Foundational Program
verification using VST

Lennart Beringer, William Mansky, Andrew Appel

| ~ Princeton University

Verified

Software
Toolchain

IBM

Monday, December 4th 2017
https://ibm.biz/plday2017

Styles of program verification

IDE-embedded verification tool

e annotation-enriched code

e verification carried out on intermediate form, using SAT/SMT
assertions: expressions from the target programming language
first-order quantification

multitude of verification/modeling styles, encoded e.g. as ghost state
automated verification for correct annotations

relationship to compiler’s view of language unclear (soundness?)

Styles of program verification

IDE-embedded verification tool

e annotation-enriched code

e verification carried out on intermediate form, using SAT/SMT
assertions: expressions from the target programming language
first-order quantification

multitude of verification/modeling styles, encoded e.g. as ghost state
automated verification for correct annotations

relationship to compiler’s view of language unclear (soundness?)

VST: realization in interactive proof assistant (Coq)

* loop-invariants proof-embedded; function specs separate

e verification carried out on AST of source language

e assertions: mathematics (Gallina, dependent type theory)
 higher-order quantification

e specs can link to domain-specific theories (eg crypto, see below)
* interactive verification, enhanced by tactics + other automation

e formal soundness proof (“model”) links to compiler (CompCert)

Formal PI'OgI’aIIl Correctness VEI’ifiCatiOIl

Prove that your
C program is correct.

Prove in Coq that your
C program satisfies its
functional specification.

Q: How to express a

functional spec?
A: Write a
program!

Provides the

expected
functionalit

Prove your C program
functionally correct in Coq.

Not covered: intensional properties

- execution time, power consumption, cache
behavior

- information flow via these side channels

Corollaries:

- safety, incl. memory safety: no buffer overruns etc.

- information-flow guarantees captured in functional
model

Further refinements:

* ‘“prove”: in Coq, semi-automatically

* ‘“program”: fragment (modularity)

« ‘“satisfies”: program logic with
interpretation & soundness proof
w.r.t. operational semantics

* ‘“program”: proof for C, guarantee for
ASM via compiler correctness
(CompCert)

* assumptions: (ioq kernel, ASM model,...

Gallina

The pure functional language inside Coq’s logic has a nice
clean proof theory. This enables us to write specs
that are easy to reason about, for students,
practitioners,....

Gallina is executable inside Coq,
so specifications can be tested.

Many kinds of applications are best
programmed in a safe, garbage-
collected functional programming
language. Gallina is extractable to
OCaml so can be integrated into existing
software infrastructures.

5

Verifie
Software
Toolchain

Verified Sottware Toolchain

Concurrency (Dijkstra-
Hoare + fine-grained),
impredicative
quantification, ...

Floyd: forward-symbolic
analysis, partial solution of
side conditions using Ltac
or verified decision
procedures.

/

/

” Sther

other
t

ET] verifier
Verifiable C | ;oo
language & program logic | analysis !
Rkl

VST retargetable
Separation Logic

¥ ¥ ¥ ¥

COMPCERT
verified C compiler
[from INRIA)
¥ ¥ ¥ ¥
verified machine language program

Clight, as
formalized
in CompCert

/

Expressive, modular, foundational, semi-automatic program logic for C and beyond.

/

/

/

Separation
logic

Soundness proof for
step-indexed model
formalized w.r.t.
operational
semantics in Coq.

/
Partial
correctness +
safety + limited
information flow.

X86-32/64, Arm,
PowerPC, RiscV,
RTL, ...

Verifie
Software
Toolchain

Verified Sottware Toolchain

Concurrency (Dijkstra-
Hoare + fine-grained),
impredicative
quantification, ...

Floyd: forward-symbolic
analysis, partial solution of
side conditions using Ltac
or verified decision
procedures.

/

Expressive, modular, foundational, semi-automatic program logic for C and beyond.

/

/
/ /

Verifiable C [=" 5

language & program logic | a

VST retargetable
Separation Logic

+ ¥ + +

COMPCERT
verified C compiler
[from INRIA)
¥ ¥ ¥ ¥
verified machine language program

Clight, as
formalized
in CompCert

/

/

Separation
logic

Soundness proof for Partial
step-indexed model correctness +
formalized w.r.t. safety + limited

X86-32/64, Arm,
PowerPC, RiscV,
RTL, ...

operational information flow.

semantics in Coq.

Typical use: exploit convenience of Gallina:

1. write a (functional) model program p in Gallina

2. structure of p: one function f for each C function ¢
3. Function spec for ¢ refers to specification function f

Fixpoint app (al bl: list 2) - list Z :=
match al with

| nil == bl

lazal'=>a: app al' bl

end.

{ listseg a x null * listseg B y null } append(x,y) { listseg @ a B) retval null }

Recent applications
/Top-to-bottom verificaticﬂ
of crypto primitives

Model-level reasoning using FCF:
verify cryptographic security

DRBG. v]—[HMAC v
(bit-oriented) (bit orlented

Proofs of functional
equivalence (Coq)

DRBG.v l l HMAC.v
(executable) (executable)

Code-level reasoning with VST:
verify implementation correctness

Manual transcription

SHA.v

(executable)

DRBG.c HMAC.c SHA.c

CompcCert
DRBG.s HMAC.s SHA.s

I Assembler + Linker (unverified) I
\ HMAC-SHA256-DRBG.o /

Recent applications

ﬁ)p-to-bottom verificatioN Aonblockinq concurrench
of crypto primitives N . '

N readers, 1 writer

Model-level reasoning using FCF:

(bit- orlented) (bit- orlented 1 LB 2
Proofs of functional N+1 — LB N

equivalence (Coq)

DRBG.v l l HMAC.v
(executable) (executable)

Code-level reasoning with VST:
verify implementation correctness

Data buffer N+2

SHA.v

(executable)

1) W selects free data buffer 0 < b < N+3
and writes data to b

2) W communicates b to all N readers
using atomic exchanges to all LB’s

3) Reader i inspects LBI to find

) LEESE (B location of next data item
CompCert 4) Reader i acknowledges receipt of b
using atomic exchange “Empty” in Lbi
DRBG.s | [HMAC.s e 5) Accesses to data buffers use

I Assembler + Linker (unverified) I ordinary load/store operations
HMAC-SHA256-DRBG.0o N+2: W can always find a free
data buffer !

assertions in canonical form: PROP (P) LOCAL (Q) SEP (R)

Automation & Performance

SL proof rules for C complex! Many entailments!

full employment theorem for tactics programmers
horizontal frame, not vertical: PROP (P) LOCAL (Q) SEP (R) FR (F)

time/sec

Floyd Performance April 21, 2017

Coq8.6, Ubuntu 16.10, Intel Core i7@2.90GHz

300

o | SLOW

200

5)/{ FAST
100 L gh Geomean=0.77

o0 W
ol =

0 100

//:SIUpe =1
.

200 300
ASTsize

400

500

600

=27

T00

Current & Future Work

Concurrency:
 Semantic justification of concurrent ghost state a la Iris/GPS

e Derivation of proof rules for C11 atomics
* Application to nonblocking algorithms and data structures

|
DeeDSDec (NSF): l :a

primitives and protocols: integration with
FiatCrypto’s ECC, TLS 1. 3/ CERTIKOS
e specification of CertiKOS systém call API

» specification and verification of web server —
Interactlon with VeIIum CoreHaskell, and Cert|Coq

%

Core Spec

deep

specC
server

Try it yourself: http://vst.cs.princeton.edu/download ‘

	Slide129
	Slide 2
	Slide 3
	Slide 4
	Slide248
	Slide249
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

