Sound, Complete, and Tractable Linearizability Monitoring for Concurrent Collections

Michael Emmi SRI International Constantin Enea Université Paris 7

Concurrent Objects

Abstract data type (Queue)

enq: 1	enq: 2	deq: 1	deq: 2
--------	--------	--------	--------

Blocking reference implementation

Efficient nonblocking implementation

Linearizability

Effects of each invocation appear to occur instantaneously

Linearization admitted by Queue type

e:2 e:1	d:2	d:1
---------	-----	-----

Theorem (Herlihy and Wing, 1990) Linearizability implies observational refinement

Theorem (Filipovic et al, 2010) **Observational refinement implies linearizability**

Hardness

Exponentially many linearizations to consider

Theorem (Gibbons and Korach, 1997) **Checking linearizability is NP-hard**

Result

Replace enumeration by monotonic deductive inference

Theorem

Checking linearizability is polynomial-time for collection types

Approach

Reduction to logical satisfiability problem

Theorem (Dowling and Gallier, 1984) Horn satisfiability is solvable in linear time

Logical Characterization

Total order axioms

 $\forall x \forall y \forall z (x < y \land y < z \Rightarrow x < z)$ $\forall x \forall y (x = y \lor x < y \lor y < x)$

Queue axioms

. . .

 $\forall x_1 \forall x_2 \forall y_1 \forall y_2 (\textbf{match}(x_1, x_2) \land \textbf{match}(y_1, y_2) \land x_1 < y_1 \Rightarrow x_2 < y_2) \land \dots$

Ground formula

e:1 < d:2 \land d:2 < d:1 \land match(e:1, d:1) \land match(e:2, d:2) \land ...

ambiguous

|--|

unambiguous

e:1 d:1	e:2	d:2
---------	-----	-----

Theorem

Linearizability equivalent to satisfiability for *unambiguous* histories

Hornification

Original clause $A < B \lor B < C \lor \neg (A < B)$

Translated clauses $A < B \lor \neg (C < B) \lor \neg (A < B)$ $\neg (B < A) \lor B < C \lor \neg (A < B)$ $\neg (B < A) \lor \neg (C < B) \lor \neg (A < B)$ $\neg (B < A) \lor \neg (C < B) \lor B < A$

Theorem

Translation is equisatisfiable and polynomial-time computable

Collection Types

Parametricity	Locality	<u>Value invariance</u>
{ 3 ,5} deq: 3 {5}	{ 3 ,5} deq: 3 {5}	{ 3 ,5} deq: 3 {5}
{ 7 ,5} deq: 7 {5}	{ 3,5 } size: 2 {3,5}	{ <mark>3,5</mark> } sum: <mark>8</mark> {}

Theorem

Restriction to unambiguous histories is sound for collections

Bounded Violations

Minimal violations

Minimal violation embedding

Theorem Collections have bounded minimal violations

Logical Representation

Minimal violations

Quantified conjunction of negations

```
 \begin{array}{l} \forall X_1 \forall X_2 \forall y_1 \forall y_2 \\ \neg(\boldsymbol{m}(X_1, X_2) \land X_2 < X_1) \\ \land \neg(\boldsymbol{m}(X_1, X_2) \land \boldsymbol{m}(y_1, y_2) \land X_1 < y_1 \land y_2 < X_2) \\ \land \dots \end{array}
```

Theorem

Collections have sound logical specifications

Corollary

Linearizability is PTIME computable for collections

Empirical E

Performance Over 10 histories with 10K steps each

Related Work

Exponential enumeration

Wing and Gong, 1993. Testing and Verifying Concurrent Objects

NP Hardness

Gibbons and Korach, 1997. Testing shared memories

Asymptotically-equivalent optimizations

Burckhardt et al, 2010.Line-up: a complete and automatic linearizability checkerShacham et al, 2011.Testing atomicity of composed concurrent operationsHorn et al, 2015.Faster linearizability checking via P-compositionalityLowe, 2016.Testing for linearizability

Tractable approximation

Bouajjani et al, 2015. Tractable refinement checking for concurrent objects

Logical characterization

Emmi et al, 2015. Monitoring refinement via symbolic reasoning

Logical specification inference

Emmi et al, 2016. Symbolic abstract data type inference