
Foundational Program
verification using VST

Princeton University

Lennart Beringer, William Mansky, Andrew Appel

Styles of program verification

● annotation-enriched code
● verification carried out on intermediate form, using SAT/SMT
● assertions: expressions from the target programming language
● first-order quantification
● multitude of verification/modeling styles, encoded e.g. as ghost state
● automated verification for correct annotations
● relationship to compiler’s view of language unclear (soundness?)

IDE-embedded verification tool

Styles of program verification

● annotation-enriched code
● verification carried out on intermediate form, using SAT/SMT
● assertions: expressions from the target programming language
● first-order quantification
● multitude of verification/modeling styles, encoded e.g. as ghost state
● automated verification for correct annotations
● relationship to compiler’s view of language unclear (soundness?)

IDE-embedded verification tool

● loop-invariants proof-embedded; function specs separate
● verification carried out on AST of source language
● assertions: mathematics (Gallina, dependent type theory)
● higher-order quantification
● specs can link to domain-specific theories (eg crypto, see below)
● interactive verification, enhanced by tactics + other automation
● formal soundness proof (“model”) links to compiler (CompCert)

VST: realization in interactive proof assistant (Coq)

Formal Program Correctness Verification

Prove in Coq that your
C program satisfes its
functional specifcation.

4

Corollaries:
 - safety, incl. memory safety: no bufer overruns etc.
 - information-foo guarantees captured in functional
model

Prove that your
C program is correct.

Prove your C program
functionally correct in Coq.

“Correct”?
Provides the

expected
functionality

Not covered: intensional properties
 - execution time, pooer consumption, cache
behavior
 - information foo via these side channels

Q: How to express a
functional spec?

A: Write a functional
program!

Further refnements:
• “prove”: in Coq, semi-automatically
• “program”: fragment (modularity)
• “satisfes”: program logic oith

interpretation & soundness proof
o.r.t. operational semantics

• “program”: proof for C, guarantee for
ASM via compiler correctness
(CompCert)

• assumptions: Coq kernel, ASM model,…

“Prove”?

Gallina

5

The pure functional language inside Coq’s logic has a nice
clean proof theory. This enables us to orite specs
that are easy to reason about, for students,
practitioners,....

Gallina is executable inside Coq,
so specifcations can be tested.

Many kinds of applications are best
programmed in a safe, garbage-
collected functional programming
language. Gallina is extractable to
OCaml so can be integrated into existing
software infrastructures.

Verified Software Toolchain

6

Expressive, modular, foundational, semi-automatic program logic for C and beyond.

Clight, as
formalized
in CompCert

Concurrency (Dijkstra-
Hoare + fne-grained),
impredicative
quantifcation, …

Separation
logic

Soundness proof for
step-indexed model
formalized o.r.t.
operational
semantics in Coq.

Floyd: foroard-symbolic
analysis, partial solution of
side conditions using Ltac
or verifed decision
procedures.

Partial
correctness +
safety + limited
information foo.

X86-32/64, Arm,
PooerPC, RiscV,
RTL, …

Verified Software Toolchain

7

Typical use: exploit convenience of Gallina:
1. write a (functional) model program p in Gallina
2. structure of p: one function f for each C function c
3. Function spec for c refers to specifcation function f

Expressive, modular, foundational, semi-automatic program logic for C and beyond.

Clight, as
formalized
in CompCert

Concurrency (Dijkstra-
Hoare + fne-grained),
impredicative
quantifcation, …

Separation
logic

Soundness proof for
step-indexed model
formalized o.r.t.
operational
semantics in Coq.

Floyd: foroard-symbolic
analysis, partial solution of
side conditions using Ltac
or verifed decision
procedures.

Partial
correctness +
safety + limited
information foo.

X86-32/64, Arm,
PooerPC, RiscV,
RTL, …

{ listseg α x null * listseg β y null } append(x,y) { listseg (app α β) retval null }

Model-level reasoning using FCF:
verify cryptographic security

Recent applications
Top-to-bottom verification

of crypto primitives

Code-level reasoning oith VST:
verify implementation correctness

HMAC.c

CompCert

DRBG.c SHA.c

HMAC.v
(executable)

DRBG.v
(executable)

SHA.v
(executable)

HMAC.v
(bit-oriented)

DRBG.v
(bit-oriented)

SHA crypto
assumptions

NIST,
RFC

Proofs of functional
equivalence (Coq)

Manual transcription

HMAC.sDRBG.s SHA.s

Assembler + Linker (unverifed)

HMAC-SHA256-DRBG.o

Model-level reasoning using FCF:
verify cryptographic security

Recent applications
Nonblocking concurrencyTop-to-bottom verification

of crypto primitives

Code-level reasoning oith VST:
verify implementation correctness

HMAC.c

CompCert

DRBG.c SHA.c

HMAC.v
(executable)

DRBG.v
(executable)

SHA.v
(executable)

HMAC.v
(bit-oriented)

DRBG.v
(bit-oriented)

SHA crypto
assumptions

NIST,
RFC

Proofs of functional
equivalence (Coq)

Manual transcription

HMAC.sDRBG.s SHA.s

Assembler + Linker (unverifed)

HMAC-SHA256-DRBG.o

N readers, 1 writer

1

N+1

LB1 Data buffer 1

Data buffer N+2

1 LB 2

LB N

1) W selects free data buffer 0 < b < N+3
and writes data to b

2) W communicates b to all N readers
using atomic exchanges to all LB’s

3) Reader i inspects LBi to find
location of next data item

4) Reader i acknowledges receipt of b
using atomic exchange “Empty” in Lbi

5) Accesses to data buffers use
ordinary load/store operations

N+2: W can always find a free
data buffer !

Current & Future Work

DeepSpec (NSF):
• crypto primitives and protocols: integration with

FiatCrypto’s ECC, TLS 1.3, …
• specifcation of CertiKOS system call API
• specifcation and verifcation of web server
• Interaction with Vellum, CoreHaskell, and CertiCoq

Try it yourself: http://vst.cs.princeton.edu/doonload

Concurrency:
• Semantic justifcation of concurrent ghost state a la Iris/GPS
• Derivation of proof rules for C11 atomics
• Application to nonblocking algorithms and data structures

	Slide129
	Slide 2
	Slide 3
	Slide 4
	Slide248
	Slide249
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

