
W

Web Information Extraction

Laura Chiticariu, Marina Danilevsky, Howard
Ho, Rajasekar Krishnamurthy, Yunyao Li,
Sriram Raghavan, Frederick Reiss, Shivakumar
Vaithyanathan, and Huaiyu Zhu
IBM Almaden Research Center, San Jose,
CA, USA

Synonyms

Information extraction; Text analytics

Definition

Information extraction (IE) is the process of au-
tomatically extracting structured pieces of in-
formation from unstructured or semi-structured
text documents. Classical problems in informa-
tion extraction include named-entity recognition
(identifying mentions of persons, places, organi-
zations, etc.) and relationship extraction (iden-
tifying mentions of relationships between such
named entities). Web information extraction is
the application of IE techniques to process the
vast amounts of unstructured content on the Web.
Due to the nature of the content on the Web, in
addition to named-entity and relationship extrac-
tion, there is growing interest in more complex
tasks such as extraction of reviews, opinions, and
sentiments.

Historical Background

Historically, information extraction was studied
by the Natural Language Processing community
in the context of identifying organizations, lo-
cations, and person names in news articles and
military reports [15]. From early on, information
extraction systems were based on the knowl-
edge engineering approach of developing care-
fully crafted sets of rules for each task. These
systems view the text as an input sequence of
symbols, and extraction rules are specified as
regular expressions over the lexical features of
these symbols. The formalism underlying these
systems is based on cascading grammars and
the theory of finite-state automata. One of the
earliest languages for specifying such rules is the
Common Pattern Specification Language (CPSL)
developed in the context of the TIPSTER project
[2]. To overcome some of the drawbacks of CPSL
resulting from a sequential view of the input, the
AfST system [4] uses a more powerful grammar
that views its input as an object graph.

Beginning in the mid-1990s, as the unstruc-
tured content on the Web continued to grow,
information extraction techniques were applied
in building popular Web applications. One of
the earliest such uses of information extraction
was in the context of screen scraping for on-
line comparison shopping and data integration
applications. By manually examining a number
of sample pages, application designers would de-
velop ad hoc rules and regular expressions to eke
out relevant pieces of information (e.g., the name

© Springer Science+Business Media LLC 2016
L. Liu, M.T. Özsu (eds.), Encyclopedia of Database Systems,
DOI 10.1007/978-1-4899-7993-3_459-2

http://link.springer.com/Information extraction
http://link.springer.com/Text analytics


2 Web Information Extraction

of a book, its price, the ISBN number, etc.) from
multiple Web sites to produce a consolidated
Web page or query interface. Recently, more
sophisticated IE techniques have been employed
on the Web to improve search result quality, guide
ad placement strategies, and assist in reputation
management [13, 20].

Scientific Fundamentals

Knowledge-engineered rules have the advantage
that they are easy to construct in many cases (e.g.,
rules to recognize prices, phone numbers, zip
codes, etc.), easier to debug and maintain when
written in a high-level rule language, and provide
a natural way to incorporate domain or corpus-
specific knowledge. However, such rules are ex-
tremely labor-intensive to develop and maintain.
An alternative paradigm for producing extraction
rules is the use of learning-based methods [12].
Such methods work well when training data is
available in plenty and the extraction tasks are
hard to encode manually. Finally, there has been
work on the use of complex statistical models,
such as Hidden Markov Models and Conditional
Random Fields, where the rules of extraction are
implicit within the parameters of the model [17].

For ease of exposition, the rule-based
paradigm is used here to present the core
concepts of Web information extraction. Rule-
based extraction programs are called annotators
and their output is referred to as annotations. The
two central concepts of rule-based extraction
are rules and spans. A span corresponds to
a substring of the document text, represented
as a pair of offsets (begin,end). A rule is of
the form A  P (Fig. 1), where A is an
annotation (specified within angled brackets) and

P is a pattern specification. Evaluating the rule
associates any span of text that matches pattern
P with the annotation A.

The description of information extraction is
organized around four broad categories of ex-
traction tasks: entity extraction, binary relation-
ship extraction, complex composite extraction,
and application-driven extraction. The first two
categories, while relevant and increasingly used
in Web applications, are classical IE tasks that
have been extensively studied in the literature
even before the advent of the Web.

Category 1. Entity extraction. This refers to
the identification of mentions of named entities
(such as persons, locations, organizations, phone
numbers, etc.) in unstructured text. While the
task of entity extraction is intuitive and easy to
describe, the corresponding annotators are fairly
complex and involve a large number of rules
and carefully curated dictionaries. For example,
a high-quality annotator for person names would
involve several tens of rules to capture all of
the different conventions, shorthand, and formats
used in person names all over the world.

Example 1 As an illustrative example, consider
the simple annotator shown in Fig. 1 for recog-
nizing mentions of person names. The annotator
uses a CPSL-style cascading grammar specifi-
cation. Assume that the input text has already
been tokenized and is available as a sequence
of hTokeni annotations. Rules R4, R5, and R6
are the lowest level grammar rules since they
operate only on the input hTokeni annotations.
Each of these rules attempts to match the text of a
token against a particular regular expression and
produces output annotations whenever the match
succeeds. R6 states that a span of text consisting

〈Person〉 ← 〈Salutation〉 〈CapsWord〉 〈CapsWord〉 (R1)
〈Person〉 ← 〈PersonDict〉 〈PersonDict〉 (R2)
〈Person〉 ← 〈CapsWord〉 〈PersonDict〉 (R3)
〈Salutation〉 ← 〈Token〉[� “Mr.|Mrs.|Dr.| ...”] (R4)
〈CapsWord〉 ← 〈Token〉[text() � “[A-Z][a-z]*”] (R5)
〈PersonDict〉 ← 〈Token〉[text() � “Michael|Richard|Smith|....”](R6)

Web Information Extraction, Fig. 1 Simple rules for identifying person names



Web Information Extraction 3

W

of a single token whose text matches a dictionary
of person names (“Michael,” “Richard,” etc.) is
a hPersonDicti annotation. R4 similarly defines
hSalutationi annotations (“Dr.,” “Prof.,” “Mr.,”
etc.) and R5 defines annotations consisting of
a single token beginning with a capital letter.
Finally, R1, R2, and R3 are the higher-level rules
of the cascading grammar since they operate on
the annotations produced by the lower-level rules.
For example, R1 states that a salutation followed
by two capitalized words is a person name. This
rule will recognize names such as “Dr. Albert
Einstein” and “Prof. Michael Stonebraker.”

Category 2. Binary relationship extraction.
This refers to the task of associating pairs of
named entities based on the identification of a
relationship between the entities. For instance,
Example 2 describes the task of extracting
instances of the CompanyCEO relationship,
i.e., finding pairs of person and organization
names such that the person is the CEO of the
organization.

Example 2 Assume that mentions of persons and
organizations have already been annotated (as in
Category 1 above) and are available as hPersoni

and hOrganizationi annotations respectively. Fig. 2
shows rules that identify instances of the Com-
panyCEO relationship. Rule R7 looks for pairs
of hPersoni and hOrganizationi annotations such
that the text between these annotations satisfies
a particular regular expression. The regular ex-
pression that is used in this example will match
any piece of text containing the phrase “CEO
of” with an optional comma before the phrase
and an arbitrary amount of whitespace separating
the individual words of the phrase. Thus, it will
correctly extract an instance of this relationship
from the text “Ginni Rometty, CEO of IBM.”
As with Example 1, the rules presented here are

merely illustrative, and high-quality relationship
annotators will involve significantly more rules.

Category 3. Complex composite extraction.
The presence of vast amounts of user generated
content on the Web (in blogs, wikis, discussion
forums, and microblogs) has engendered a new
class of complex information extraction tasks.
The goal of such tasks is the extraction of more
complex concepts, such as reviews, opinions, and
sentiments. Annotators for such complex tasks
are characterized by two main features: (i) the
use of entity and relationship annotators as sub-
modules to be invoked as part of a higher level ex-
traction workflow, and (ii) the use of aggregation-
like operations in the extraction process.

The task of discovering and analyzing senti-
ment present in text is an example of a complex
composite extraction. Extracting individual in-
stances of sentiment mentions typically consists
of five subtasks: (1) entity extraction, (2) buzz
extraction, (3) sentiment extraction, (4) target
detection, and (5) aspect extraction.

Example 3 Consider the task of extracting senti-
ment for a class of smartphone products. First, the
entity extraction step identifies all the mentions of
the smartphones. Next, buzz extraction identifies
the class of smartphones of interest. Sentiment
extraction then uses the output of the buzz ex-
traction to identify positive or negative sentiment
mentions, including detecting the target of the
sentiment (the smartphone mention with which
the sentiment is associated). For example, in the
sentence, “I prefer iPhone 5s to Galaxy S5,” a
positive sentiment is associated with the target
“iPhone 5s” and a negative sentiment is associ-
ated with “Galaxy S5.” In addition, aspect ex-
traction provides fine-grained analysis of product
review feedback. For instance, “I like its large
screen, but not its short battery life,” describes
two aspects of a phone, each with a different

〈CompanyCEO〉 ← 〈Person〉RegExp(‘‘\s+,?\s+CEO\s+of\s+’’) 〈Organization〉(R7)
〈CompanyCEO〉 ← 〈Organization〉 RegExp(‘‘\s+CEO\s+’’) 〈Person〉 (R8)

Web Information Extraction, Fig. 2 Simple rules for identifying CompanyCEO relationship instances



4 Web Information Extraction

sentiment. Depending on the application domain,
the individual sentiment mentions may need to
be aggregated within each individual document,
or across all documents to answer questions such
as, “what is the overall sentiment of a particular
reviewer towards the product?” and, “what is the
overall sentiment of all the reviewers?”

Category 4. Application-driven extraction.
The last category of extraction tasks covers a
broad spectrum of scenarios where IE techniques
are applied to perform extraction unique to the
needs of a given Web application.

Example 4 As an example, consider information
that can be extracted from the large amount
of financial data publicly available on the web.
Such data appears in various forms, including
regulatory filings, blogs, news feeds, government
reports and research articles. This mass of mostly
unstructured documents contains many nuggets
of high-value information related to the financial
performance of organizations, their relationships,
and key relevant events. An automatic process
to extract relevant information from such a large
number of documents is necessary for the per-
formance of sophisticated analysis. Such extrac-
tion pipelines are often constructed hierarchi-
cally, consisting of several components where
each component in turn is constructed from more
narrowly specified subcomponents. In particular,
consider analyzing a table within a PDF doc-
ument, which are a common source of infor-
mation on the Internet. The PDF file must first
be converted to text before subsequent analysis
is possible. To extract a table structure from a
PDF document, an OCR engine is often required
to provide position information for text blocks
on the page. Rules can be written to use the
position information to identify the table, table
title, and row and column headers; to logically
merge tables across multiple pages; and to extract
the actual cell contents. The information thus
extracted from tables can then be combined with
information found in the free text to gain a so-
phisticated understanding of the present entities
and relations.

Key Applications

As the vast majority of information on the Web
is in unstructured form, there is growing interest,
within the database, data mining, and information
retrieval communities, in the use of information
extraction for Web applications. Many research
projects in the areas of search, online communi-
ties, and Web analytics, as well as a wide variety
of business needs, already employ IE techniques
to analyze unstructured data. The common theme
in all of these applications is that the information
required to solve the problem is hidden inside
unstructured text, and necessitate the use of IE
to process the input text and produce a structured
representation.

Web Search Today, web search engines employ
IE techniques to recognize key entities associated
with a web page, such as persons, locations, or
organizations. Search engines use this seman-
tically richer understanding of the contents of
a page to drive corresponding improvements to
their search ranking and ad placement strategies.
Entity information is likewise extracted from user
queries to better understand the user’s informa-
tion need, enabling the search engine to improve
the relevance of search results, and to even return
a precise answer to questions such as, “What time
is it in California?”

Social Media Sentiment Analysis With
the ubiquity of social media in the lives
of consumers, there is constant interest in
techniques to reliably extract reviews, opinions,
and sentiments about products and services
from the content present in online communities.
The extracted information can be used to guide
business decisions related to product placement,
targeting, and marketing. To follow Example 3
from the previous section, smartphone companies
would benefit from sentiment-related extraction
techniques to discover how their products are
perceived by customers.

Machine Data Analysis Information extraction
techniques can help analyze machine-generated
logs. System logs are generally a mix of struc-



Web Information Extraction 5

W

tured information related to the system health
and performance over time, and text comments
recorded by the system or by human admin-
istrators, about particular events that occurred.
This data may hold useful knowledge, such as
potential relationships between the occurrence of
suspicious events and degradation of system per-
formance. In order to discover such relationships,
IE techniques must first be used to extract key
event information from the text comments, trans-
forming them into structured temporal features.

Domain-Specific Analysis The application of
IE techniques extends to a variety of other cir-
cumstances. Consider again Example 4 that char-
acterizes financial data, with interesting knowl-
edge spread across many different types of docu-
ments, such as regulatory filings, news articles,
and government reports; and hidden in titles,
section headings, tables and free text. In order
to, for instance, build a counterparty graph of the
U.S. financial sector, IE approaches are necessary
to identify all of the relevant entities – banks,
directors, customers, loans, and securities – as
well as how all those different entities are related
to each other [7].

The complex nature of these extraction tasks
and the heterogeneous and noisy nature of the
data pose interesting challenges, and IE tech-
niques will be invaluable components of many
research and business applications.

Future Directions

While the area of information extraction has
made considerable progress since its inception,
several important challenges still remain open.
A few of these challenges that are under active
investigation in the research community are de-
scribed below.

Expressivity
With the expansion of both the domain and ap-
plicability of information extraction, the expres-
sivity demands of information extraction sys-
tems also increases. Expressivity refers to how
versatile and sophisticated a system can handle

various tasks. We list a few future directions for
increasing expressivity.

Parser-based IE Pattern matching has been a
workhorse for information extraction, but due to
the variability of natural language expressions, it
is tedious and error-prone to construct all the rel-
evant patterns for a particular relationship. Shal-
low parsing, also known as part-of-speech tag-
ging, may be used to help increase the reliability
of annotators. Deep parsing constructs a parse
tree from a sentence, with semantically mean-
ingful relations among the nodes. Such parse
trees may be used as a more robust and versatile
alternative to regular expressions. As a simpli-
fied example, a pattern “Subject:hOrganizationi

Verb:{acquire, buy} Object:hOrganizationi” may
be used in an “acquisition annotator”, replacing
a number of similar rules written with regu-
lar expressions. Since deep parsing is usually
much slower than regular expression matching,
performance optimization will be an important
issue. For applications in different domains, the
ability for users to customize the grammar used
in parsing may also become important.

Handling documents in different formats
Documents in formats other than plain text or
markup languages present additional challenges.
In particular, PDF processing remain an area of
active research. Other types of data may contain
information worth extracting (e.g., text data in
graphic or image formats). Such IE tasks would
benefit from a system capable of expressing the
relevant features at a high level.

Noisy data Social media increasingly contains
text that is much noisier than well-written news-
paper articles. However, robust and effective in-
formation extraction from such data is still highly
desirable. One approach for handling noisy data
is to build a model of generating the noisy data
via corruption of clean data. For example, in
tweets, the phrase “I am going to see” is often
written as “gonna see”. A trained model may be
able to “normalize” (reverse the corruption in) the
noisy data [31].



6 Web Information Extraction

Robustness against different writing styles
Data from different sources, such as news
articles, financial reports and tweets can be
written in very different styles while conveying
the same information. Generalizing the parser-
based IE and the normalization method
mentioned above, it is desirable to have systems
that can construct annotators that are independent
of such variations in style, while still able to
extract the essential information.

Extensibility
The extensibility of an IE system can be mea-
sured along three axes: system, semantic, and
multilingual.

System Extensibility Given the increasing de-
mand for web-scale IE for various domains, it
is important that a single IE system is flexible
enough to both provide all required functional-
ities, and easily support new functionalities. As
such, an IE system should be able to benefit
from third-party libraries to expand any limitation
of its native capabilities. To do so, the system
needs to provide extension points (e.g., via user-
defined functions) to allow easy integration of
third-party libraries to provide new or enhanced
functionalities (e.g., pdf conversion or text nor-
malization) without compromising the systems
resource management or scalability.

Semantic Extensibility The same annotator,
when applied over different domains or data
sources, may require domain or data-specific
customizations. The exact definition of the same
information extraction task may also differ from
application to application. Taking sentiment
analysis as an example, when performing
sentiment analysis over Twitter messages, it is
crucial to properly handle informal language
pervasive on Twitter, such as slang (“lol”,
“bff”) and tweet-specific syntaxes (e.g. hashtags,
retweet, and reply). When performing the
same task over financial research reports, it is
necessary to consider domain-specific sentiment
expressions (“Sell EUR/CHF at market for a
decline to 1.31” expresses negative sentiment
about the Euro but positive sentiment about

the Swiss Franc). Even within the same
domain, different applications may have varied
requirements for the same extraction task. For
instance, “I like Target’s website better,” would
be considered to be positive sentiment by a brand
management application for Target, but negative
by applications used by Target’s competitors.

Rather than requiring that a sentiment analysis
solution be built from scratch for different use
cases, an extensible IE system should support the
development of the same core sentiment anal-
ysis package for a generic domain, which can
be adapted and customized to handle different
data, domain, and application-specific nuances
with minimal additional effort. The viability of
this approach has been demonstrated by [10],
showing that it is possible to produce high quality
extractors over different domains based on adap-
tations of the same core generic extractor.

Multilingual Support Given the wide variety of
languages used on the web, multilingual support
is crucial for any IE system aiming to support
web-scale IE. Specifically, an IE system should
provide native multilingual support (e.g., tok-
enization) for as many languages as possible and
allow its users to build new annotators or extend
existing ones for these languages. In addition,
it should provide pre-built annotators to provide
out-of-the-box extraction support for as many
languages as possible. Finally, it should be able
to take advantage of third-party libraries to extend
its existing multilingual capability. For instance,
providing a public API to enable the integration
of third-party tokenizers and POS taggers enables
users to develop extractors for languages that
have yet to be natively supported by the system.

Scalability
As complex information tasks move to operating
over Web-size datasets, scalability has become
a major focus [14]. In particular, IE systems
need to scale to both large numbers of input
documents (dataset size), and many rules and
patterns (annotator complexity). Two approaches
that address scalability are improving the per-
formance of low-level operations that dominate



Web Information Extraction 7

W

execution time, and choosing efficient orders for
evaluating annotator rules.

Low-Level Primitives In many IE systems,
low-level text operations like tokenization,
regular expression evaluation and dictionary
matching dominate execution time. Speeding
up these operations leads to direct improvements
of both the number of documents the system
can handle and the number of basic operations
the system can afford to perform on a given
document.

• When an annotator uses a large number of
dictionaries, evaluating each one separately is
expensive, as the document text is tokenized
once per dictionary evaluation. To address
this, techniques are being explored to effi-
ciently evaluate multiple dictionaries with a
single pass over the document text.

• Evaluating complex regular expressions over
every document is an expensive operation.
One active area of research is the design of
faster regular expression matchers for spe-
cial classes of regular expressions. A different
technique under investigation is the design
of “filter” regular expression indexes. These
indexes can be used to quickly eliminate most
of the documents that do not contain a match.

• IE rules may use approximate string matching
to improve the recall of dictionary-based rules,
or to allow for variations in spelling. These
operations can be very CPU- and memory-
intensive. Recent research projects have devel-
oped algorithms and data structures to support
efficient approximate string matching [29].

• Even with indexing and the best software-
based implementations of low-level op-
erations, some applications still require
additional throughput. Another active area
of research explores offloading operations
like regular expression evaluation onto a
dedicated hardware accelerator, such as a
field-programmable gate array [3].

High-Level Additional Optimization As web
information extraction moves towards Cate-

gories 3 and 4 (more complex tasks) there is more
opportunity for improving efficiency [8, 23, 28].
Traditional relational optimizations, such as
join reordering and pushing down selection
predicates, can be beneficial. There are also
additional text-specific optimizations that may
yield significant performance gains:

• Restricted Span Evaluation optimizes an an-
notator to evaluate a particular rule on a subset
of the document text – the text spans output
by some other previously applied rule – rather
than the complete text.

• Conditional Evaluation optimizes an annota-
tor to evaluate a particular rule conditional
on whether the evaluation of a previously
applied rule satisfies certain predicates (e.g.,
it produced at least one annotation).

As in traditional database query optimization,
effective selectivity estimation is an important
component of any optimization strategy for IE
rules. These rules often include text-specific se-
lection and join predicates, as well as basic ex-
traction primitives such as dictionary matching,
which can vary widely in selectivity depend-
ing on the characteristics of the target text and
the configuration of the predicate itself. Tech-
niques for estimating the selectivity of these op-
erations include random sampling and synopsis
data structures [30]. Overall, systems that com-
bine efficient evaluation of lower-level primitives
with cost-based optimization at a higher level
have reported an order of magnitude improve-
ment in execution time [9, 28].

Usability
Usability refers to the ease of building an annota-
tor to solve a specific extraction task. Recent rule-
based systems [5, 9, 28] have adopted a declara-
tive approach to information extraction, allowing
the developer to specify what the annotator result
should be, while leaving the choice of control
flow for how to generate the result to the under-
lying system’s optimizer. Declarative languages
thus focus on building complex extractors with-
out worrying about performance, thus increasing



8 Web Information Extraction

the usability of an IE system. However, even with
declarative languages, extractor development re-
mains a labor-intensive process. Open challenges
in reducing the human effort involved in devel-
oping extractors include the learning of IE rules,
and developing tooling for non-programmers.

Learning of IE rules Historically, both rule-
based and machine learning-based approaches
have been applied to solving IE problems, but
the efforts have remained largely separate, each
with its own advantages and disadvantages [11].
Machine learning-based IE systems require less
effort to develop, but are difficult to comprehend
and may require large amounts of labeled data
in order to perform well. Rule-based IE systems
are easy to comprehend, maintain, debug, and
optimize, rely less on labeled data, but require
more human effort to develop. A combination of
focused machine learning algorithms for learning
IE rules would significantly reduce the human
effort, needing only to consider good candidate
rules suggested by the system, without going
through the manual “trial and error” development
process. At the same time, by using an IE lan-
guage as a target language, the comprehensibility,
maintainability and runtime performance benefits
of rule-based approaches are preserved. There are
several open challenges in this direction:

• Learning basic primitives: A lot of manual
effort in developing IE rules is focused in
specifying basic features, such as dictionaries
or regular expressions. Therefore, machine
learning algorithms focused on learning these
primitives, such as generating regular expres-
sions [6] or dictionaries [18, 24] from pos-
itive examples, and refining regular expres-
sions from positive and negative examples
[19], are very important.

• Learning rules: Given a set of basic prim-
itives, such as regular expressions or dictio-
naries, and labeled data, it is also possible to
induce a complete set of IE rules [22]. With an
expressive rule language, a major challenge is
preventing the system from learning arbitrar-
ily complex rule sets, which would be difficult

to understand or maintain. Research directions
include devising measures for rule complexity,
which may help constrain the search space,
and creating visualization tools to help devel-
opers utilize automatically generated rules.

• Learning for domain adaptation: Domain
adaptation refers to the task of adapting an
existing IE system to a new data source or
application. Recent work [21,25] explores de-
termining the specific portions of an existing
rule set responsible for many false positives
and refining specific operators, such as span-
based predicates or dictionary-based opera-
tors, to improved precision of the overall rule
set. Open challenges include generating rule
refinements for an expanded set of operators,
and also improving the recall of the extractor.

Tooling for non-programmers Existing
research on providing development support for
building extractors has been traditionally focused
on programmers. Recent work in this area
ranges from tools for automatically generating
explanations of false positives [26, 27] or false
negatives [16], to higher-level abstractions
catered towards specific information extraction
tasks such as entity extraction [10] or relation
extraction [1]. Such higher-level languages
constitute one step forward in enabling less
experienced programmers to build IE systems.
A more audacious goal is enabling non-
programmers to build IE programs without
writing a single line of code. Open challenges
include designing a visual language that is simple
yet sufficiently powerful to build non-trivial
extractors, and presenting the user with a list
of automatically built extractors that may be
relevant to a task.

Cross-References

� Information Extraction
�Languages for Web Data Extraction
�Metasearch Engines
� Probabilistic Databases
�Query Optimization

http://link.springer.com/Information Extraction
http://link.springer.com/Languages for Web Data Extraction
http://link.springer.com/Metasearch Engines
http://link.springer.com/Probabilistic Databases
http://link.springer.com/Query Optimization


Web Information Extraction 9

W

�Text Analytics
�Text Mining
�Web Advertising
�Web Data Extraction System
�Wrapper Induction

Recommended Reading

1. Akbik A, Konomi O, Melnikov M. Propminer: a
workflow for interactive information extraction and
exploration using dependency trees. In:ACL (confer-
ence system demonstrations). 2013.

2. Appelt DE, Onyshkevych B. The common pattern
specification language. In: TIPSTER. 1998.

3. Atasu K, Polig R, Hagleitner C, Reiss FR. Hardware-
accelerated regular expression matching for high-
throughput text analytics. In: FPL. IEEE; 2013.
p. 1–7.

4. Boguraev B. Annotation-based finite state processing
in a large-scale NLP architecture. In: RANLP. 2003.

5. Bohannon P, Merugu S, Yu C, Agarwal V, DeRose P,
Iyer AS, Jain A, Kakade V, Muralidharan M, Ramakr-
ishnan R, Shen W. Purple sox extraction management
system. : SIGMOD Rec. 2008;37(4):21–27.

6. Brauer F, Rieger R, Mocan A, Barczynski WM. En-
abling information extraction by inference of regular
expressions from sample entities. In: CIKM. 2011.

7. Burdick D, Hernández M, Ho H, Koutrika G, Kr-
ishnamurthy R, Popa L, Stanoi IR, Vaithyanathan S,
Das S. Extracting, linking and integrating data from
public sources: a financial case study. : IEEE Data
Eng Bull. 2011;34(3):60–67.

8. Cafarella MJ, Etzion O. A search engine for natural
language applications. In: WWW. 2005.

9. Chiticariu L, Krishnamurthy R, Li Y, Raghavan S,
Reiss F, Vaithyanathan S. Systemt: an algebraic
approach to declarative information extraction. In:
ACL. 2010.

10. Chiticariu L, Krishnamurthy R, Li Y, Reiss F,
Vaithyanathan S. Domain adaptation of rule-based
annotators for named-entity recognition tasks. In:
EMNLP. 2010.

11. Chiticariu L, Li Y, Reiss FR. Rule-based information
extraction is dead! long live rule-based information
extraction systems! In: EMNLP. 2013.

12. Cohen W, McCallum A. Information extraction from
the world wide web. In: KDD. 2003.

13. Cunningham H. Information extraction, automatic.
In: Encyclopedia of language and linguistics. 2nd ed.
Elsevier; Amsterdam. 2005.

14. Doan A, Ramakrishnan R, Vaithyanathan S. Man-
aging information extraction: state of the art and
research directions. In: SIGMOD. 2006.

15. Grishman R, Sundheim B. Message understanding
conference-6: a brief history. In: COLING. 1996.

16. Huang J, Chen T, Doan A, Naughton JF. On the
provenance of non-answers to queries over extracted
data. In: PVLDB;1(1):736–747

17. Lafferty J, McCallum A, Pereira F. Conditional
random fields: probabilistic models for segmenting
and labeling sequence data. In: ICML. 2001.

18. Li Y, Chu V, Blohm S, Zhu H, Ho H. Facilitating pat-
tern discovery for relation extraction with semantic-
signature-based clustering. In: CIKM. 2011.

19. Li Y, Krishnamurthy R, Raghavan S, Vaithyanathan
S, Jagadish HV. Regular expression learning for
information extraction. In: EMNLP. 2008.

20. Li Y, Krishnamurthy R, Vaithyanathan S, Jagadish H.
Getting work done on the web: supporting transac-
tional queries. In: SIGIR. 2006.

21. Liu B, Chiticariu L, Chu V, Jagadish HV, Reiss F. Au-
tomatic rule refinement for information extraction.:
PVLDB. 2010;3(1):588–97.

22. Nagesh A, Ramakrishnan G, Chiticariu L, Krishna-
murthy R, Dharkar A, Bhattacharyya P. Towards effi-
cient named-entity rule induction for customizability.
In: EMNLP-CoNLL. 2012.

23. Reiss F, Raghavan S, Krishnamurthy R, Zhu H,
Vaithyanathan S. An algebraic approach to rule-based
information extraction. In: ICDE. 2008.

24. Riloff E. Automatically constructing a dictionary for
information extraction tasks. In: AAAI. 1993.

25. Roy S, Chiticariu L, Feldman V, Reiss F, Zhu H.
Provenance-based dictionary refinement in informa-
tion extraction. In: SIGMOD. 2013.

26. Sarma AD, Jain A, Bohannon P. Building a generic
debugger for information extraction pipelines. In:
CIKM. 2011.

27. Sarma AD, Jain A, Srivastava D. I4e: interactive
investigation of iterative information extraction. In:
SIGMOD. 2010.

28. Shen W, Doan A, Naughton J, Ramakrishnan R.
Declarative information extraction using datalog with
embedded extraction predicates. In: VLDB. 2007.

29. Wandelt S, Deng D, Gerdjikov S, Mishra S, Mitankin
P, Patil M, Siragusa E, Tiskin A, Wang W, Wang J,
Leser U. State-of-the-art in string similarity search
and join. SIGMOD Rec. 2014;43(1):64–76.

30. Wang DZ, Wei L, Li Y, Reiss F, Vaithyanathan S.
Selectivity estimation for extraction operators over
text data. In: ICDE. 2011.

31. Zhang C, Baldwin T, Ho H, Kimelfeld B, Li Y.
Adaptive parser-centric text normalization. In: ACL
(1). 2013. p. 1159–68.

http://link.springer.com/Text Analytics
http://link.springer.com/Text Mining
http://link.springer.com/Web Advertising
http://link.springer.com/Web Data Extraction System
http://link.springer.com/Wrapper Induction

	Web Information Extraction
	Synonyms
	Definition
	Historical Background
	Scientific Fundamentals
	Key Applications
	Future Directions
	Expressivity
	Extensibility
	Scalability
	Usability

	Cross-References
	Recommended Reading




