Beyond correct and fast:
Inspection Testing

Joachim Breitner, University of Pennsylvania

December 4, 2017, IBM PL days, T.J. Watson Research Center

An anecdote

The generic-lens library
77“ data Employee = MkEmployee String Int

Ty

ageLens :: Lens’' Employee Int

agelLens f (MkEmployee name age)

™ = fmap (\newAge -> MkEmployee name newAge) (f age)

The generic-lens library

77“ data Employee = MkEmployee String Int

deriving Generic

ageLens :: Lens’' Employee Int

agelLens = typed @Int
s

The generic-lens library

77“ data Employee = MkEmployee String Int

deriving Generic

ageLens :: Lens’' Employee Int
agelLens = typed @Int

—— In the libraries (simplified):

from :: Generic a => a -> Rep a
to :: Generic a => Rep a -> a
typed :: Generic s => Lens’ s a

typed = ravel (dimap from (fmap to) . gtyped)

A promise made

USINg super 1n 1S manner mignt pbe more convenient Ior
programmers who are not used to programming with lenses.

7. Conclusion

Deriving lenses generically gives the programmer the best of all
possible worlds. The frugality to only define whichever lenses they
\ need to use, the confidence that their abstraction will be without cost
and the flexibility to four different types of lenses. This expressive
and lightweight solution will hopefully inspire other library writers
to embrace GHC.Generics as a solid basis on which to build their

/\

libraries.
References
n A T mcale e T XToilnleln © Mhacibnan Taanan aea A O XN M3

A promise made

usIng super 1n mis manner mignt be more convenient 1or
programmers who are not used to programming with lenses.

7., Conclusion

Deriving lenses generically gives the programmer the best of all /

possible worlds. The frugality to only define whichever lenses they Tl
\ need to use, the confidence that their abstraction will be without cost

and the flexibility to four different types of lenses. This expressive

and lightweight solution will hopefully inspire other library writers

to embrace GHC . Generics as a solid basis on which to build their

libraries.
References
hpl A T mmcalamae T NToelnlndlin © Macbnin Ttanan maa A O XTI A M. A

A promise broken

7" Manual code:

ageLensManual :: Lens’ Employee Int
agelLensManual =
\ (@ (f.a6td :: * > x))
($dFunctor_abuA :: Functor f_a6t@)
(fl.a6ps :: Int -> f_a6t0 Int)
e (ds-d7Kk :: Employee) ->
case ds_d7Kk of _ { MkEmployee name_abpt age_abpu ->
fmap
@ f_abto
$dFunctor_a6uA
@ Int
@ Employee

(\ (newAge_a6bpv :: Int) -> MkEmployee name_a6pt newAge_a6pv)
(fl_a6ps age_abpu)

A promise broken

< Manual code: Generic code: J
= ageLensManual :: Lens’ Employee Int agelensGenericl 1
agelLensManual = i1 forall x_X7NQ (f1.X7NS :: x ->).
\ (@ (f_abtd :: * +> %)) Functor f1_X7NS =>
($dFunctor_abuA :: Functor f_a6t@) (Int -> f1_X7NS Int)
(fl.a6ps :: Int -> f_a6t0 Int) -> M1
e (ds-d7Kk :: Employee) -> b
case ds_d7Kk of _ { MkEmployee name_abpt age_abpu -> ('MetaData "Employee" "GenericLens" "main" 'Fals
fmap (M1
@ f_abto C
$dFunctor_a6uA ('MetaCons "MkEmployee" 'PrefixI 'False)
@ Int (S1 (’'MetaSel ’'Nothing ’NoSourceUnpackedness ’NoSc
@ Employee X_X7NQ
(\ (newAge_a6bpv :: Int) -> MkEmployee name_abpt newAge_a6pv) > f1_X7NS (M1
(fl_a6ps age_abpu) D
} ("MetaData "Employee" "GenericLens" "main" 'Fa
(M1
C
(’MetaCons "MkEmployee" 'PrefixI ’'False)
(S1 ('MetaSel ’Nothing ’'NoSourceUnpackedr
X_X7NQ)
agelensGenericl =
\ (@ x_X7NQ) (@ (f1.X7NS :: x -> %)) ($dFunctor_X7NU :: Funct
let {
f2_a7MF
1 FLXINS (M1
c 4

('MetaCons "MkEmployee" 'PrefixI ’'False)

A promise broken

7" Manual code: Generic code:

A promise broken

proj :: Functor f => f a -> Coyoneda f a
proj fa = Coyoneda id fa

ravel :: Functor f => ((a -> Coyoneda f b) -> (s -> Coyoneda f t))
> (a->fb) -> (s ->Ft)
ravel coy f s = inj $ coy (\a -> proj (f a)) s

mpickering commented on 3 Sep Collaborator

Hi Joachim,

After making such a claim in the talk, | tried it out again and indeed with the most recent version of the
library the situation is worse and the generated core is different.

@kcsongor What have you changed since about the 0.2 version? The precise commit is in the paper
repo.

kesongor commented on 3 Sep Owner

I'm investigating this regression and will try to get back later today

nomeata commented on 3 Sep Contributor

Heh. At least a good story for me to advocate for “optimization unit tests” that | envision :-)

A definition

iy

] Inspection Testing

is when a non-functional property of a compilation artifact of a

>/\, specific piece of code is specified declaratively by the programmer
and checked, during compilation, by the compiler.

£

Inspection Testing

is when'a _ of a compilation artifact of a

>\ specific piece of code is specified declaratively by the programmer

and checked, during compilation, by the compiler.

Inspection Testing

/ is when a non-functional property of a _ of a
B

x specific piece of code is specified declaratively by the programmer

s

and checked, during compilation, by the compiler.

-

Inspection Testing

is when'a non-functional property of a compilation artifact of a

; _ is specified declaratively by the programmer "~/

and checked, during compilation, by the compiler.

: Inspection Testing

is when a non-functional property of a compilation artifact of a
_specific piece of code is specified declaratively by the programmer

and checked, during compilation, by the compiler.

: Inspection Testing

is when a non-functional property of a compilation artifact of a
_specific piece of code is specified declaratively by the programmer

and checked, during compilation, by the compiler.

: Inspection Testing

is when a non-functional property of a compilation artifact of a
_specific piece of code is specified declaratively by the programmer
and checked, during compilation, by the compiler.

: Inspection Testing

is when a non-functional property of a compilation artifact of a
_specific piece of code is specified declaratively by the programmer
and checked, during compilation, by the compiler.

Haskell Implementation

omesta Inspection-testng S]] [P =) [Fra] + \
AN i P 9 =
b
7 Inspecin Toting forHaskell Ry

» n:;’““"““’ Gromto e e | Upkond e m.‘ K — A &

Tes o (oe ol - 7 i

siignore Start converting ghe-pr onth a 4
ravis yml Disable ghe-8.0. 6 days a . ¥
Changelog md o o e .

wo il bacause of exgected filures .

Setuphs i onths a

Tesths Support Ipugin-opi-TestInspsciion Plugin-keep-going 6 days a

inspection-testing cabal ‘o o libe .
RREADMEmd

Inspection Testing for Haskell

This GHO plugin allows you 1o ambed assortions about the nermeclate code nt your Haskell code, and have them
chicked by GHC. This I caled nspection festing (2s It automates what you do whan you manualy Inspect the Intormeclate
codel

Synopsis

Soothe Test. Inspection modulo for the documentation, but there really Isn't much moro to it than:

- LANGUAGE TemplateHaskell 5}

generic-lens: Happy end

* Tests
L -- The inspection-testing plugin chi the following equalities hold, by = ‘
il -~ checking that the LHSs a RHSs are CSEd. This also means that the :
o runtime char stics e derived lenses is the same as the ally ‘
= written one
(s
l fieldALensName :: Lens' Record Int Alread Used b - ,
!' fieldALensName = field @"fieldA" y y \/
[=
. fieldALensType :: Lens' Record Int ° generic_lens o \
5 fieldALensType = typed @Int i
v

fieldALensPos :: Lens' Record Int ° generic_sop
fieldALensPos = position @1 ‘\
ey
subtypeLensGeneric Lens' Record Record2 ® vecC i
subtypeLensGeneric = super &

typechangingGeneric :: Lens (Records a) (Records b) a b

typechangingGeneric = field @"fieldA"

typechangingGenericPos :: Lens (Record3 a) (Record3 b) a b

typechangingGenericPos = position @1

pose :: Lens (Record3 (Record3 a)) (Record3 (R
@"fieldA" . field @"fieldA"

typechangingGeneric
typechangingGenericcompose = field

'fieldALensManual === 'fieldALensName
= 'fieldALensType
= 'fieldALensPos

inspect
inspect § 'fieldALensManual =
inspect § 'fieldALensManual =

inspect $ 'subtypelensManual 'subtypeLensGeneric
inspect $ 'typeChangingManual === 'typeChangingGeneric

inspect $ 'typeChangingManual === 'typeChangingGenericPos

inspect $ 'typeChangingManualCompose === 'typeChangingGenericCompose

f 8

Many applications

i e Equality of generic vs. manual code. l ‘
l/é' e Equivalence of generic vs. manual code. /
- e Elimination of intermediate data structures (fusion) 'Q
e Strictness/laziness properties jﬁ

< e Absence of allocations s

e Absence of slow function calls
o Absence of branches
e Vectorization and SIMD

e insert more good ideas here

Thank you

	An anecdote
	A definition

