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Related work

Information flow type systems for static security environments

WHILE language [Volpano et al, 1996]

object-oriented languages [Banerjee/Naumann, 2003]

bytecode language [Barthe et al, 2005]

Analysis for dynamic security environments

JIF: Java with Information Flows [Myers, 1999; Zheng/Myers, 2004]

RTI: dynamic roles [Bandhakavi et al, 2008]

λdeps
+

: dynamic dependency monitoring [Shroff et al, 2007]

Novelty here:

bytecode with dynamic security environments

framework for information-flow certification of mobile code
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High-level language

Java-like language with few additions

dynamic domains encoded in fδ fields

class Calendar {
fδ: Domain⊥;
contents : Datafδ ;

}

class Server {
fδ: Domain⊥;
write(d : Datafδ);

}

domains are first-class values, operator v for policy queries:

if cal .fδ v srv .fδ then
srv .write(cal .contents);

flow from cal .contents to formal parameter d of srv .write
is only called if this flow is permitted
program is universally noninterferent
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High-level type system

class Calendar {
fδ: Domain⊥;
contents : Datafδ ;

}

class Server {
fδ: Domain⊥;
write(d : Datafδ);

}

if cal .fδ v srv .fδ then

srv .write(cal .contents);

type of expression: cal .fδexpected type: srv .fδ

flow information for then branch:
Q = {cal .fδ v srv .fδ}

1 types are symbolic expressions that refer to a security domain

2 collect information about allowed flows: Γ ` {Q} P {Q ′}
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Bytecode language and type system

if cal.fδ v srv.fδ then srv .write(cal .contents);

type: cal .fδQ = {cal .fδ v srv .fδ}
abstract flow

# instruction
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1 load cal
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2 getf fδ

[ a3 ] [⊥] ∅

3 load srv

[ a17 , a3 ] [⊥,⊥] ∅

4 getf fδ

[ a4 , a3 ] [⊥,⊥] ∅

5 prim v

[a4 v a3] [⊥] ∅

6 bnz 12

[] [] {a4 v a3}

...

12 load cal

[a19] [⊥] {a4 v a3}

13 getf contents

[a53] [ a3 ] {a4 v a3}

14 load srv

[a17, a53] [⊥, a3 ] {a4 v a3}

15 call write

[] [] {a4 v a3}
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Implementation

high-level
language
encoded in
subset of Java

type checker as
Eclipse plug-in
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Summary

Results

information flow analysis with dynamic security domains and policies

languages to inspect environment at runtime

type systems to check proper guarding of flow-inducing actions

Current work

type preservation result

implementation of certifying compilation

Future work

larger application scenario

polymorphic information flow security
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Backup slide: More features of analysis

Indirect information flows: if xprivate > 0 then ypublic := 1

maintain pc label on high-level, confluence point stack in bytecode

Domain update: cal .fδ := srv .fδ

ensure fδ is updated with stricter confidentiality level to avoid leaks

future work: declassification by downgrading fδ

Meta-label monotonicity

if domain expression e is used as a type, e is always at least as
confidential as type of e itself

“the fact that something is public cannot be private”
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