4 https://github.com/Z3Prover/z3
5 https://github.com/imdea-software/violin

timeout

HORN + optSAT + opt
HORNSATSAT

Observation
Orders of magnitude speedup

Related Work
Exponential enumeration
Wing and Gong, 1993. Testing and Verifying Concurrent Objects

NP Hardness
Gibbons and Korach, 1997. Testing shared memories

Asymptotically-equivalent optimizations
Burckhardt et al, 2010.	 Line-up: a complete and automatic linearizability checker

Shacham et al, 2011.	 Testing atomicity of composed concurrent operations

Horn et al, 2015.	 	 Faster linearizability checking via P-compositionality

Lowe, 2016.	 	 	 Testing for linearizability

Tractable approximation
Bouajjani et al, 2015. Tractable refinement checking for concurrent objects

Logical characterization
Emmi et al, 2015. Monitoring refinement via symbolic reasoning

Logical specification inference
Emmi et al, 2016. Symbolic abstract data type inference

