Future of Storage Research in IBM

Larry Chiu (lchiu@us.ibm.com) Director, Global Storage Research Distinguished Engineer

IBM Research Globally

Future of Data Storage – IT Industrial Trends

Trends

Digital Innovation Explosion – From 2018 to 2023 –with new tools / platforms, more developers, agile methods and lots of code reuse - <u>500 million new logical apps</u> will be created, equal to the number built over the past 40 years.

Reshaping Talent Pool Landscape - Through 2022, the talent pool for emerging technologies will be <u>inadequate to fill at least 30% of global demand</u>, and effective skills development and retention will become differentiating strategies.

Expanding & Scaling Trust - By 2022, 50% of servers will encrypt data at rest and inmotion; over 50% of security alerts will be handled by AI-powered automation; and <u>150M</u> <u>people will have blockchain-based digital identities.</u>

Composable Architecture

In-memory-Computing Near-memory-computing

Next Generation Persistent Memory Storage Architecture

Implication of Next Generation Data Applications from Persistent Memory

Memory and Storage? Or Accelerator?

Getting the data where the compute is?

Getting the compute where the data is?

UPMEM PIM-DRAM big data accelerator

UPMEM DIMMs

- Replacing standard DIMMs
- DDR4 R-DIMM modules
 8GB+128DPUs (16 PIM chips)
- UPMEM PIM-DRAM chips
- 4Gb DDR4 2400 DRAM + 8 DPUs @500MHz
- Single die, standard 2x nm DRAM process
- Massive additional compute & bandwidth
- 2TB/s DRAM-DPU BW for 128GB+2048 DPUs config
- Easily programmable SDK: C-programmable Copyright UPMEM* 2019
 - In / Near memory Computing

PIM server: Typically with 128GB DRAM/2048 DPUs

Take away

Unmodified DRAM process

up

Scalable as compatible with

Current servers

Programmers ;)

HOT CHIPS 31

In / Near Storage Computing

Flash Storage Research – Self Performance Tuning

- Uses AI to predict health of blocks (Health Binning)
- Heat Segregation to put hot data on healthy blocks
- Advanced Read Level Shifting in background to avoid rereads
- Consistent performance is key
- Unique and incredibly strong ECC which never requires data to be reread

QLC = More Density Per NAND Cell

Security

Prevention	Detection	Recovery	Response
Fine Grained Access Control	Detect as data is accessed in wrong		
Kev Virtualization	place, wrong person, wrong methods, wrong time	Autonomous Recovery	
,			Regulatory Reporting and Response
			and Rooponoo
			Management
Quantum Safe Key	Machine Learning and prediction on security	Elastic Recovery	Management
Quantum Safe Key	Machine Learning and prediction on security events	Elastic Recovery	Management
Quantum Safe Key Secured Domain Isolation	Machine Learning and prediction on security events	Elastic Recovery	Management
Quantum Safe Key Secured Domain Isolation	Machine Learning and prediction on security events	Elastic Recovery	Management

Resiliency

Source: World Economic Forum, The Global Risks Report 2019, 14th Edition

Logical Data Recovery – Human Errors or Destructive Malwares

Keeping pace with DevOps: Deploying Recovery management at cloud speed

Automated Recovery Provisioning

Automate provisioning of recovery technology and policies to new cloud workloads at cloud speed.

Recovery-by-Design Approach Intersect Recovery management provisioning with infrastructures.

Foundational Storage

The Hybrid Multicloud World

85% of companies operate a Hybrid multicloud environment

Companies average

Private and Public clouds

5

Migrate from public cloud

Security, Performance, Cost, Control

91% of public cloud adopters use internal private cloud

IDC; IBM IBV C-Suite Study; Rightscale

80% of companies moved applications or

data from Public

Cloud in 2018

IDC Survey

98% will be Hybrid Multicloud in three years

Storage choices matter because cloud use cases matter

Business Continuity

leveraging public cloud resources

DevOps Analytics

Temporary data copies from on-prem to cloud

Workload migration

Transparent data migration to cloud

....

Hybrid multicloud

Operating infrastructure both onprem and in public cloud

Data copy

© Copyright IBM Corporation 2019

Summit & Sierra by the numbers

2.5 TB/sec single stream IOR

2.6 Million 32K files created/sec

50K creates/sec

per shared directory

#1 & #2 most powerful supercomputers built for Al

Together, more than 44,000 NVIDIA GPUs

>400 PB of IBM Storage

Single Node 16 GB/sec sequential read/write

1 TB/sec 1MB sequential read/write

IBM Research - Data Curation and Provenance Management

auditd daemon events

Track facets of analytical pipelines

- · Source, Intermediate data, final result
- Model, script, algorithm changes

Track transparently

- · Spectrum Scale Watch Folders To track data creation and transformation
- RedHat auditd To track processes
- · Git (for source code change tracking) To track changes in code

Track, contrast, compare iterations

- Anomaly detection
- Result contrast and forensics

Cumulatively, make analytics reproducible

IBM Research – Data Affinity for AI and Analytics

Affinity in a diverse Storage Topology

- Co-locate data, compute, analytics
- Stream data and data at rest (3rd party repository)
- Exploit Fast Storage (local attached storage)

Use Cases

- Edge Computing
- Analytics on Streaming Data

Improve Data Locality in a distributed storage environment

- Application directed storage managed data locality
- Access data at memory / persistent memory speed

Use Cases

- Storage platform for Hybrid Transaction and Analytics Platform (HTAP)

