Noninterference for
Dynamic Security Environments

Robert Grabowski

Princeton University, Princeton, NJ

Programming Languages Day, July 29, 2010
IBM Research, Hawthorne, NY

1/13

Noninterference

calendar file 1

calendar file 2

calendar application

<ANNANANNANANANNANANAANNNAN D

server

M

2/13

Noninterference

calendar file 1
public

calendar file 2
private

calendar application

<ANNANANNANANANNANANAANNNAN D

server
public

<4wﬁfv‘”fV\PJV\pJV\hJV\Af"

2/13

Noninterference

calendar file 1
public

calendar file 2
private

calendar application

flow policy ~~

<ANNANANNANANANNANANAANNNAN D

server
public

M

private

PARIAN
restrl restr2
AN
public

2/13

Noninterference

calendar application flow policy ~»

calendar file 1 server private
public A public Pl AN
M restrl restr2
calendar file 2 AN et
private public

application is noninterferent with respect to ~:
data of domain A does not influence computation of data of domain B unless A ~ B

2/13

Noninterference

calendar file 1
public

calendar file 2
private

calendar application

flow

policy ~~

<ANNANANNANANANNANANAANNNAN D

server
public

lvV“VVVVVVVVVVVVVVVK

information flow analysis for ~~

application is noninterferent with respect to ~:
data of domain A does not influence computation of data of domain B unless A ~~ B

private

/_l
restrl

AN

AN
restr2
/l
public

2/13

Type-based information flow analysis

calendar application flow policy ~

calFilel : Srv : private

[NNNNNNNANNNNNNNNNNAP
Calendar,pjic

Server,pic g AN
M restrl restr2
calFile2 :

AR
public

Calendariyate

application is noninterferent with respect to ~:
data of domain A does not influence computation of data of domain B unless A ~~ B

3/13

Type-based information flow analysis

calendar application flow policy ~

calFilel : Srv : private

[NNNNNNNANNNNNNNNNNAP
Calendar,pjic

Server,pic g AN
M restrl restr2
calFile2 :

AR
public

Calendariyate

type system for ~

(=

soundness proof

(=

application is noninterferent with respect to ~:
data of domain A does not influence computation of data of domain B unless A ~~ B

3/13

Dynamic security environments

mobile
calendar application

calFilel :
Calendar,pjic

flow policy ~~

<ANNANANNANANANNANANAANNNAN D

Srv
Serverpub,,-c

calFile2 :
Calendariyate

M

private

PATEAN

restrl restr2
AN
public

4/13

Dynamic security environments

mobile
calendar application

calFilel :
Calendar,

flow policy ~~

<ANNANANNANANANNANANAANNNAN D

srv :
Server;

calFile2 :
Calendar,

M

private

PATEAN

restrl restr2
AN
public

4/13

Dynamic security environments

mobile
calendar application

calFilel :
Calendar,

flow

policy ~~

<ANNANANNANANANNANANAANNNAN D

srv :
Server;

calFile2 :
Calendar,

M

/,
med1

v

high
AN
med?2
/J

low

4/13

Dynamic security environments

mobile
calendar application

calFilel :
Calendar,

flow policy ~~

<ANNANANNANANANNANANAANNNAN D

Srv :
Server;

M

calFile2 :
Calendar,

4/13

Dynamic security environments

mobile
calendar application

calFilel :
Calendar,

flow policy ~~

<ANNANANNANANANNANANAANNNAN D

Srv :
Server;

calFile2 :
Calendar,

M

goal:

universal noninterference:
application is secure for any security environment (domains and policies)

4/13

Approach

policy-aware
calendar application

calFilel :
Calendar,

<ANNANANNANANANNANANAANNNAN D

Srv :
Server;

calFile2 :
Calendar,

M

5/13

Approach

policy-aware
calendar application

Calendar, Server, application can query do-

M mains and policy before
calFile2 : D flow policy ~s each flow-inducing action
Calendar, policy

5/13

Approach

policy-aware
calendar application

calFilel : srv :
[NNNNNNNANNNNNNNNNNAP
Calendar, Server; application can query do-

l M mains and policy before
calFile2 : D flow policy ~s each flow-inducing action
Calendar, policy

type system
checks that all critical flows have been guarded

soundness proof

application is noninterferent for any security environment

5/13

Goal: framework for universal noninterference

Java-like language with
policy checks

type system

soundness proof

universal
noninterference

6/13

Goal: framework for universal noninterference

Java-like language with
policy checks

type system

soundness proof

universal
noninterference

bytecode language with
policy checks

type system

soundness proof

universal
noninterference

6/13

Goal: framework for universal noninterference

Java-like language with
policy checks

type system

universal
noninterference

type-
preserving
compilation

soundness proof

bytecode language with
policy checks

type system

soundness proof

universal
noninterference

6/13

Goal: framework for universal noninterference

Java-like language with
policy checks

type system

universal
noninterference

type-
preserving
compilation

soundness proof

PCC application:

bytecode language with
policy checks

type system

soundness proof

universal
noninterference

mobile
code
+
certificate of
universal NI

6/13

Related work

Information flow type systems for static security environments
e WHILE language [Volpano et al, 1996]
@ object-oriented languages [Banerjee/Naumann, 2003]

@ bytecode language [Barthe et al, 2005]

Analysis for dynamic security environments
e JIF: Java with Information Flows [Myers, 1999; Zheng/Myers, 2004]
@ RTI: dynamic roles [Bandhakavi et al, 2008]

o Mders dynamic dependency monitoring [Shroff et al, 2007]

Novelty here:
@ bytecode with dynamic security environments

@ framework for information-flow certification of mobile code

7/13

High-level language

@ Java-like language with few additions

@ dynamic domains encoded in fs fields

class Calendar { class Server {
fs: Domain | ; fs: Domain | ;
contents : Datay,; write(d : Datay,);

@ domains are first-class values, operator C for policy queries:

if cal.fs C srv.fs then
srv.write(cal.contents);

o flow from cal.contents to formal parameter d of srv.write
o is only called if this flow is permitted
e program is universally noninterferent

High-level type system

class Calendar { class Server {
fs: Domain | ; fs: Domain | ;
contents : Datay,; write(d : Datay,);

if cal.fs C srv.fs then

srv.write(cal.contents);

High-level type system

class Calendar { class Server {
fs: Domain | ; fs: Domain | ;
contents : Datay,; write(d : Datay,);

if cal.fs C srv.fs then

srv.write(cal.contents);

* type of expression: cal.fs

@ types are symbolic expressions that refer to a security domain

9/13

High-level type system

class Calendar { class Server {
fs: Domain | ; fs: Domain | ;
contents : Datay,; write(d : Datay,);

if cal.f; T srv.fs then flow information for then branch:

Q@ = {cal.fs C srv.f5}
srv.write(cal.contents);

* type of expression: cal.fs

@ types are symbolic expressions that refer to a security domain
@ collect information about allowed flows: I + {Q} P {Q’}

9/13

Bytecode language and type system

if cal.fs; C srv.f; then srv.write(cal.contents);

instruction

1 1load cal

2 getffs

3 load srv

4 getf fy

5 primC

6 bnzl12
12 load cal
13 getf contents
14 load srv

15

call write

10/13

Bytecode language and type system

if cal.fs C srv.fs then

oo e wr —F

12
13
14
15

instruction
load cal
getf fs
load srv
getf fs
prim C
bnz 12

load cal
getf contents
load srv

call write

abstract
operand stack
[210]
[as]

[aiz , as]
[a, as]
[as C as]

[

[a10]

[a53]

[a17, as3]

[

srv.write(cal.contents);

10/13

Bytecode language and type system

if cal.fs g-then srv.write(cal.contents);

@U‘I-hwl\)l—‘:ﬁz

12
13
14
15

instruction
load cal

getf fs
load srv
getf fs
prim C
bnz 12

load cal
getf contents
load srv

call write

abstract
operand stack

[a10]
[as]
[6'17v 33]

[l8a, as]

[a4 C a3]

[

[a10]
[as3]

[a17, as3]

[

10/13

Bytecode language and type system

if cal.fy C - then

S O W N :#*:

12
13
14
15

instruction
load cal

getf fs
load srv
getf fs
prim C
bnz 12

load cal
getf contents
load srv

call write

abstract
operand stack

[a10]
[as]
[6'17v 83]

[18a, as]

[a4 C a3]

[

[a10]
[as3]

[a17, as3]

[

srv.write(cal.contents);

stack types
[L]

[L]

[L, L]

[L, L]

[L]

[

(L]
[a3]
[L, as]

[

10/13

Bytecode language and type system

if cal.fy C - then

S O W N :#*:

12
13
14
15

instruction
load cal
getf fs
load srv
getf fs
prim C
bnz 12

load cal
getf contents
load srv

call write

abstract
operand stack
[a10]

[as]

[aiz , as]

[18a, as]

[a4 C a3]

[

[a10]
[as3]

[a17, as3]

[

srv.write(cal.contents);

type: cal.fs

stack types
[L]

[L]

[L, L]

[L, L]

[L]

[

(L]
[a3]
[L, as]

[

10/13

Bytecode language and type system

if cal.fy C - then

S O W N - :*1:

12
13
14
15

instruction
load cal

getf fs
load srv
getf fs
prim C
bnz 12

load cal
getf contents
load srv

call write

abstract
operand stack
[a10]

[as]

[aiz , as]

[18a, as]

[as C as]

[

[a10]
[as3]

[a17, as3]

[

srv.write(cal.contents);

type: cal.fs
flow
stack types information

[L] @
[L] ©
[L,1] 0
[L,1] @
[L] @

[{asCas}

[L] {asEas}

[as] {asCas}

[Loas] {asCas}

[

{24 C a3}

10/13

Bytecode language and type system

if cal.fy C - then

oo s wr —Fk

12
13
14
15

Q = {cal.fs C srv.fs}

instruction
load cal

getf fs
load srv
getf fs
prim C
bnz 12

load cal
getf contents
load srv

call write

abstract
operand stack

[210]
[as]
[5'17v 83]

[18a, as]

[as T a3]

[

[a10]
[as3]

[a17, as3]

[

srv.write(cal.contents);

type: cal.fs
flow
stack types information

L] 0
[L] ©
[L,1] 0
[L,1] @
[L] @

[{asCas}

[L] {2 Eas}

[as] {asCas}

(L as] {asCas}

[

{24 C a3}

10/13

Certifying compiler (work in progress)

high-level program with bytecode program with
policy checks policy checks

11/13

Certifying compiler (work in progress)

high-level program with bytecode program with
policy checks policy checks
type check

11/13

Certifying compiler (work in progress)

high-level program with bytecode program with
policy checks compile policy checks
type check

11/13

Certifying compiler (work in progress)

high-level program with bytecode program with
policy checks compile policy checks
type check

_ transfer -

11/13

Certifying compiler (work in progress)

high-level program with bytecode program with
policy checks compile policy checks
type check derivable

(type preservation result)

_ transfer _

11/13

Implementation

@ high-level
language
encoded in
subset of Java

@ type checker as
Eclipse plug-in

feYeYe) Java - Test/sre/def/TestLjava - Eclipse Pltform
o7 $:0-Q BHEG OB B P 4o -il-0 e o e
i package EI_: Hierarchy] = 5[0 TestLjava 5 Domaingava_| =6 Eouine 5 =0
&l - 85| Awe =
5 Sl 17 the lloning Livs do v e check 3 ool
PTest s first added o the comtraint set, so that B def
i src AR el i R K Covernrites CS data) @ sednfo
" e 77 - then the checker trics gain i thout sdding the Flom o domo
S omangan which nakes the First Tine fail Cond that 15 displayed) i
1) coman 7 opain T, osin. L0 o
Pt % e inen

4 JRE System Lbrary [V 1.5

4 - Dowatn. Lub(orain. LO, Donain.HIGH);
5= doretn. rlosTeloosin Lhomin. LOW, Donain. HIGR), Damain. LOMY;

Sty
PR

%0 bookean
2% Domain
©° maintstingl)

wen
PR
ase
v G
V)
!
3
800 En
(2 Problems (@ Javadoc [Declarz | | Label check could not be typed.
My Console. ezt
P £ may not be writen (appears in C5)
or
h
i
"
ore
W 1§ flw information s no used, erro message s
b
e umypable assignment: (1212 =
Ou := Ir.2l
o
€ expression: r.deita
1 field: r2.delta
s
Sap
o o)
— |
I0° defTestijava- Test/src 1 |

12/13

Summary

Results
@ information flow analysis with dynamic security domains and policies
@ languages to inspect environment at runtime

@ type systems to check proper guarding of flow-inducing actions

Current work
@ type preservation result

@ implementation of certifying compilation

Future work
@ larger application scenario

@ polymorphic information flow security

13/13

Backup slide: More features of analysis

Indirect information flows: i Xprivaze > 0 then ypupic =1

@ maintain pc label on high-level, confluence point stack in bytecode

Domain update: cal.fs :=srv.fs

@ ensure fy is updated with stricter confidentiality level to avoid leaks

o future work: declassification by downgrading fs

Meta-label monotonicity

@ if domain expression e is used as a type, e is always at least as
confidential as type of e itself

“the fact that something is public cannot be private”

14/13

