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Styles of program verification

● annotation-enriched code
● verification carried out on intermediate form, using SAT/SMT
● assertions: expressions from the target programming language
● first-order quantification
● multitude of verification/modeling styles, encoded e.g. as ghost state
● automated verification for correct annotations
● relationship to compiler’s view of language unclear (soundness?) 

IDE-embedded verification tool
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IDE-embedded verification tool

● loop-invariants proof-embedded; function specs separate
● verification carried out on AST of source language
● assertions: mathematics (Gallina, dependent type theory)
● higher-order quantification 
● specs can link to domain-specific theories (eg crypto, see below)
● interactive verification, enhanced by tactics + other automation
● formal soundness proof (“model”) links to compiler (CompCert)

VST: realization in interactive proof assistant (Coq)



Formal Program Correctness Verification

Prove in Coq that your 
C program satisfes its 
functional specifcation.
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Corollaries:
 - safety, incl. memory safety: no bufer overruns etc.
 - information-foo guarantees captured in functional 
model

Prove that your 
C program is correct.

Prove your C program 
functionally correct in Coq.

“Correct”?
Provides the 

expected 
functionality

Not covered: intensional properties
 - execution time, pooer consumption, cache 
behavior
 - information foo via these side channels

Q: How to express a 
functional spec?

A: Write a functional 
program!

Further refnements:
• “prove”: in Coq, semi-automatically
• “program”: fragment (modularity)
• “satisfes”: program logic oith 

interpretation & soundness proof 
o.r.t. operational semantics

• “program”: proof for C, guarantee for 
ASM via compiler correctness 
(CompCert)

• assumptions: Coq kernel, ASM model,…

“Prove”?



Gallina
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The pure functional language inside Coq’s logic has a nice 
clean proof theory. This enables us to orite specs 
that are easy to reason about, for students, 
practitioners,....

Gallina is executable inside Coq, 
so specifcations can be tested. 

Many kinds of applications are best 
programmed in a safe, garbage-
collected functional programming 
language. Gallina is extractable to 
OCaml so can be integrated into existing 
software infrastructures.



Verified Software Toolchain
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Expressive, modular, foundational, semi-automatic program logic for C and beyond.

Clight, as 
formalized 
in CompCert

Concurrency (Dijkstra-
Hoare + fne-grained), 
impredicative 
quantifcation, …

Separation 
logic

Soundness proof  for 
step-indexed model 
formalized  o.r.t. 
operational 
semantics in Coq.

Floyd: foroard-symbolic 
analysis, partial solution of 
side conditions using Ltac 
or verifed decision 
procedures.

Partial 
correctness + 
safety + limited 
information foo.

X86-32/64, Arm, 
PooerPC, RiscV, 
RTL, …



Verified Software Toolchain
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Typical use: exploit convenience of Gallina: 
1. write a (functional) model program p in Gallina
2. structure of p: one function f for each C function c
3. Function spec for c refers to specifcation function f

Expressive, modular, foundational, semi-automatic program logic for C and beyond.

Clight, as 
formalized 
in CompCert

Concurrency (Dijkstra-
Hoare + fne-grained), 
impredicative 
quantifcation, …

Separation 
logic

Soundness proof  for 
step-indexed model 
formalized  o.r.t. 
operational 
semantics in Coq.

Floyd: foroard-symbolic 
analysis, partial solution of 
side conditions using Ltac 
or verifed decision 
procedures.

Partial 
correctness + 
safety + limited 
information foo.

X86-32/64, Arm, 
PooerPC, RiscV, 
RTL, …

{ listseg α x null * listseg β y null } append(x,y) { listseg (app α β) retval null }



Model-level reasoning using FCF: 
verify cryptographic security

Recent applications
Top-to-bottom verification

of crypto primitives

Code-level reasoning oith VST:
verify implementation correctness

HMAC.c

CompCert

DRBG.c SHA.c

HMAC.v
(executable)

DRBG.v
(executable)

SHA.v
(executable)

HMAC.v
(bit-oriented)

DRBG.v
(bit-oriented)

SHA crypto
assumptions

NIST,
RFC

Proofs of functional
equivalence (Coq)

Manual transcription

HMAC.sDRBG.s SHA.s

Assembler + Linker (unverifed)

HMAC-SHA256-DRBG.o



Model-level reasoning using FCF: 
verify cryptographic security

Recent applications
Nonblocking concurrencyTop-to-bottom verification

of crypto primitives

Code-level reasoning oith VST:
verify implementation correctness
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N readers, 1 writer

1

N+1

LB1 Data buffer 1

Data buffer N+2

1 LB 2

LB N

1) W selects free data buffer 0 < b < N+3
and writes data to b

2) W communicates b to all N readers
using atomic exchanges to all LB’s

3) Reader i inspects LBi to find 
location of next data item

4) Reader i acknowledges receipt of b
using atomic exchange “Empty” in Lbi

5) Accesses to data buffers use
ordinary load/store operations

N+2: W can always find a free
data buffer !





Current & Future Work

DeepSpec (NSF):
• crypto primitives and protocols: integration with 

FiatCrypto’s ECC, TLS 1.3, …
• specifcation of CertiKOS system call API
• specifcation and verifcation of web server
• Interaction with Vellum, CoreHaskell, and CertiCoq

Try it yourself: http://vst.cs.princeton.edu/doonload

Concurrency:
• Semantic justifcation of concurrent ghost state a la Iris/GPS
• Derivation of proof rules for C11 atomics
• Application to nonblocking algorithms and data structures
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