
Noninterference for
Dynamic Security Environments

Robert Grabowski

Princeton University, Princeton, NJ

Programming Languages Day, July 29, 2010
IBM Research, Hawthorne, NY

1/13

Noninterference

calendar file 1

calendar file 2

server

calendar application

flow policy

private

public

restr1 restr2

application is noninterferent with respect to :
data of domain A does not influence computation of data of domain B unless A B

information flow analysis for

2/13

Noninterference

calendar file 1
public

calendar file 2
private

server
public

calendar application

flow policy

private

public

restr1 restr2

application is noninterferent with respect to :
data of domain A does not influence computation of data of domain B unless A B

information flow analysis for

2/13

Noninterference

calendar file 1
public

calendar file 2
private

server
public

calendar application
flow policy

private

public

restr1 restr2

application is noninterferent with respect to :
data of domain A does not influence computation of data of domain B unless A B

information flow analysis for

2/13

Noninterference

calendar file 1
public

calendar file 2
private

server
public

calendar application
flow policy

private

public

restr1 restr2

application is noninterferent with respect to :
data of domain A does not influence computation of data of domain B unless A B

information flow analysis for

2/13

Noninterference

calendar file 1
public

calendar file 2
private

server
public

calendar application
flow policy

private

public

restr1 restr2

application is noninterferent with respect to :
data of domain A does not influence computation of data of domain B unless A B

information flow analysis for

2/13

Type-based information flow analysis

calFile1 :
Calendarpublic

calFile2 :
Calendarprivate

srv :
Serverpublic

calendar application
flow policy

private

public

restr1 restr2

application is noninterferent with respect to :
data of domain A does not influence computation of data of domain B unless A B

type derivation

type system for

soundness proof

3/13

Type-based information flow analysis

calFile1 :
Calendarpublic

calFile2 :
Calendarprivate

srv :
Serverpublic

calendar application
flow policy

private

public

restr1 restr2

application is noninterferent with respect to :
data of domain A does not influence computation of data of domain B unless A B

type derivation

type system for

soundness proof

3/13

Dynamic security environments

calFile1 :
Calendarpublic

calFile2 :
Calendarprivate

srv :
Serverpublic

mobile
calendar application

flow policy

private

public

restr1 restr2

goal:

universal noninterference:
application is secure for any security environment (domains and policies)

4/13

Dynamic security environments

calFile1 :
Calendar?

calFile2 :
Calendar?

srv :
Server?

mobile
calendar application

flow policy

private

public

restr1 restr2

goal:

universal noninterference:
application is secure for any security environment (domains and policies)

4/13

Dynamic security environments

calFile1 :
Calendar?

calFile2 :
Calendar?

srv :
Server?

mobile
calendar application

flow policy

high

low

med1 med2

goal:

universal noninterference:
application is secure for any security environment (domains and policies)

4/13

Dynamic security environments

calFile1 :
Calendar?

calFile2 :
Calendar?

srv :
Server?

mobile
calendar application

flow policy

?

goal:

universal noninterference:
application is secure for any security environment (domains and policies)

4/13

Dynamic security environments

calFile1 :
Calendar?

calFile2 :
Calendar?

srv :
Server?

mobile
calendar application

flow policy

?

goal:

universal noninterference:
application is secure for any security environment (domains and policies)

4/13

Approach

calFile1 :
Calendar?

calFile2 :
Calendar?

srv :
Server?

policy-aware
calendar application

flow policy

application can query do-
mains and policy before
each flow-inducing action

type derivation

type system
checks that all critical flows have been guarded

soundness proof

application is noninterferent for any security environment

5/13

Approach

calFile1 :
Calendar?

calFile2 :
Calendar?

srv :
Server?

policy-aware
calendar application

flow policy

application can query do-
mains and policy before
each flow-inducing action

type derivation

type system
checks that all critical flows have been guarded

soundness proof

application is noninterferent for any security environment

5/13

Approach

calFile1 :
Calendar?

calFile2 :
Calendar?

srv :
Server?

policy-aware
calendar application

flow policy

application can query do-
mains and policy before
each flow-inducing action

type derivation

type system
checks that all critical flows have been guarded

soundness proof

application is noninterferent for any security environment

5/13

Goal: framework for universal noninterference

Java-like language with
policy checks

type derivation

universal
noninterference

type system

soundness proof

bytecode language with
policy checks

type derivation

universal
noninterference

type system

soundness proof

type-
preserving

compilation

PCC application:

mobile
code

+
certificate of
universal NI

6/13

Goal: framework for universal noninterference

Java-like language with
policy checks

type derivation

universal
noninterference

type system

soundness proof

bytecode language with
policy checks

type derivation

universal
noninterference

type system

soundness proof

type-
preserving

compilation

PCC application:

mobile
code

+
certificate of
universal NI

6/13

Goal: framework for universal noninterference

Java-like language with
policy checks

type derivation

universal
noninterference

type system

soundness proof

bytecode language with
policy checks

type derivation

universal
noninterference

type system

soundness proof

type-
preserving

compilation

PCC application:

mobile
code

+
certificate of
universal NI

6/13

Goal: framework for universal noninterference

Java-like language with
policy checks

type derivation

universal
noninterference

type system

soundness proof

bytecode language with
policy checks

type derivation

universal
noninterference

type system

soundness proof

type-
preserving

compilation

PCC application:

mobile
code

+
certificate of
universal NI

6/13

Related work

Information flow type systems for static security environments

WHILE language [Volpano et al, 1996]

object-oriented languages [Banerjee/Naumann, 2003]

bytecode language [Barthe et al, 2005]

Analysis for dynamic security environments

JIF: Java with Information Flows [Myers, 1999; Zheng/Myers, 2004]

RTI: dynamic roles [Bandhakavi et al, 2008]

λdeps
+

: dynamic dependency monitoring [Shroff et al, 2007]

Novelty here:

bytecode with dynamic security environments

framework for information-flow certification of mobile code

7/13

High-level language

Java-like language with few additions

dynamic domains encoded in fδ fields

class Calendar {
fδ: Domain⊥;
contents : Datafδ ;

}

class Server {
fδ: Domain⊥;
write(d : Datafδ);

}

domains are first-class values, operator v for policy queries:

if cal .fδ v srv .fδ then
srv .write(cal .contents);

flow from cal .contents to formal parameter d of srv .write
is only called if this flow is permitted
program is universally noninterferent

8/13

High-level type system

class Calendar {
fδ: Domain⊥;
contents : Datafδ ;

}

class Server {
fδ: Domain⊥;
write(d : Datafδ);

}

if cal .fδ v srv .fδ then

srv .write(cal .contents);

type of expression: cal .fδexpected type: srv .fδ

flow information for then branch:
Q = {cal .fδ v srv .fδ}

1 types are symbolic expressions that refer to a security domain

2 collect information about allowed flows: Γ ` {Q} P {Q ′}

9/13

High-level type system

class Calendar {
fδ: Domain⊥;
contents : Datafδ ;

}

class Server {
fδ: Domain⊥;
write(d : Datafδ);

}

if cal .fδ v srv .fδ then

srv .write(cal .contents);

type of expression: cal .fδexpected type: srv .fδ

flow information for then branch:
Q = {cal .fδ v srv .fδ}

1 types are symbolic expressions that refer to a security domain

2 collect information about allowed flows: Γ ` {Q} P {Q ′}

9/13

High-level type system

class Calendar {
fδ: Domain⊥;
contents : Datafδ ;

}

class Server {
fδ: Domain⊥;
write(d : Datafδ);

}

if cal .fδ v srv .fδ then

srv .write(cal .contents);

type of expression: cal .fδexpected type: srv .fδ

flow information for then branch:
Q = {cal .fδ v srv .fδ}

1 types are symbolic expressions that refer to a security domain

2 collect information about allowed flows: Γ ` {Q} P {Q ′}

9/13

Bytecode language and type system

if cal.fδ v srv.fδ then srv .write(cal .contents);

type: cal .fδQ = {cal .fδ v srv .fδ}
abstract flow

instruction

operand stack stack types information

1 load cal

[a19] [⊥] ∅

2 getf fδ

[a3] [⊥] ∅

3 load srv

[a17 , a3] [⊥,⊥] ∅

4 getf fδ

[a4 , a3] [⊥,⊥] ∅

5 prim v

[a4 v a3] [⊥] ∅

6 bnz 12

[] [] {a4 v a3}

...

12 load cal

[a19] [⊥] {a4 v a3}

13 getf contents

[a53] [a3] {a4 v a3}

14 load srv

[a17, a53] [⊥, a3] {a4 v a3}

15 call write

[] [] {a4 v a3}

10/13

Bytecode language and type system

if cal.fδ v srv.fδ then srv .write(cal .contents);

type: cal .fδQ = {cal .fδ v srv .fδ}

abstract

flow

instruction operand stack

stack types information

1 load cal [a19]

[⊥] ∅

2 getf fδ [a3]

[⊥] ∅

3 load srv [a17 , a3]

[⊥,⊥] ∅

4 getf fδ [a4 , a3]

[⊥,⊥] ∅

5 prim v [a4 v a3]

[⊥] ∅

6 bnz 12 []

[] {a4 v a3}

...

12 load cal [a19]

[⊥] {a4 v a3}

13 getf contents [a53]

[a3] {a4 v a3}

14 load srv [a17, a53]

[⊥, a3] {a4 v a3}

15 call write []

[] {a4 v a3}

10/13

Bytecode language and type system

if cal.fδ v srv.fδ then srv .write(cal .contents);

type: cal .fδQ = {cal .fδ v srv .fδ}

abstract

flow

instruction operand stack

stack types information

1 load cal [a19]

[⊥] ∅

2 getf fδ [a3]

[⊥] ∅

3 load srv [a17 , a3]

[⊥,⊥] ∅

4 getf fδ [a4 , a3]

[⊥,⊥] ∅

5 prim v [a4 v a3]

[⊥] ∅

6 bnz 12 []

[] {a4 v a3}

...

12 load cal [a19]

[⊥] {a4 v a3}

13 getf contents [a53]

[a3] {a4 v a3}

14 load srv [a17, a53]

[⊥, a3] {a4 v a3}

15 call write []

[] {a4 v a3}

10/13

Bytecode language and type system

if cal.fδ v srv.fδ then srv .write(cal .contents);

type: cal .fδQ = {cal .fδ v srv .fδ}

abstract

flow

instruction operand stack stack types

information

1 load cal [a19] [⊥]

∅

2 getf fδ [a3] [⊥]

∅

3 load srv [a17 , a3] [⊥,⊥]

∅

4 getf fδ [a4 , a3] [⊥,⊥]

∅

5 prim v [a4 v a3] [⊥]

∅

6 bnz 12 [] []

{a4 v a3}

...

12 load cal [a19] [⊥]

{a4 v a3}

13 getf contents [a53] [a3]

{a4 v a3}

14 load srv [a17, a53] [⊥, a3]

{a4 v a3}

15 call write [] []

{a4 v a3}

10/13

Bytecode language and type system

if cal.fδ v srv.fδ then srv .write(cal .contents);

type: cal .fδ

Q = {cal .fδ v srv .fδ}

abstract

flow

instruction operand stack stack types

information

1 load cal [a19] [⊥]

∅

2 getf fδ [a3] [⊥]

∅

3 load srv [a17 , a3] [⊥,⊥]

∅

4 getf fδ [a4 , a3] [⊥,⊥]

∅

5 prim v [a4 v a3] [⊥]

∅

6 bnz 12 [] []

{a4 v a3}

...

12 load cal [a19] [⊥]

{a4 v a3}

13 getf contents [a53] [a3]

{a4 v a3}

14 load srv [a17, a53] [⊥, a3]

{a4 v a3}

15 call write [] []

{a4 v a3}

10/13

Bytecode language and type system

if cal.fδ v srv.fδ then srv .write(cal .contents);

type: cal .fδ

Q = {cal .fδ v srv .fδ}

abstract flow
instruction operand stack stack types information
1 load cal [a19] [⊥] ∅
2 getf fδ [a3] [⊥] ∅
3 load srv [a17 , a3] [⊥,⊥] ∅
4 getf fδ [a4 , a3] [⊥,⊥] ∅
5 prim v [a4 v a3] [⊥] ∅
6 bnz 12 [] [] {a4 v a3}
...

12 load cal [a19] [⊥] {a4 v a3}
13 getf contents [a53] [a3] {a4 v a3}
14 load srv [a17, a53] [⊥, a3] {a4 v a3}
15 call write [] [] {a4 v a3}

10/13

Bytecode language and type system

if cal.fδ v srv.fδ then srv .write(cal .contents);

type: cal .fδQ = {cal .fδ v srv .fδ}
abstract flow

instruction operand stack stack types information
1 load cal [a19] [⊥] ∅
2 getf fδ [a3] [⊥] ∅
3 load srv [a17 , a3] [⊥,⊥] ∅
4 getf fδ [a4 , a3] [⊥,⊥] ∅
5 prim v [a4 v a3] [⊥] ∅
6 bnz 12 [] [] {a4 v a3}
...

12 load cal [a19] [⊥] {a4 v a3}
13 getf contents [a53] [a3] {a4 v a3}
14 load srv [a17, a53] [⊥, a3] {a4 v a3}
15 call write [] [] {a4 v a3}

10/13

Certifying compiler (work in progress)

high-level program with
policy checks

high-level types
(cal .fδ)

bytecode program with
policy checks

bytecode types
(a3)

type check

compile

transfer

derivable
(type preservation result)

11/13

Certifying compiler (work in progress)

high-level program with
policy checks

high-level types
(cal .fδ)

bytecode program with
policy checks

bytecode types
(a3)

type check

compile

transfer

derivable
(type preservation result)

11/13

Certifying compiler (work in progress)

high-level program with
policy checks

high-level types
(cal .fδ)

bytecode program with
policy checks

bytecode types
(a3)

type check

compile

transfer

derivable
(type preservation result)

11/13

Certifying compiler (work in progress)

high-level program with
policy checks

high-level types
(cal .fδ)

bytecode program with
policy checks

bytecode types
(a3)

type check

compile

transfer

derivable
(type preservation result)

11/13

Certifying compiler (work in progress)

high-level program with
policy checks

high-level types
(cal .fδ)

bytecode program with
policy checks

bytecode types
(a3)

type check

compile

transfer

derivable
(type preservation result)

11/13

Implementation

high-level
language
encoded in
subset of Java

type checker as
Eclipse plug-in

12/13

Summary

Results

information flow analysis with dynamic security domains and policies

languages to inspect environment at runtime

type systems to check proper guarding of flow-inducing actions

Current work

type preservation result

implementation of certifying compilation

Future work

larger application scenario

polymorphic information flow security

13/13

Backup slide: More features of analysis

Indirect information flows: if xprivate > 0 then ypublic := 1

maintain pc label on high-level, confluence point stack in bytecode

Domain update: cal .fδ := srv .fδ

ensure fδ is updated with stricter confidentiality level to avoid leaks

future work: declassification by downgrading fδ

Meta-label monotonicity

if domain expression e is used as a type, e is always at least as
confidential as type of e itself

“the fact that something is public cannot be private”

14/13

