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Related work

Information flow type systems for static security environments
e WHILE language [Volpano et al, 1996]
@ object-oriented languages [Banerjee/Naumann, 2003]

@ bytecode language [Barthe et al, 2005]

Analysis for dynamic security environments
e JIF: Java with Information Flows [Myers, 1999; Zheng/Myers, 2004]
@ RTI: dynamic roles [Bandhakavi et al, 2008]

o Mders dynamic dependency monitoring [Shroff et al, 2007]

Novelty here:
@ bytecode with dynamic security environments

@ framework for information-flow certification of mobile code
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High-level language

@ Java-like language with few additions

@ dynamic domains encoded in fs fields

class Calendar { class Server {
fs: Domain | ; fs: Domain | ;
contents : Datay,; write(d : Datay,);

@ domains are first-class values, operator C for policy queries:

if cal.fs C srv.fs then
srv.write(cal.contents);

o flow from cal.contents to formal parameter d of srv.write
o is only called if this flow is permitted
e program is universally noninterferent
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High-level type system

class Calendar { class Server {
fs: Domain | ; fs: Domain | ;
contents : Datay,; write(d : Datay,);

if cal.f; T srv.fs then flow information for then branch:

Q@ = {cal.fs C srv.f5}
srv.write(cal.contents);

* type of expression: cal.fs

@ types are symbolic expressions that refer to a security domain
@ collect information about allowed flows: I + {Q} P {Q’}
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Bytecode language and type system

if cal.fs; C srv.f; then srv.write(cal.contents);

# instruction

1 1load cal

2 getffs

3 load srv

4 getf fy

5 primC

6 bnzl12
12 load cal
13 getf contents
14  load srv

15

call write
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Bytecode language and type system

if cal.fs C srv.fs then

oo e wr —F
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operand stack
[ 210 ]
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[as C as]
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[

srv.write(cal.contents);
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Bytecode language and type system
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Certifying compiler (work in progress)

high-level program with bytecode program with
policy checks policy checks
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Certifying compiler (work in progress)

high-level program with bytecode program with
policy checks compile policy checks
type check derivable

(type preservation result)

_ transfer _
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Implementation

@ high-level
language
encoded in
subset of Java

@ type checker as
Eclipse plug-in
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Summary

Results
@ information flow analysis with dynamic security domains and policies
@ languages to inspect environment at runtime

@ type systems to check proper guarding of flow-inducing actions

Current work
@ type preservation result

@ implementation of certifying compilation

Future work
@ larger application scenario

@ polymorphic information flow security
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Backup slide: More features of analysis

Indirect information flows: i Xprivaze > 0 then ypupic =1

@ maintain pc label on high-level, confluence point stack in bytecode

Domain update:  cal.fs :=srv.fs

@ ensure fy is updated with stricter confidentiality level to avoid leaks

o future work: declassification by downgrading fs

Meta-label monotonicity

@ if domain expression e is used as a type, e is always at least as
confidential as type of e itself

“the fact that something is public cannot be private”

14/13



