

Auditing, Security and Data Analytics for Cloud Object Stores

Shelly Garion and Yaron Weinsberg IBM Research Haifa

Who are we?

- IBM Research Haifa
- Computing as a Service
- Cloud Platforms Department
- Cloud Security and Analytics Group

https://www.research.ibm.com/haifa/dept/stt/ssp.html

IBM R&D Labs in Israel > IBM Reearch - Haifa > Computing as

Computing as a Service

Cloud Platforms

Mission: The mission of the Cloud Platforms team at IBM Research – Haifa is to develop cutting-edge compute, storage, and networking technologies for IBM's cloud services and products. Our team focuses on the IaaS layer of the cloud, covering advanced cloud computing technologies, system software and architectures, storage, and networking technologies.

Cloud Storage

70's – 80's Mainframe Era

90's-2000's Client Server Era

2010-beyond Cloud Era

Cloud Object Store

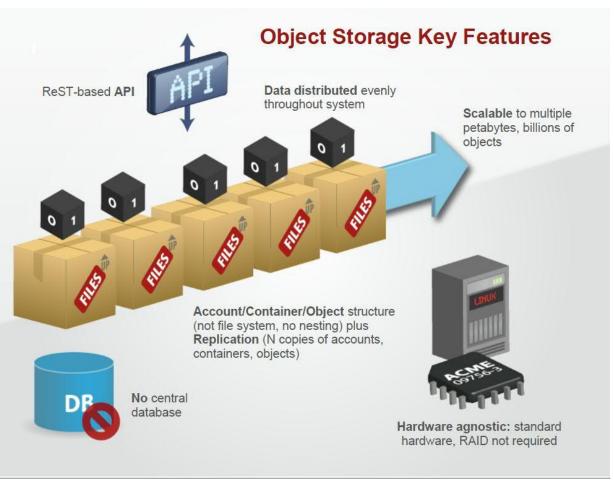
- Naturally suited for cloud
 - Un-structured and semi-structured data
 - Scalability
 - Accessed from everywhere anytime
 - Media, telco, healthcare, financial, government, backup,...
- Storage architecture that manages data as objects (as opposed to other architectures as file systems)
- An object encapsulates data and metadata
- Object data written once and not modified – Pictures, movies, tweets, blog-posts, etc.
- Accessed through RESTful HTTP – PUT, GET, DELETE...
- Runs on clusters of storage rich servers
- Provides high capacity at reduced costs

OpenStack Swift

Open source software for creating private and public clouds.

Software to **provision virtual machines** on standard hardware at massive scale

OpenStack Compute



Software to reliably **store billions of objects** distributed across standard hardware

Source: "OpenStack Tutorial", IEEE CloudCom 2010 Brett Piatt

http://salsahpc.indiana.edu/CloudCom2010/slides/PDF/tutorials/OpenStackTutorialIEEECloudCom.pdf

openstack

Cloud Object Store – Security and Privacy Challenges

- Need to trust the cloud provider
- Multi-tenancy
- BigData
 - Scalability
 - Un-structured and semi-structured data
- Private data may be stored un-intentional
- User data privacy is required by regulations
 - HIPPA medical data
 - PCI financial data

10 Worst Cloud Security Threats Of 2015

Dan Kobialka | Talkin Cloud

- 1. Data Breaches
- 2. Data Loss
- 3. DDoS attacks
- 4. Account Hijacking
- 5. Insider Attacks

- 6. Malware
- 7. Viruses
- 8. Phishing attacks
- 9. Bring-Your-Own-Device
- 10. Insufficient Due Diligence

InformationWeek CONNECTING THE BUSINESS TECHNOLOGY COMMUNITY

9 Worst Cloud Security Threats

Leading cloud security group lists the "Notorious Nine" top threats to cloud computing in 2013; most are already known but defy 100% solution.

Audit Trail of Cloud Object Store – BigData Challenge

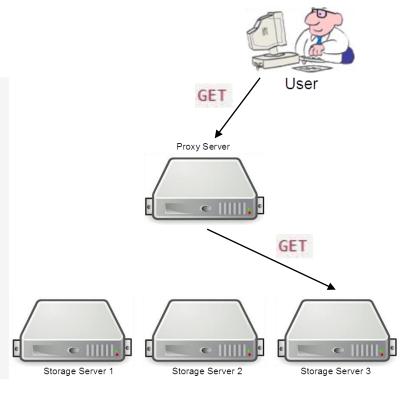
AWS Official Blog

Amazon S3 - Two Trillion Objects, 1.1 Million Requests / Second

by Jeff Barr | on 18 APR 2013 | in Amazon S3 | Permalink

- Amazon's audit trail for 2013 (estimation):
 - 35.10¹² log lines
 - 10 PB
- Audit trail records all accesses:
 - Who? (IP address)
 - What? (PUT, GET, DELETE, ...)
 - Which? (Account/Container/Object)
 - When? (Time)
 - More (failed attempts, recourse usage, latency...)
- Semi-structured data (noise, errors, missing fields, broken lines...)

Audit Trail and Swift Logs



Request:

Response:

Show object details for the goodbye object in the marktwain container: curl -i \$publicURL/marktwain/goodbye -X GET -H "X-Auth-Token: \$token"

HTTP/1.1 200 OK Content-Length: 14 Accept-Ranges: bytes Last-Modified: Wed, 15 Jan 2014 16:41:49 GMT Etag: 451e372e48e0f6b1114fa0724aa79fa1 X-Timestamp: 1389804109.39027 X-Object-Meta-Orig-Filename: goodbyeworld.txt Content-Type: application/octet-stream X-Trans-Id: tx8145a190241f4cf6b05f5-0052d82a34 Date: Thu, 16 Jan 2014 18:51:32 GMT

Goodbye World!

Swift proxy log line:

Jan 16 18:51:32 copper proxy-server 208.80.152.165 127.0.0.1 6/Jan/2014/18/51/32 GET /v1/my account/marktwain/goodbye HTTP/1.0 200 - - - 14 - tx8145a190241f4cf6b05f5 - 0.0020

http://developer.openstack.org/api-ref-objectstorage-v1.html http://docs.openstack.org/developer/swift/logs.html

Analysis of Swift Logs – Motivation and Goals

Swift proxy log line – Example:

Jan 16 18:51:32 copper proxy-server 208.80.152.165 127.0.0.1 6/Jan/2014/18/51/32 GET /v1/my_account/marktwain/goodbye HTTP/1.0 200 - - - - 14 - tx8145a190241f4cf6b05f5 - 0.0014

Information in the logs:

- Date and time
- Client IP address
- Request method (GET/PUT/DELETE...)
- Request path: account/container/object
- HTTP status code
- Bytes received / Bytes sent
- Request time (latency)

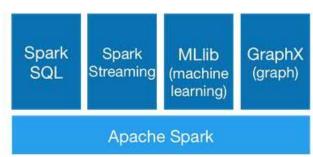
- Log analysis is useful for:
- Capacity planning
- ➢ Performance insight
- ➤ Predictive failure analysis
- ≻System design
- ➢ Periodic & unusual behavior
- ➤ Security & anomaly detection

≻...

 $\hfill\blacksquare$ Semi-structured data \Rightarrow cleaning and parsing

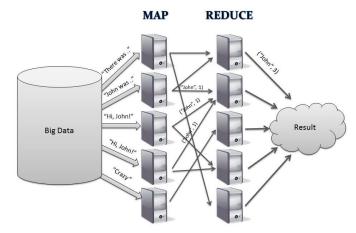
- Apache Spark
- Apache Spark[™] is a fast and general open-source engine for large-scale data processing
- Spark is capable to run programs up to 100x faster than Hadoop MapReduce in memory, or 10x faster on disk
- Includes the following libraries:
 - SPARK SQL
 - SPARK Streaming
 - MLlib (Machine Learning)
 - GraphX (graph processing)
- Spark can run on Apache Mesos, Hadoop 2's YARN cluster manager, standalone or in the cloud, and can read any existing Hadoop data, and data from HDFS or swift
- Written in **Scala** language (a 'Java' like, executed in Java VM)
- Apache Spark is built by a wide set of developers from over 50 companies Since the project started in 2009, more than 400 developers have contributed to Spark

120 110 Running time (s) 90 Hadoop 60 Spark 30 0.9 0


Logistic regression in Hadoop and Spark

© 2015 IBM Corporation

Analysis of Swift Proxy Logs using Spark Map/Reduce Example: Archiving

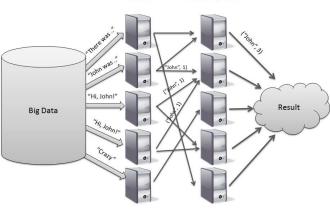

- Goal: How many objects can be archived? What should be the archive size?
- Q: Percentage of objects that have not been used in the past three months?
- Challenge: large number of objects (billions, trillions,...)
 - Parsing and cleaning
 - Map/Reduce
 - Sampling

• Algorithm:

- Map: LogLine => (ObjectName, DayOfYear, ObjectSize)
- Filter:

- Reduce:

- => Hashed ObjectName starting with "00"
- => (Object, (NumberOfLogLines, MinDayOfYear, MaxDayOfYear, ObjectSize))


Analysis of Swift Proxy Logs using Spark Map/Reduce **Example:** Archiving

- Goal: How many objects can be archived? What should be the archive size?
- Q: Percentage of objects that have not been used in the past three months?
- Spark Map/Reduce:

```
Big Data

    Map:

            def TakeAllObjects (line: Array[String]) = {
                        val Month = line(0)
                        val Day = line(1)
                        val Object = line(9)
                        val splitURI = line(9).split("/")
                        val PUTsize = StrtoInt(line(15))
                        val Objectchar = if (splitURI.length > 4) HashFunc(splitURI(4)).substring(0,2) else "*"
                        val DayofYear = 31* (Month.toInt-1) + (Day.toInt-1)
                        ( (Objectchar, Object), (1L, DayofYear, DayofYear, PUTsize) ) }
Reduce: def ReduceAllObjects ( a: (Long, Int, Int, Long), b: (Long, Int, Int, Long) ) = {
                        val numobj = (a. 1+b. 1)
                        val maxobj = ( if (a. 2 > b. 2) a. 2 else b. 2 )
                        val minobj = ( if (a. 3 < b. 3) a. 3 else b. 3 )
                        val sizeobj = ( if (a. 4 > b. 4) a. 4 else b. 4 )
                        (numobj, maxobj, minobj, sizeobj) }
Process:val textFile = sc.textFile("hdfs:///projects/Data/2014*.gz")
            val NewFile = textFile.map( .split(" ")).filter( .length > 19)
            val AllObjects = NewFile.map(TakeAllObjects).filter(line => (line. 1). 1 == "00").map(line => ( (line. 1). 2, line. 2) )
            val DistinctObjects = AllObjects.reduceByKey(ReduceAllObjects)
            val ArchivedObjects = DistinctObjects.filter(line => (line. 2). 2<365-90)</pre>
12
```


REDUCE

MAP

Analysis of Swift Proxy Logs using Spark MLLib Example: Machine learning clustering algorithm

- Goal: Cluster analysis of client access to an account by time of day
- Challenges:
 - Large number of clients
 - Integration of iterative Map/Reduce and Machine Learning clustering

• Algorithm:

- Map: LogLine => (Account, ClientIP, HourOfDay)
- Filter:

- => Account is MyAccount
- ReduceByKey: => (ClientIP, (HourOfDay, #Accesses))
- GroupByKey: => (ClientIP, [Distribution of #Accesses By HourOfDay])
- Clustering:
- => K-Means Clustering

Analysis of Swift Proxy Logs using Spark MLLib Example: Machine learning clustering algorithm

- **Goal:** Cluster analysis of client access to an account by time of day
- Spark iterative Map/Reduce and Machine Learning:

```
Map: def TakeClients (line: Array[String]) = {
    val Time = line(2).split(":")
    val Hour = Time(0)
    val ClientIP = line(5)
    val URI = line(9)
    val Account = URI.split("/")(2)
    ( (Account, ClientIP), Hour) }
```

Process & Reduce:

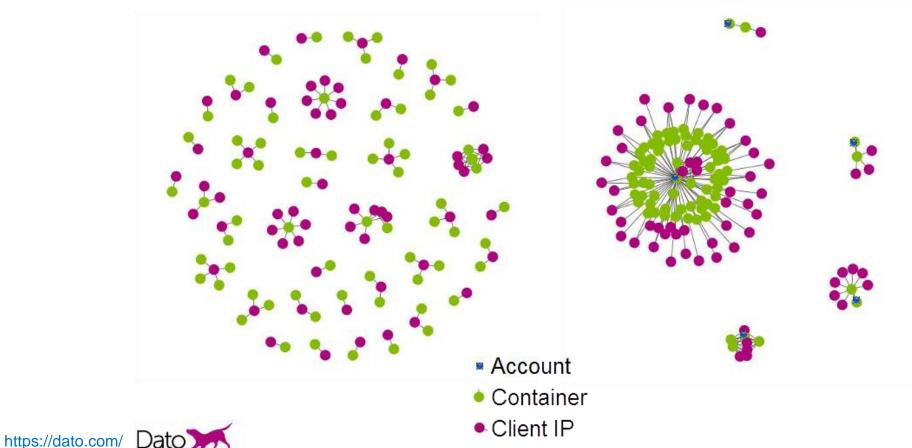
```
val textFile = sc.textFile("hdfs:///projects/Data/2014*.gz")
val NewFile = textFile.map(_.split(" ")).filter(_.length > 19)
val AllClients = NewFile.map(TakeClients).filter(line => (line._1)._1 == "MyAccount"). map(line => (((line._1)._2,line._2),1L))
val ReduceByTime = AllClients.reduceByKey((a,b) => a+b).map(line => ((line._1)._1, ((line._1)._2,line._2))).groupByKey()
val ClientTimeVector = ReduceByTime.map(LinetoVect)
```

• K-means clustering:

```
val iterationCount = 100
```

```
val clusterCount = 5
```

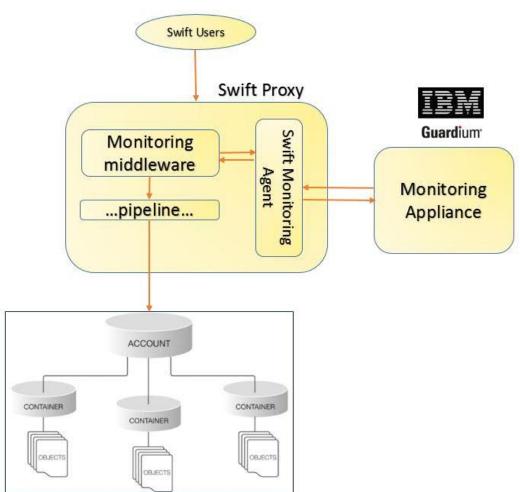
- val model = KMeans.train(parsedData, clusterCount, iterationCount)
- val clusterCenters = model.clusterCenters map(_.toArray)
- val cost = model.computeCost(parsedData)


```
val clientsByGoup = ClientTimeVector.groupBy{rdd => model.predict(Vectors.dense(rdd))}.collect()
```

val clustersize = ClientsByGroup.map(item => (item._1, item._2.toSet.size))

Analysis of Swift Proxy Logs using Spark & Dato Example: Communities of Clients-Containers

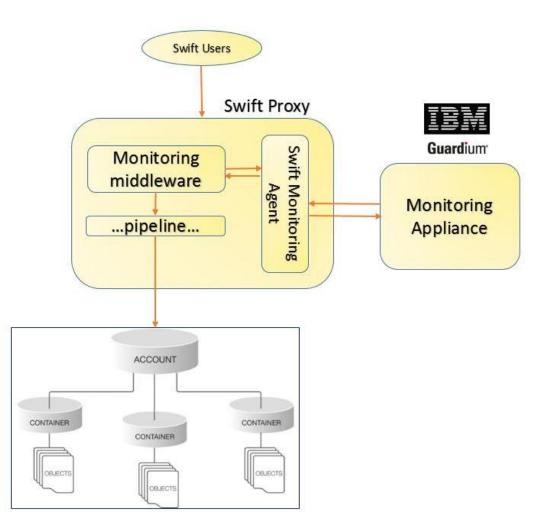
Goal: Narrow the data for better analytics



Activity Monitoring for OpenStack Swift

Goals

- Complete audit-trail of data access to Swift
- Activity Monitoring
- Compliance reports
- Define policies and enforce them
- Control data access
- Solutions for real-time database activity monitoring and protection (e.g. IBM InfoSphere Guardium)
 - Audit-trail for database access
 - Monitors database transactions and responds in real-time access policy violations
- Extension to OpenStack Swift Jointly with Guardium we have developed a POC for Guardium and Swift integration

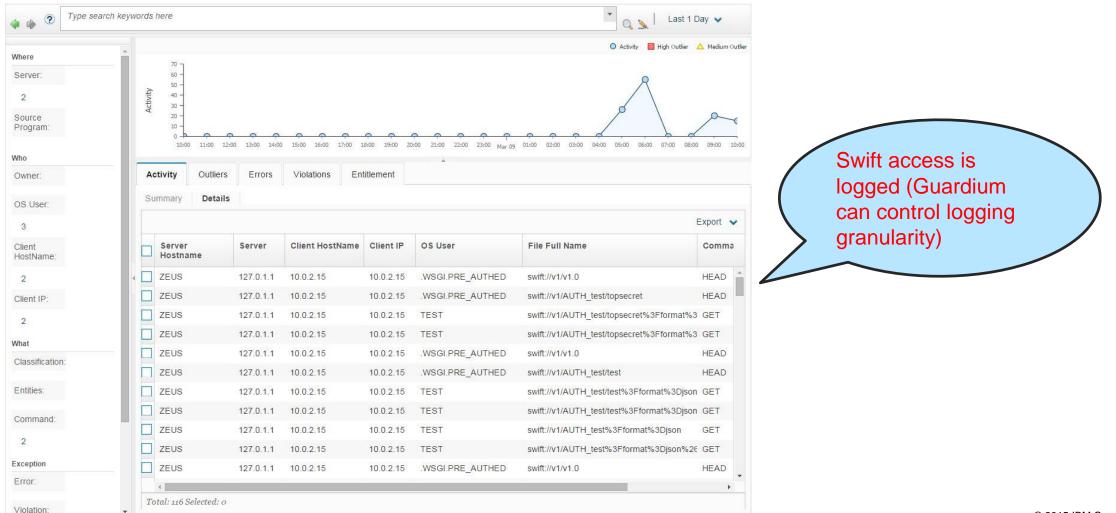

Activity Monitoring for OpenStack Swift

- Challenge BigData
 - Scalability
 - Real-time
 - Which data is sensitive?
- Solution Selective monitoring

Use BigData analytics tools (such as Spark) to...

- Identify sensitive data
- Aggregation
- Sampling
- Machine Learning: clustering, communities

. . .



Swift Report in Guardium (POC)

https://gibm09.guard.swg.usma.ibm.com:8443/quickSearch/quickSearch.jsp?query=&isFam=1 - Google Chrome	
s://gibm09.guard.swg.usma.ibm.com:8443/quickSearch/quickSearch.jsp?query=&isFam=1	

Search Database Activities, Errors and Policy Violations. Click on the indexed categories to view details. Click on any value to add to the filter. Data available since Feb 23, 2015 1:27:56 PM. Learn More

Q

© 2015 IBM Corporation

18

Swift Policy Definition (POC)

Info	oSphere Guardium (gib 🗙	× (B) java get server ip from hos ×	Viencen 👝 🗊 🛛 22
← →			Q 🔂 🔂 🗰 👝 🔘 💺 =
Apps Apps	🗅 SendLink 📲 Azur	ure Management 🕒 Advanced OS and Cl 🧧 yaronstack 🎢 Course: 67788 ADVA 🗀 mac 🗀 HUJI 🧊 Google Interview Qu 🐼 C++ Language T	
		08:19 🗄 🕐 User Interface 🗸 User Interface Search 🔍 admin admin admin	Machine Type Standalone
	~~	Access Rule Definition 3	
	Welcome	Rule #1 of policy BlockSecrets	
R	Cotup	Description block_secret_rule Record Rule Description @	
1	Setup	Category Classification Severity INFO •	
छि	Manage		
		Not Server IP	Policy is defined via
00	Discover	Not Server Host Name zeus:FAM and/or Group	standard Guardium
	Harden		UI
~		Not Client IP	
O,	Investigate	Not Client Host Name and/or Group	
8	Protect	Not Client MAC	
0	FIDIECI	Net Prtcl. and/or Group T	
	Comply	DB Type	
		Not Svc. Name and/or Group *	
	Reports	Not DB Name and/or Group	
0	Му	Not DB User and/or Group	
0	Dashboards	Not Client IP/Src App./DB User/Server IP/Svc. Name	
		Not 🖸 App. User and/or Group	
		Not OS User TEST and/or Group	
		Not Src App. and/or Group	

		na.ibm.com:8443/#setup_policybuilde d OS and Cl 🚺 yaronstack 🎢 Course: 67788		erview Qu 🧭 C++ Langı	역 ☆ 🔽 🐻 💷 👗 💽 占 nage Tuto » 🗀 Other book
	08:20	E ③ User Interface 🗸	User Interface Search O	admin admin admin	Machine Type Standalone
~~	Not Src App.	and/or Grou	p		•
Welcome	Not E Field	and/or Grou	p • Table Every		
	Not Diject	swift://v1/AUTH_test/tops and/or Grou	p		Every
Setup	Not Command	GET and/or Group		 Every 	
.	Not 🔲 Object/Cmd. Gr				
Manage	Not Doject/Field Gro			Comr	nand =
O Discover	Pattern		(RE)	GET "GET	"
	XML Pattern		(RE)		
Harden	UID Chain				
) Investigate	App Event Exists	Event Type	Event User Name		
Investigate	App Event Values	Text	and/or Group	• 1	
Protect		Numeric Date		1	
	Masking Pattern Time Period		(RE) Replacement Character *		
Comply	Minimum Count	▼ ⊙			
Reports	Quarantine for	0 Reset Interval 0 0 minutes Records Affected	minutes Trigger Once Per Session		
	Quarantine for	0 minutes Records Affected	Threshold 0 Rec. Vals. 🖉	Continue to next rule 🖉]
My Dashboards	Actions 💥 🔟 🗑 🕁 FAM BL	ocr			

© 2015 IBM Corporation