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Abstract—Pedestrian detection in thermal infrared images
poses unique challenges because of the low resolution and noisy
nature of the image. Here we propose a mid-level attribute
in the form of the multidimensional template, or tensor, using
Local Steering Kernel (LSK) as low-level descriptors for detecting
pedestrians in far infrared images. LSK is specifically designed
to deal with intrinsic image noise and pixel level uncertainty by
capturing local image geometry succinctly instead of collecting
local orientation statistics (e.g., histograms in HOG). In order
to learn the LSK tensor we introduce a new image similar-
ity kernel following the popular maximum margin framework
of support vector machines facilitating a relatively short and
simple training phase for building a rigid pedestrian detector.
Tensor representation has several advantages, and indeed, LSK
templates allow exact acceleration of the sluggish but de facto
sliding window based detection methodology with multichannel
discrete Fourier transform, facilitating very fast and efficient
pedestrian localization. The experimental studies on publicly
available thermal infrared images justify our proposals and
model assumptions. In addition, the proposed work also involves
the release of our in-house annotations of pedestrians in more
than 17000 frames of OSU Color Thermal database for the
purpose of sharing with the research community.

I. INTRODUCTION

The computer vision community has made good progress
in people and pedestrian detection in natural images and
videos in the last ten years [1]–[5]. However, such endeavors
in locating pedestrians have mostly been restricted to pho-
tographs captured with visible range sensors. Infrared and
thermal imaging sensors, which provide excellent visible cues
in unconventional settings (e.g., night time visibility), have
historically found their use limited to military, security and
medical applications. However, with increasing image quality
and decreasing price and size, some of the thermal sensing
devices are finding commercial deployment for home and
office monitoring as well as automotive applications [6]–[9].
Research effort has so far been limited in this domain for
building reliable and efficient computer vision systems for
infrared thermal image sensors. The objective of this paper
is to address this concern.

Thermal image sensors typically have a spectral sensitivity
ranging from 7 micron to 14 micron band of wavelength. The
capacity of these imaging devices to appropriately capture im-
ages of objects depends on their emissivity and reflectivity in
a nontrivial fashion. The material and surface properties of the
objects control emissivity whereas amount of background radi-
ation reflected by the objects influence their reflectivity [10].
The involvement of multiple factors in the image formation
process often leads to various distortions in thermal images,
notably, halo effect, hotspot areas, radiometric distortions to

name a few [11]. Fig. 1 illustrates halo effect in a natural-
thermal image pair. Also noticeable is the fact that textures
visible on objects often get suppressed in thermal images.
This fact has important bearing as far as visual recognition
is concerned because the negative examples corresponding
to the background tend to be far less descriptive. Fig. 1
also illustrates the challenge involved in detecting foreground
objects because of inherently noisy nature of the infrared
images. From the representative images it is fair to conclude
that a successful visual recognition system must include a
strong measure of visual similarity that can overcome the
effect of weak and ambiguous image signal as well as a robust
noise handling component in the feature computation process.

In this paper we focus our attention on detecting pedestrians,
particularly walking at a distance from the camera. Since our
primary motivation for studying infrared images comes from
automotive applications, we focus our attention and study
on building pedestrian detectors without considering tracking
information and background model. Of course, the proposed
methodology is general enough to include such information
toward building more sophisticated models. Ensemble based
techniques like boosting and random forest [12], convolutional
neural network (CNN) and deformable part model [2] are
three widely used approaches toward building an effective
object detector. Though extremely fast in runtime, training
with boosting and CNN often takes too long to converge,
sometimes spanning days. The ready availability of a sub-
stantially large clean annotation set is often recommended for
feature learning particularly with deep architectures. In this
paper, we shall not delve into feature learning (as done in
CNN [13]) but focus on a fast and efficient mid-level attribute
that can allow clean, simple training phase with reasonably
good detection performance. The widely successful pedestrian,
and in general, pose detector deformable part model is built
upon the fundamental notion of representing templates with
the Histogram of Oriented Gradients (HOG) as mid-level
representation. Besides HOG, the use of Local Binary Pattern
(LBP) (followed by multiscale feature computation using scale
approximation, and faster detection with cascades of AdaBoost
classifiers [12]) in effective detection of the pedestrians in
thermal images is also explored in literature [8]. However,
in case of a part based detector the runtime cost associated
with the part complexities appears to be a major issue.
Also, the small size of the pedestrians when they appear far
from from the camera does not leave room for the explicit
modeling of the parts/limbs. Interestingly, a recent study [14]
has shown that with careful design a seemingly naive rigid
detector can perform exceptionally well in comparison to its
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Fig. 1. Infrared images are different: natural color images exhibit textures which are suppressed in infrared images (left pair images [15] 1). As a consequence,
many background texture features like trees and buildings may remain relatively nondescriptive (third from left) which complicates the separation of the
background in feature space during the learning process. In addition, the high noise adds to the complexity of detecting foreground objects (far right).

advanced counterparts with higher complexities. Our work
draws inspiration from their study, and in this paper we revisit
the simple but very effective detector of Dalal and Triggs [1],
with the following contributions.

Maximum margin matrix cosine similarity with LSK
tensors: dealing with heavy noise and artifacts in image signal
while performing visual recognition has garnered relatively
low attention from the community. This is particularly relevant
in infrared domain where sensor noise is high, and feature
variability is much less compared to natural photographs. Our
objective is to capture local image structure in a stable and
reliable fashion. For accomplishing that purpose we advocate
the use of Local Steering Kernel (LSK) [16]–[18] as low
level image region descriptor. LSK had its genesis primarily
in the image denoising and filtering tasks [16], and is also
known as Locally Adaptive Regression Kernel, or LARK,
following the fact that LARK filter coefficients are computed
adaptively following a local regression on neighboring pixel
intensities. Using LSK 2 as low level descriptor we propose a
tensor representation of our mid-level attribute — the detector
template. However in doing so, the geometric invariance
(as in HOG [1], [2]) and scale invariance (as in SIFT [19])
are relaxed at the expense of robustness of the descriptor.
HOG and LSK both capture local orientation information.
However, HOG computes orientation statistics over a set of
angular directions in a small spatial neighborhood, whereas
LSK captures dominant local orientation and is thus more
stable in dealing with image noise.

Our contribution is a maximum margin learning methodol-
ogy that respects and leverages the tensor form of our mid-
level representation. Past work has highlighted the effective
use of Matrix Cosine Similarity (MCS) as a robust measure
for computing image similarity in a training-free, one shot
detection scenarios. [17], [20]. Motivated by such findigs
we have extended MCS to introduce a maximum margin
training formulation for learning a decision boundary that
can separate pedestrian from the background. The standard
technique followed in the test time for object search, i.e.,
sliding window based object detection, incurs prohibitive

1The left pair of images [15] (available online, 5th August, 2016) is
downloaded from: http://www.dgp.toronto.edu/∼nmorris/IR/ for academic use

2We shall follow the name LSK since it intuitively indicates characteristics
of the features

computational cost. To resolve this issue Lampert et al. have
proposed a branch and bound technique [21], [22]. In our
work, we propose a relatively simple but efficient technique to
improve the detection time, performing multiscale pedestrian
detection in less than a second. The search for pedestrian
in a test image proceeds in the frequency domain (using
Fourier transform) with integral image based normalization,
yielding an elegant framework for extremely efficient and fast
pedestrian detection.

Analysis and Annotations: we have demonstrated the
efficacy of the proposed methodology on three standard bench-
mark datasets [23]–[25]. In particular, we have annotated OSU
Color-Thermal pedestrian dataset as we could not find a good
annotation in the public domain suitable for evaluating various
object detection algorithms. To help push the state of the art in
this area our work also includes the ground truth annotations
of pedestrians in 17088 frames in this dataset3.

The related work till date explored LSK in various detection
scenarios on natural images but stayed limited on two counts.
All such past studies i) did not explore or leverage inherent
tensor connection of LSK, and ii) did not extend MCS toward
a more general, learning based scheme. For example, Seo et
al. [17], [26] and Biswas et al. [20] restricted LSK and MCS
to the study of training-free, generic one shot object detec-
tion. Subsequent investigations by Zoidi et al. [27] reported
performance of LSK to detect humans in videos. In a further
extension, You et al. [28] used LSK features for learning local
metric for ensemble based object detection. Though laudable,
in all of such research endeavors, the generalization principle
of MCS had been missing. We believe it is promising to
show that MCS could be effectively and efficiently integrated
with LSK for building large scale learning systems. The
whole premise behind this work is that tensor representations
when combined with MCS kernel would invariably lead to a
reasonably simple and fast training scheme, with rapid and
precise localization result.

We proceed with the system overview in the next section.

II. SYSTEM OVERVIEW

Unlike color images that contain multiple color channels
infrared images typically have a single channel that we de-
note by M × N image matrix I, defined on a rectangular

3Available for download from the first author’s website
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Fig. 2. LSK Visualization First column displays raw infrared images of
pedestrians. HOG and LSK features are displayed in grayscale (second and
third column respectively) as well as in in colormap (fourth and fifth column
respectively). LSK is displayed thus after computing them in non overlapping
blocks. Columns sixth, seventh and eighth show LSK features after projecting
LSK descriptors on three leading principal components.

grid Ω ⊂ R2. We densely compute low-level, l-dimensional
descriptors hi ∈ Rl, at each pixel location xi ∈ Ω. Aggre-
gating all ‘hi’s together, we form our third-order descriptor
tensor H ∈ RM×N×l corresponding to image I. The order,
or dimension, three in H alludes to the l channels of the
computed descriptor.

Dense computation makes the descriptor highly descriptive
no doubt, but at the same time it invites the undue effect of
redundancy. To distill the redundancy we reduce the number of
channels in H from l to d by employing principal component
analysis. The result is the decorrelated feature tensor F ∈
RM×N×d, where d << l.

From M × N × d tensor F we crop a smaller third order
tensor window m × n × d corresponding to the ground truth
annotation that represents a ‘pedestrian’. We follow the similar
process for collecting the negative examples that correspond to
the ‘background’. Specifically, the i-th training example Fi ∈
Rm×n×d associated with the class label yi, is first normalized
and then used as an input to a maximum margin classification
using our proposed kernel function. The objective is to learn
a decision boundary to separate pedestrians from background
in the tensor feature space. We describe our full methodology
starting with the feature computation in the next section.

III. LOCAL STRUCTURE ESTIMATION WITH STEERING
KERNEL

We represent each pixel by a two dimensional coordinate
vector xi = [xi1 xi2]

′ ∈ Ω. We define the image I as a
function such that I : Ω → R. The value of image I at a
particular pixel location xi ∈ Ω is given by the pixel intensity
I(xi).

LSK derives its name as well as much of its descriptive
power from a steering matrix [16] (also known as gradient
covariance matrix or structure tensor) that lies at its heart, and
defined at the pixel xi as follows:

CΩi =
∑

xi∈Ωi

[
∂I(xi)
∂xi1

2 ∂I(xi)
∂xi1

· ∂I(xi)
∂xi2

∂I(xi)
∂xi1

· ∂I(xi)
∂xi2

∂I(xi)
∂xi2

2

]
, (1)

where Ωi is the rectangular window centered at xi. In theory,
the steering matrix is based on gradients ∂I(xi)

∂x in a single
pixel xi [18]. However, a single pixel estimate makes the
steering matrix unstable and prone to noisy perturbation of
the data. Therefore, CΩi is the regularized estimate of the
steering matrix which is averaged (note the summation in Eq.
(1) from a local aggregation of gradients over a rectangular
window Ωi.

As the name suggests, the steering matrix captures the prin-
cipal directions of local texture from the gradient distribution
in the the small neighborhood Ω (mostly 5×5). This idea
becomes easy to follow if the spectral decomposition of the
steering matrix is brought into picture:

CΩi = λ1u1u
′
1 + λ2u2u

′
2, (2)

where, λ1, λ2 are the eigenvalues, and u1,u2 are the eignevec-
tors representing principal directions. Denoting singular values
as s1 =

√
λ1 and s2 =

√
λ2, they are turned into a Riemannian

metric by the following regularization (to avoid numerical
instabilities) while keeping the eigenvectors unaltered:

CΩi = (s1s2 + ϵ)α
(
s1 + τ

s2 + τ
u1u

′
1 +

s2 + τ

s1 + τ
u2u

′
2

)
, (3)

where ϵ and τ are set at 10−1 and 1 respectively, following
[18]. The parameter α can be tweaked to boost or suppress
the local gradient information depending on the presence of
noise. A closed form solution to compute the regularized form
of CΩi

as shown in (3) is also included in [18].
Finally, the LSK is defined by the following similarity

function between the center pixel xi and its surrounding p×p
local neighborhood xj , normalized as given below,

hij =
exp(−∆x′

ijCΩj∆xij)∑
j exp(−∆x′

ijCΩj∆xij)
, j = 1, 2, . . . , p2, (4)

where ∆xij = [xi − xj ]
′. The LSK values thus computed

at xi are concatenated into a l = p2 dimensional vector hi

as follows: hi = [hi1 hi2 . . . hil] ∈ Rl. Usually p × p is
considered same in size as that of Ωj and is set at 5× 5.

Note multiple sources of motivation exist to arrive at the
expression of LSK (4). A detailed treatment is the out of the
present scope, but it is worth mentioning that LSK can be
motivated and derived from a geodesic interpretation of signal
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Fig. 3. LSK descriptors belong to a low dimensional manifold where 70%
to 80% of the energy of the eigenvalues comes from first three or four.

manifold [20], the kernel view of filtering [29], and definitely
from the idea and definition of structure tensor [30].

Irrespective of all the different sources of motivation and
derivation the physical significance explaining the functional-
ity of LSK remains plane and simple: aggressively capturing
the locally dominant pattern. Thus it comes as no surprise
why LSK features can better retain the overall geometry of
the signal manifold in contrast to HOG, illustrated in Fig.
2. The comparative visualization in Fig. 2 confirms that the
aggregation of local gradients to estimate principal orientation
pattern is able to encode the local geometry exceedingly well
as compared to the histogram based statistics of HOG.

IV. DECORRELATION OF LOCAL DESCRIPTORS

The descriptor vectors hi are stacked together as mode-
3 fibers [31], [32] of a third order descriptor tensor H ∈
RM×N×l. Every i-th channel of H, where i = 1, 2, . . . , l,
encodes some directional property of the image I. For ex-
ample, some channels in H exhibit vertical structures and
some horizontal ones, whereas others capture various oblique
directions to a varying degree (Fig. 2 would give a fair idea).

Besides exhibiting the directional characteristics in them
the channels are also observed to be sparse. This behavior is
directly reflected in Fig. 3 where the spectral decomposition
of LSK features hi reveals that most of the spectrum energy
is stored in the leading few eigenvalues.

In the next step we project the high dimensional tensor H
onto the principal subspaces along its third mode [32], [33].
To be specific, we collect the set of d eigenvectors (computed
from LSK descriptors hi) as columns of V = [v1v2 . . .vd] ∈
Rl×d. We choose the number of eigenvalues d in such a way
that 80% of the spectral information is contained in the chosen
eigenvalues λ as follows: d = argmin

i

λi∑
j λj

> 80%.

Following the n-mode product between a higher order tensor
and a matrix [33], [34] we compute the 3-mode product
(denoted by ×3) between the descriptor tensor H and subspace
V. In other words, the mode-3 (l-dimensional) fibers of H are
projected on the column space of V. As a result, we obtain
the feature tensor F ∈ RM×N×d, where d << l, given by the
following tensor-matrix product:

F = H×3 V. (5)

Doing this has two imminent benefits: one, the projected
descriptors are clean, prominent and discriminating (Fig. 2),
and two, reducing the number of feature channels in F has
the runtime benefit for fast detection.

V. DESIGN OF LINEAR DETECTOR WITH MCS KERNEL

In the context of one shot object detection, Seo et al. [17]
and Biswas et al. [20] have shown the effectiveness of Matrix
Cosine Similarity (MCS) as a decision rule for computing
similarity between two feature tensors (of same size). This
measure of image similarity is in fact a generalization of cosine
similarity from vector features to matrix/tensor features based
on the notion of Frobenius Inner Product ⟨·, ·⟩F . In principle,
suppose FQ ∈ Rm×n×d is a query feature tensor that we try
to find in a bigger target tensor F in a sliding window fashion.
At each position xi of the sliding window over target F we
compute MCS (ρ) as follows:

ρ(FQ,F(xi)) =

⟨
FQ

∥FQ∥
,

F(xi)

∥F(xi)∥

⟩
F

, (6)

where ∥ · ∥ denotes Frobenius norm for tensors. Higher the
value of the MCS at location xi in target image, greater is
the likelihood of finding the object there. The normalization
allows MCS to focus on phase (or angle) information while
also taking care of the signal strength. Besides generalizing
cosine similarity, this measure also overcomes the inherent
disadvantage of conventional Euclidean distance metric which
is sensitive to outliers [35]–[37].

It is important to note that MCS also serves as a valid kernel.
To show how, it is quite straight forward to write (6) in terms
of an inner product between two vectors: ρ(FQ,F(xi)) =(

vec(FQ)
∥FQ∥

)′ (
vec(F(xi))
∥F(xi)∥

)
, where vec(·) denotes the conven-

tional vectorization operation by stacking the elements of
matrix into a long vector. Following this, the proof of MCS
being a valid kernel becomes trivial [38], [39].

At its core MCS serves as a cross correlation operator
between two tensor signals followed by a normalization of
signal strength. Closer inspection reveals that such correlation
can be performed separately along each feature channel of
the third order tensors. The channel correlations can then be
combined by summing them up in the next step. To convey
the idea, the Frobenius Inner Product of (6) is written below
as a multichannel cross correlation,

ρ(FQ,F(xi))

=
∑
d

∑
n

∑
m

FQ(m,n, d)

∥FQ∥
.
F(xi1 +m,xi2 + n, d)

∥F(xi)∥
, (7)

=

∑
d

∑
n

∑
m

FQ(m,n,d)
∥FQ∥ .F(xi1 +m,xi2 + n, d)

∥F(xi)∥
. (8)

The quantity ∥F(xi)∥ can be pulled out of the summation
as it happens to be the Frobenius norm of the tensor located
at xi of the target, and as such, it does not depend on the
interaction between FQ and F(xi). This form of the kernel
as well and the idea expressed above will be used later to
facilitate exact acceleration of MCS computation, described
in detail in Section VI.
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Fig. 4. Multiscale detection technique involving construction of feature pyramid, computation of kernel function and maximum likelihood estimate of scale
and location of pedestrian in target image

A. Linear Support Tensor Machine

Following the system overview in Section II, we construct
our feature set Fi ∈ Rm×n×d by first cropping from a full
feature tensor (5) according to the ground truth, and next by
normalizing with its Frobenius norm ∥Fi∥. Paying the polite
nod to a slight notational abuse we write the final feature
tensor in a slightly overloaded form, Fi :=

Fi

∥Fi∥ . The learning
problem consists of deriving a decision rule based on the
set of labeled examples D = {Fi, yi}Ni=1, where Fi has the
associated label yi ∈ {+1,−1}, representing one of the two
classes, i.e., the pedestrian or the background.

We start our maximum margin formulation by noting that
the linear classifier in vector space Rd is represented by
f(a;w, b) = a′w + b. A reasonable way to extend such
concept of linear classifier from the vector to the tensor space
is the following:

f(F;W, b) = ⟨F,W⟩F + b, (9)

where W ∈ Rm×n×d is a third order tensor template that we
aim to learn from the annotated examples D. In general, the
resulting optimization that follows to learn W is given below
in its general form:

minimize
W,b

1

2
∥W∥2 + C

N∑
i=1

L(yif(Fi;W, b)), (10)

where L(·) denotes the loss over data and C > 0 is a tradeoff
between regularization and constraint violation. Though not
critical in the sense that there exists many losses, we have
used hinge loss because of its simplicity and wide usage.
Henceforth we would assume, L(x) = max(0, 1− x).

Note the MCS kernel can be expressed as an inner product
between two vectors. Hence it leads to positive definite real
valued kernel with corresponding Reproducing Kernel Hilbert
Space (RKHS). Also, the regularization in (10), in the form of
Frobenius norm ∥W∥, is a generalization of vector norm to
tensor space, and thus can be shown monotonically increasing
real valued function. Under such circumstances, the solution
W̃ to (10) can also be written as a linear combination

of feature tensors as the direct result of the well known
Representer theorem [38], [39]:

W̃ =
N∑
j=1

yjβjFj. (11)

When we insert (11) in (10) the optimization takes place over
(β1, β2, . . . , βN ) ∈ RN in the dual domain instead of W ∈
R(m·n·d) in the primal. Following the optimization, we arrive
at the desired classifier function below:

f(F(xi);β1, β2, . . . , βq, b̃) =

q∑
j=1

yjβjρ(Fj ,F(xi))+b̃, (12)

where, F(xi) according to our past notation denotes the feature
tensor at location xi inside F, and b̃ is the minimizer of
(10) with respect to b . In short, q (where q ≤ N ) kernel
computations are needed to classify a tensor F(xi) using
the q support tensors. For high dimensional dataset (where
N << m ·n ·d) a dual solver for training is preferred because
one optimizes less number of parameters: β1, β2, . . . , βN .
However, with the increase in dataset size, especially with
a large N , a primal solver (e.g., stochastic gradient descent
[2], [40]) offers attractive benefit in terms of simplicity and
smaller cache size.

While dealing with tensors it is important to note that
multilinear algebra provides an inner glimpse of each mode
(i.e., dimension) of the tensor — the roles that they supposedly
play (e.g., causal factors like illumination and pose [41]). The
idea here is to apply the linear model a′w+b but separately in
each dimension [42]. This becomes possible by constraining
the template tensor W ∈ Rm×n×d to be a sum of R rank-1
tensors — a direct result of CANDECOMP/PARAFAC (CP)
decomposition of higher order tensors. This is given by the
following,

W =

R∑
r

w(1)
r ◦w(2)

r ◦ . . . ◦w(c)
r , (13)
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where ‘◦’ represents the tensor outer product [32], [34].
Inserting (13) in (9) results in the following form of the
classifier:

f(Fi;W, b) = ⟨Fi,
R∑

r=1

w(1)
r ◦w(2)

r ◦ . . . ◦w(c)
r ⟩F + b, (14)

=

R∑
r=1

⟨Fi,w
(1)
r ◦w(2)

r ◦ . . . ◦w(c)
r ⟩F + b. (15)

Once all but wk is fixed, f(F;W, b) becomes the familiar
problem of learning the linear classifier a′wk + b. In general,
the approach for learning all wk is to estimate wk from a
suitable loss function on D while treating all other wi, where
i ̸= k, constant. The learning algorithm proceeds by repeating
this step iteratively for all k. In the theory of supervised
tensor learning this training methodology is known as alternate
projection algorithm [42], or more popularly in computer
vision literature, as coordinate descent algorithm [43]. It is
worth pointing out that similar methodology has recently been
used in tensor regression to estimate object poses [34].

It turns out that though multilinear algebra provides a
discriminative way to compute different components of W,
the complexity of multilinear support tensor machine is even
stricter with total number of parameters being R(m+ n+ d).
Such low complexity no doubt guards the solution from
potential overfitting, but also ruins the detector much of its
discriminatory power, especially when the number of examples
goes high.

In our dataset the number of examples N is comparable
to, or even greater than, the complexity of W. This comes as
no surprise because the pedestrians on an average look small
in our dataset. At the same time, a reasonably high number
of them, along with an equally good number of challenging
background examples, motivate us to use a rigid template
tensor with decent enough complexity. It appears that number
of parameters available in multilinear support tensor machine
would be to few to handle the variations present in the dataset.
Of course, a trade-off can be achieved by experimenting with
an increasing R in the rank-1 approximation (13) of W.
However, it is not clear at this point whether such endeavor is
justified in exchange of the much simpler but effective linear
model (11)-(12).

The form of classifier (12) provides us further insight in the
detector development. To see this, we simplify (12) as follows:

f(F(xi);β1, β2, . . . , βq, b̃)

=

q∑
j=1

yjβj⟨Fj ,F(xi)⟩F + b̃, (16)

= ⟨
q∑

j=1

yjβjFj ,F(xi)⟩F + b̃, (17)

= ⟨W̃,F(xi)⟩F + b̃ = f(F(xi);W̃, b̃), (18)

where, W̃ =
∑q

j=1 yjβjFj as a linear combination of q
support tensors forms our detector (with a bias b). We are able
to write the first step because tensors are normalized and MCS
in such case boils down to Frobenius inner product (Section

V). Second step results by virtue of the linearity of an inner
product. In the last step the decision boundary is parameterized
in terms of W instead of αj .

A few notes follow from our proposed design decisions.
First, as also noted by [44], linear support tensor machine
makes the training simpler (i.e., one stage) in contrast to mul-
tilinear learning, and any off-the-shelf support vector machine
solver can handle the optimization problem. Second, even if
we are using linear classifiers we deliberately maintain the
tensor form of the features. We do not recommend vectoriza-
tion of tensor features because even if that is permissible for
easier training with existing solvers, our detection (prediction)
stage would make explicit use of the tensor form for fast and
efficient computation. This efficiency resulting from the tensor
representation not only aids prediction but also shortens the
training time by quickening the hard mining stage.

VI. EXACT ACCELERATION OF TENSOR CLASSIFIER

Searching the detector W̃ ∈ R(m·n·d) in a bigger target
tensor F ∈ RM×N×d (M >> m,N >> n) by repeated
evaluation of the decision rule (18) is a computationally
intensive task. For example, a single channel detector (i.e.,
d = 1) of size m × n when searched in an M × N target
tensor incurs a computational cost O(mnMN), and with d
feature channels this cost becomes O(dmnMN). Using the
classifier computed in (18), we ascertain the scores at each
pixel position xi of the feature tensor F as follows,

f(F(xi);W̃, b̃)

=
∑
d

∑
n

∑
m

W̃(m,n, d) · F(xi1 +m,xi2 + n, d)

∥F(xi)∥
+ b̃,

(19)

=

∑
d

∑
n

∑
m W̃(m,n, d).F(xi1 +m,xi2 + n, d)

∥F(xi)∥
+ b̃,

(20)

The denominator ∥F(xi)∥ does not include channel wise
interaction with W̃ and thus can be taken out of the sum.
The numerator in (20) involves channel wise cross-correlation
(represented by two inner summation) followed by summation
across channels (outermost summation). Cross-correlation, es-
pecially for a high ratio in sizes between the detector and target
tensors, happens very fast in frequency domain. Therefore, to
reduce the runtime computation we precompute the channel
wise Fourier transforms of the detector tensor W̃.

During runtime, we perform Fourier transform F{·} of
each feature channel F(:, :, i),∀i = 1, 2, . . . , d, perform point-
by-point multiplication in frequency domain, the correlation
channels thus obtained are summed up right in frequency
domain (owing to the linearity of MCS that remains preserved
in Fourier transform), and lastly, we invert back the correlation
plane in spatial domain by applying inverse Fourier transform
F−1{·}. The whole process of computing the numerator in



IEEE TRANSACTIONS ON IMAGE PROCESSING (ACCEPTED) 7

(a) (b) (c) (d) (e) (f) (g) (h)

(i) (j) (k) (l) (m) (n) (o) (p)

Fig. 5. Scale Estimation in Multiscale Detection: Each scale of features in the feature pyramid yields a score map during detection. The individual score
maps of various sizes are rescaled with bilinear interpolation to a common size ((b)-(g) or (j)-(o)). Note, the boundary region in the score map is getting
wider (filled with zeros) with scales because of the decreasing target size in feature pyramid (Fig. 3). The maximum score at each pixel location is then
selected from all score maps to obtain the final score map (h), or (p), which upon thresholding and non-maximal suppression yields pedestrian location. The
score map supplying the maximum score at a particular pixel provides the scale index that determines the size of the bounding box. The usual convention of
colormap is followed (blue means low score and dark red to reddish black denote high score).

(20), for all locations xi, is summarized in the following:

f(F(xi);W̃, b̃)

=

[
F−1{

∑
d F{F(:, :, d)} · ∗F†{W̃(:, :, d)}}

]
xi

∥F(xi)∥
+ b̃,

(21)

where F†{·} denotes conjugated Fourier transform 1. The
[·]xi in the numerator denotes the correlation score at xi

that subsequently gets divided by the normalization factor
present in the denominator. Thus computing the numerator of
f(F(xi);W̃, b) at every pixel location xi in the target tensor
takes O(dMN logMN) for forward as well as inverse Fourier
transform, and O(dMN) for point by point multiplication as
well as for summation. Eventually, we end up with an overall
time complexity of O(dMN logMN).

The last step in (21) involves normalization by ∥F(xi)∥
which could be performed efficiently by computing an in-
tegral image of

∑
d F(:, :, d) · ∗F(:, :, d) involving a time

complexity O(dMN). The retrieval of the normalization value
eventually follows from the square root in constant time per
window. In summary, the computation cost of the classifier
is dominated in the numerator by O(dMN logMN), and by
O(dMN) in the denominator, leading to an overall complexity
of O(dMN logMN). This is reasonably less in contrast to
the brute force time complexity of sliding window detection:
O(dmnMN). The fact that the cost no longer relies on the
rigid detector’s template size results in a substantial gain
in efficiency. The complete methodology for evaluating the
proposed MCS is illustrated in details in Fig. 4.

Such idea of accelerating the detection process by a multi-
channel implementation of Fourier transform has found recent
application in [45], as well as in [20]. In [45], the authors did
not have to deal with the normalization factor that is present in
MCS. Biswas et. al, [20] extended their technique to accelerate

1It is worth noting that correlation happens when one of the two Fourier
transforms is conjugated, whereas convolution takes place with the product
of two Fourier transforms without any conjugation

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6. Detection results of the proposed methodology on OSU-T dataset
are shown in this figure. The top row shows the bounding boxes indicating
pedestrian location. The bottom row illustrates the scores obtained from the
single-scale detector in the form of heat map (the convention of color map is
maintained, i.e., red indicates highest confidence and blue lowest.

the MCS computation. In this paper, we show how the fast ker-
nel computation can further be extended to efficient pedestrian
detection following a tensor based maximum margin learning
setup. The proposed acceleration of decision rule does not
involve any approximation, hence, it remains an exact version
with a much shorter detection time.

VII. MULTISCALE DETECTION METHODOLOGY

There are two approaches generally available for multiscale
search of objects. One approach is to scale up the rigid
detector and search for maximum scoring region. Though
attractive because target image undergoes minimum transfor-
mation during runtime, from a purely theoretical standpoint
this scaling up of a rigid detector can have the uncanny effect
of introducing artifacts in bias b while computing f(F ;W̃, b̃)
at every location xi. It is not immediately obvious how
and to what extent such issues will manifest in the present
methodology, and in case they do, what could be probable way
out to mitigate such limitation. Hence, we have followed the
second approach that involves target rescaling. To be specific,
we computed features from the given image and resorted to
feature scaling over the desired range of scales. In other words,
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we have constructed a feature pyramid of decreasing image
size as described in Fig. 4.

We describe next how we infer the pedestrian’s location
and the size in the test image. It is important to note that for
each scale we essentially obtain a score map as a result of
detection (Fig. 5). Each pixel intensity in a particular score
map represents the value of scoring function of the proposed
linear classifier at that particular scale. We rescale the score
maps of all scales to bring them to a common size (the largest
scale in our case) before selecting the maximum score at each
pixel to best estimate the scale that is producing the maximum
detection score. The final score map thus obtained is thresh-
olded (usually at zero) following a non-maximum suppression
step to output the pedestrian’s location. The maximum scale
associated with the pedestrian’s location provides the size of
the bounding box we need.

VIII. EXPERIMENTS AND RESULTS

Though infrared images often exhibit visual cues that re-
main absent in the visible spectrum, the clarity and usefulness
of such information may be limited by several other extraneous
parameters like sensor noise, temperature of objects, weather
conditions, indoor and outdoor environments. The extent to
which computer vision tasks like visual recognition is influ-
enced by those external factors requires a careful study of
large-scale, well annotated infrared datasets that are not still
as many, and the size of such datasets, where available, is
relatively small [23], [46]. The ready availability of similar
useful resources have facilitated steady improvement in the
performance of pedestrian detection in natural images (Cal-
Tech [3], INRIA pedestrians [1]) over the last few years [5].

To mitigate this shortcoming new and large-scale thermal
image datasets have been developed recently, e.g., LSI [25]
and KAIST [47] and BU-TIV [48]. The decent image quality
of LSI and variable heights of the pedestrians offer a good
range of difficulty levels to develop pedestrian detectors.
KAIST multispectral images, also captured in a real life
setting, shows rapid degradation of image quality in thermal
channel with increasing distance, and it gets quite difficult
to distinguish distant pedestrians from background with the
infrared channel alone (KAIST dataset comes with RGB
color channels too). The BU-TIV dataset has relatively high
resolution images of human beings for a wide range of visual
recognition tasks like detection, single view and multi-view
tracking. The objects for the detection task in the BU-TIV not
only include pedestrians but also other classes like cars and
bikes on a crowded street.

In this work we focus our attention on detecting pedestrians
in four baseline datasets: OSU Thermal (OSU-T) [23], OSU
Color Thermal (OSU-CT) [24], LSI [25], and KAIST [47]. We
restrict our study to thermal channels only. Color channels
when available are ignored. The baseline dataset OSU-T
contains pedestrians in still images. The other two datasets
namely OSU-CT and LSI both are infrared video datasets.

In the experimental setup we have first computed the three
dimensional LSK descriptors where third dimension denotes
the number of descriptor channels. Such number is always

25 since we have considered 5 × 5 neighborhood around
the central pixel in (4). The number of eigenvectors used
for feature computation is typically three unless mentioned
otherwise. We have used LIBSVM [49] solver to solve the
max-margin optimization task. The choice of a solver is not
critical, and the proposed methodology is general enough to
solve with any quadratic solver, e.g., [50] and [51] which are
available in VLFeat library [52].

For describing the evaluation process we have followed the
50% intersection-over-union PASCAL criterion [53]) between
the detected bounding box and the supplied ground truth,
to determine correct detection and missed detection (or false
negative). In particular, we define the miss rate by FN/(TP+
FN), where FN represents the total number of false negatives,
and TP the total number of true positives. The total number of
false positives or FP is normalized by the number of images
in the test set leading to FPPI or false positives per image.
Following the evaluation technique established for detecting
pedestrians in the visible spectrum [3], we report here the miss
rate versus FPPI graph as a measure of detector performance.
This is in contrast to earlier notion of false positive per window
(FPPW) as used to evaluate the pedestrian detector [1], [7].
Miss rate versus FPPI is also in contrast to the precision-
recall curves that are more traditionally followed in other areas
of object detections [53]. The present evaluation criterion is
motivated by the applications like autonomous driving where
it is often the norm to fix the upper ceiling at acceptable FPPI
rate independent of the number of pedestrians in the image.

OSU Thermal Database (OSU-T): OSU thermal images
[23] come from 10 sequences with a total number of 284
images all of which are 8-bit. This dataset is not a video
sequence because the images are captured in a non uniform
fashion with a sampling rate less than 30Hz. The image size
is 360 × 240 pixels. In total, the dataset has 984 pedestrians
across all 10 sequences.

We have followed a K-fold cross validation technique for
the evaluation by holding out each of the 10 sequences for
the test, and use the rest of the sequences for training. The
detection results of each held-out sequence are later combined
in a big text file, and analyzed, to compute the overall miss
rate and FPPI [3] for the full dataset. It is worth noting that
in the wide area surveillance, like satellite image analysis, it
is pretty common to attribute less emphasis to scale. Objects
at a distance do not appear to vary widely in sizes. Indeed,
with a single scale rigid detector we have achieved reasonably
good performance as shown in the Fig. 6. Note that the ground
truth supplied varies in height and width across pedestrians.
However, we have extracted a constant height × width bound-
ing box (36 × 28 to be specific) around the center of the
given ground truth rectangle for each pedestrian. With the
change in weather condition the appearance (illumination in
particular) of the background varies significantly. We built an
initial detector with a subset of the pedestrian and background
tensor features, and collected hard negative examples (like [1],
[2]) by trying to detect pedestrians with the initial detector.
The α is set to 0.4 in this experiment following the feature
extraction setup of [20].

OSU Color Thermal Database (OSU-CT): OSU Color
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(a) (b) (c)

(d) (e) (f)

Fig. 7. Top row shows multiscale detection on three frames from OSU-CT dataset. The scale best estimated is shown with the appropriate sized bounding
box centered at the predicted location. The bottom row heat maps illustrate corresponding decision scores (maximum likelihood estimate across all six scales)
obtained from classifier. The blue regions show less confidence and the red to reddish black shows high to very high confidence in detecting pedestrians. The
proposed detector faces difficulty in detecting partially occluded people in absence of any tracking information and/or background model.

Fig. 8. The thermal image (far left) is shown in three LSK feature channels.
Note how the first channel shows signal strength around body silhouette,
whereas second channel tends to highlight horizontal to oblique structures.
The third channel mostly models the vertical to near vertical structures.

Thermal dataset [24] has a total of 17088 images (8-bit thermal
and 24-bit color) and is a video sequence dataset. This dataset
has a total of six sequences with each three containing scenes
of same location. Each of the six sequences has thermal as well
as color channels. Since this dataset does not have a ground
truth available in the public domain, we have annotated the
full data set (using tools [3], [54], [55]) for the evaluation of
the proposed detector. The annotation task gets challenging
because the pedestrians at a distance often get occluded by
physical structures (e.g., poles and tree branches), or by other
pedestrians. In such cases, we have either ignored the heavily
occluded pedestrian, or approximately sized the bounding box
around a partially occluded person to the best guess possible.

The six thermal sequences have a total number of 8544
images. From a purely pedestrian detection perspective, the
last three of the six sequences are somewhat irrelevant because
a large number of frames have only one or two pedestrians,
and sometimes none. We have experimented with the first three
sequences (containing 3355 images in total) that are extremely

challenging involving the presence of many pedestrians, heavy
occlusions, and low-resolution. Following the sampling pro-
cedure of CalTech pedestrian dataset [3], we have uniformly
sampled the frames (every 10-th frame) from each of the three
video sequences to include in our experiment. In total, we
have 1534 pedestrians coming from all the three sequences.
Similar to OSU-T we have followed a 3-fold cross validation
to complete our evaluation process.

In this dataset, the pedestrians are not as far as those
in OSU-T from the camera position. As a consequence, we
employ a multi-scale detection strategy to meet our goal. The
full dataset contains pedestrians with heights ranging from 14
to 60 pixels. However, we ignore pedestrians which appear
too small (less than 20 pixels in height) when they are too far
from the camera. We have learnt a rigid detector of size 30
× 20, and searched it in the target images over the following
six scales: 1.30, 1.00, 0.81, 0.68, 0.59, and 0.52. We increase
α value to 0.75 to boost the weak singal. An initial detector
is computed first to collect hard negative examples from the
background of this dataset. We have also applied the initial
detector on negative images of LSI to pick hard negatives
from this dataset. The final detector is learnt with positive
examples from OSU-CT, and hard negative examples from
the background of OSU-CT as well as LSI images.

The score maps resulting from the multi-scale detection are
shown in Fig. 7 in the form of heat color map. Blue denotes
very low confidence, whereas dark red to red-black denotes
high to very high confidence in predicting a pedestrian. The
heavy occlusion, low-resolution and vertical structures in the
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Fig. 9. LSI Results show multiscale detection of pedestrians across wide range of scales. The estimated likelihood of pedestrian’s location measured across
all the scales is shown under each frame. As before, the dark red to reddish black denotes high to very high confidence of detector.

Fig. 10. The shape of pedestrian is prominent positive support tensors shown
in the form of first LSK feature channel. More importantly, the positive support
tensors show how the linear kernel has succeeded to learn a set of widely
different poses of pedestrians.

background make the detection task quite challenging.
LSI Far Infrared Pedestrian Database: This dataset

comes in two flavors, classification setup as well as detection
setup. We have focused on the detection set which is further
divided in two subsets, training and test set. The training set
has 3225 positive images and 1601 negative images. The test
set includes 3279 positive and 4859 negative images. The
images are 164 pixels wide and 129 pixels tall. Since the
intensities of LSI images roughly range from 31000 to 35000
(16 bit images), we have scaled the intensities to 0-255 without
noticeable loss in performance. We have followed the usual
two-step process for the detector development: building an
initial detector in the first step with a subset of positive and
randomly sampled negative examples, and in the second step,
we consider all positive examples besides including the hard
negative examples from the initial detector’s output. A tensor

Fig. 11. Negative support tensors are shown to have come from hard mining
step where undersized or oversized detection have resulted into false negatives
(on left). On right, we show an instance where the correct detection is made
but absence of such annotation in ground truth has forced this example into
being a false negative.

of size 40×20 with 3 channels are learnt, and the number of
scales in the feature pyramid (Fig. 4) is set at ten, namely,
2.50, 1.58, 1.16, 0.90, 0.75, 0.64, 0.55, 0.49, 0.44, 0.40. We
use an The α value of 0.4 in this experiment.

Fig. 8 shows the LSK feature channels corresponding to
a thermal image. The LSK features characteristically decom-
poses the gray scale image in contour, horizontal and vertical
segments. In general, we have observed that the number of
support tensors in the final model ranges from 15% to 20% of
the full dataset. In Fig. 10 we show the positive support tensors
by displaying the first channel of LSK tensor feature. One can
notice the wide range of poses captured in the learning process
of the support tensors. Fig. 11 illustrates negative support
tensors which have resulted from hard mining step after being
either under or over detected bounding box. The same figure
also illustrates an example where missing annotation in ground
truth pushes it into hard negative set. This shows that the
proposed methodology is robust to noise and outliers present
in the ground truth.



IEEE TRANSACTIONS ON IMAGE PROCESSING (ACCEPTED) 11

(a) (b)

Fig. 12. Miss rate versus false positives per image (FPPI) for the OSU
datasets: (a) OSU-T, (b) OSU-CT. The miss rates at 10−1 FPPI are mentioned
for the proposed LSK-M3CS and other baselines. In case of OSU-CT, we have
used thermal (T), gradient magnitude (TM), histogram of oriented gradients
(TO) and HOG (HOG) channels with boosting based classifiers (modified
ACF [12]) for comparative study.

(a) (b)

Fig. 13. Miss rate versus false positives per image (FPPI) for the other two
datasets: (a) LSI thermal dataset, and (b) KAIST multispectral dataset. Like
OSU-CT we have modified the ACF detector to work on (only) the thermal
images of KAIST dataset.

KAIST Multispectral Database (Thermal channels
only): This dataset comes with the sequences of color-thermal
image pairs. Following the focus of our paper we use the ther-
mal channels for our study and discard the color channels al-
together. The resulting detection task is extremely challenging
since thermal images have reasonably high visual ambiguity.
The relatively nondescriptive background of thermal images
further adds to the difficulty of separating foregrounds from
its surroundings.

The authors of this dataset have benefitted from the color
information fairly well with the use of ACF detector. Broadly
speaking, ACF works by extracting color channels, followed
by gradient magnitude and histogram channel computation. All
these channels in ACF are fed into a boosting based classifier
to learn the pedestrian detector. Since, we do not use color
channels, we have modified the ACF detector to make it work
solely on the thermal channel. Following the experimental
style proposed in [47], we use the following classifiers for
the comparative evaluation: only thermal channel (T), thermal
channels with gradient magnitude (TM) and histogram of
oriented gradients (TO) giving rise to three kind of channel
features (T-TM-TO), and lastly thermal and HOG channels

computed from thermal image (THOG).
We use the train20 folder for training and test folder

for testing the model. In our experiment, we have followed
the same parameter setting as available in the released code
coming from the authors of the dataset. The height of the
humans if less than 55 is ignored. The detector learnt is of
dimension 64×32. We have used 12 scales (1, 1.25, 1.33,
1.83, 2.17, 2.50, 2.92, 3.33, 3.75, 4.17, 4.58, 5) for multiscale
detection process. As before we have built a initial detector by
random sampling of negative windows and positive examples,
which when applied to the dataset gives rise to lot of false
alarms that are used in augmenting the initial dataset. The
augmented dataset is used for deriving the final detector. Fig.
14 shows the results of our detector; all the detections with
score greater than zeros are shown. There are plenty of false
alarms but it is important to note that such false alarms occupy
with low confidence score. the high scores definitely occur in
places where human density is high.

A. Results & Discussions

There are usually two approaches available when it comes
to computing features, namely, feature engineering and feature
learning. Boosting, sparse coding and recently convolutional
neural network are learning methodologies one can apply for
learning the features from raw image pixels. On the other hand,
engineered features, especially HOG has dominated the object
detection scenario in the first decade of this century leading to
the success of several state of the art detectors, for example,
deformable part model.

In our work, however, two of the datasets, namely OSU-T
and OSU-CT have pedestrians so small that explicit modeling
of parts is not a feasible idea to apply. We have implemented
a HOG based linear SVM like [1] using the MATLAB library
VLFeat [52] as a baseline for comparison purpose. HOG
implemented in VLFeat comes in two forms, one being the
originally proposed feature in Dalal and Triggs, 2005 [1], and
the other is the dimension-reduced form used in [2] (denoted
by UoC-TTIC in Fig. 12). We have compared our methods
also with a modification of ACF detectors where the thermal
(T), gradient magnitude (TM), and oriented gradients (TO),
and HOG computed from thermal channels (THOG) are used
to train a boosting classifier [12].

Our proposed LSK with max-margin MCS kernel (LSK-
M3SC) detector works superior to HOG based linear SVM
both on OSU-T and OSU-CT achieving lowest miss rate (Fig.
12(a) and (b) respectively). However, the extremely occluded
nature of pedestrians in OSU-CT has made the detection
task challenging for both HOG and LSK with MCS kernel.
Fig. 13(a) shows the performance of proposed detector on
LSI dataset in comparison with HOG root filter and Latent-
SVM with parts [2], [25]. We refer the reader to [25] where
the authors have pointed out how introduction of parts in
Latent-SVM introduces a derogatory performance on LSI
as it often leads to some confusion of the part detector in
absence of robust texture in the low resolution and noisy
image environment. The proposed feature with our chosen
MCS kernel has been able to achieve minimum miss rate as
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TABLE I
RUNTIME OF FAST OBJECT DETECTION WITH SCALE ESTIMATION IN COMPARISON WITH SLIDING WINDOW SCHEME

Datasets Detector Image Detection time (in seconds) / Frames per second
Size Size LSK HOG HOG Boosted Channels

(pixels) (pixels) M3CS (DT) (UoC-TTIC) T T-TM-TO T-THOG
OSU-T 36 × 28 240× 360 0.15 / 6.67 6.42 / 0.16 7.61 / 0.13 - - -

(single scale)
OSU-CT 30 × 20 240× 320 0.28 / 3.57 24.01 / 0.04 26.41 / 0.04 0.01 / 100 0.33 / 3.03 0.32 / 3.13
(6 scales) (1.3 to 0.5)
KAIST 64 ×32 512×640 2.10 / 0.48 - - 0.09 / 11.11 1.65 / 0.61 0.13 / 7.69

(12 scales) (1.3 to 0.5)

(a) (b)

(c) (d)

Fig. 14. Detection results on KAIST Multispectral Dataset: the top row shows
detection results with scale estimation. Here, red bounding box denotes a very
high confidence score. In the bottom row one can see the score maps. Here,
the blue annotations denote ground truth.

shown in Fig. 13(a). In case of KAIST dataset it is worth
noting that all the classifiers, including ours, suffer from a high
miss rate owing to the noisy nature of the video (Fig. 13(b)).
It is worth pointing out that the baseline methods used in
the experiment of Fig. 13(b) have exactly the same parameter
setting as available in the codes released by [47].

Owing to the efficiency of Fourier transform and integral
image the detection process is pretty fast. We have conducted
our experiment on a pretty standard Intel Xeon 64-bit desktop
machine (CPU E3-1246 v3 @ 3.50GHz) with Ubuntu Linux
14.04 LTS. The performance results in terms of runtime
and frames per seconds are shown in Table I (DT [1] and
UoC-TTIC [2] are two HOG implementations available in
VLFeat). In the current implementation, most of the time is
spent by the detector in feature computation. Therefore, we
have accelerated the feature computation stage with an ele-
mentary C-mexfile implementation. The other modules (e.g.,
non-maximum suppression, scale estimation) of the proposed
detection algorithm are implemented in MATLAB. It goes
without saying that the HOG based template detection over six
scales takes considerably longer time spanning few seconds

to complete. The proposed fast detector also accelerates the
training process by making the hard mining step quicker.
The search of pedestrians over six scales in a typical 240×
360 (in OSU-T dataset) and 240 × 320 image (in OSU-CT
dataset) happens in about a second. Because of the large size
of the KAIST images the runtime tends to become longer. The
boosted channel classifiers seem to work fastest among all for
the detection purpose.

It seems all the detectors evaluated, including ours, suffer
from heavy occlusion which is a typical characteristic of the
OSU-CT and KAIST dataset. To mitigate this limitation and
improve the detection performance one either needs explicit
occlusion modeling stage, or tracking methodology to reliably
solve the data association problem. We mention these direc-
tions as probable opportunities for future research.

IX. CONCLUSION

In this paper we have extended and investigated the use
of LSK tensors for pedestrian detection task in thermal in-
frared images. We have argued that when viewed in the
lens of tensors, LSK offers many notable advantages like
robustness, noise modeling, superior localization performance,
and efficient detection. Continuing in this direction we have
proposed a general framework for learning a tensor detector
with Matrix Cosine Similarity, as a kernel function. The
resulting maximum margin framework is able to distinguish
pedestrians from background in challenging scenarios ranging
from low signal images to detection at a far away distance.
An exact acceleration of the classifier function is proposed by
leveraging the tensor form of features as well as multi-channel
signal processing techniques. The proposed methodology is
compared with other state of the art detectors known to per-
form well with visible range sensors on the publicly available
data sets of thermal infrared images.
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[30] G. Peyré, M. Péchaud, R. Keriven, and L. D. Cohen, “Geodesic
methods in computer vision and graphics,” Foundations and Trends R⃝
in Computer Graphics and Vision, vol. 5, no. 3–4, pp. 197–397, 2010.

[31] B. W. Bader and T. G. Kolda, “Algorithm 862: MATLAB tensor classes
for fast algorithm prototyping,” ACM Transactions on Mathematical
Software, vol. 32, no. 4, pp. 635–653, December 2006.

[32] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”
SIAM review, vol. 51, no. 3, pp. 455–500, 2009.

[33] H. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos, “A survey of
multilinear subspace learning for tensor data,” Pattern Recognition,
vol. 44, no. 7, pp. 1540–1551, 2011.

[34] W. Guo, I. Kotsia, and I. Patras, “Tensor learning for regression,” IEEE
Transactions on Image Processing, vol. 21, no. 2, pp. 816–827, 2012.

[35] Y. Fu, S. Yan, and T. S. Huang, “Correlation metric for generalized
feature extraction,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 30, no. 12, pp. 2229–2235, 2008.

[36] Y. Fu and T. S. Huang, “Image classification using correlation tensor
analysis,” IEEE Transactions on Image Processing, vol. 17, no. 2, pp.
226–234, 2008.

[37] Y. Ma, S. Lao, E. Takikawa, and M. Kawade, “Discriminant analysis
in correlation similarity measure space,” in International Conference on
Machine Learning. ACM, 2007, pp. 577–584.

[38] C. H. Lampert and C. Lampert, Kernel methods in computer vision.
Now Publishers Inc, 2009.

[39] B. Scholkopf and A. J. Smola, Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. Cambridge, MA,
USA: MIT Press, 2001.

[40] L. Bottou, “Stochastic gradient descent tricks,” in Neural Networks:
Tricks of the Trade. Springer, 2012, pp. 421–436.

[41] M. A. O. Vasilescu and D. Terzopoulos, “Multilinear analysis of image
ensembles: Tensorfaces,” in European Conference on Computer Vision.
Springer, 2002, pp. 447–460.

[42] D. Tao, X. Li, X. Wu, W. Hu, and S. J. Maybank, “Supervised tensor
learning,” Knowledge and information systems, vol. 13, no. 1, pp. 1–42,
2007.

[43] H. Pirsiavash, D. Ramanan, and C. C. Fowlkes, “Bilinear classifiers
for visual recognition,” in Advances in Neural Information Processing
Systems, 2009, pp. 1482–1490.

[44] Z. Hao, L. He, B. Chen, and X. Yang, “A linear support higher-
order tensor machine for classification,” IEEE Transactions on Image
Processing, vol. 22, no. 7, pp. 2911–2920, 2013.

[45] C. Dubout and F. Fleuret, “Exact acceleration of linear object detectors,”
in Proc. European Conference on Computer Vision (ECCV). Springer,
2012, pp. 301–311.

[46] R. Miezianko, “Terravic research infrared database,” in IEEE OTCBVS
Workshop Series Bench, 2006.

[47] S. Hwang, J. Park, N. Kim, Y. Choi, and I. S. Kweon, “Multispectral
pedestrian detection: Benchmark dataset and baseline,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2015, pp. 1037–1045.

[48] Z. Wu, N. Fuller, D. Theriault, and M. Betke, “A thermal infrared video
benchmark for visual analysis,” in Proc. of the IEEE Conf. on Computer
Vision and Pattern Recognition Workshops, 2014, pp. 201–208.

[49] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector
machines,” ACM Transactions on Intelligent Systems and Technology,
vol. 2, pp. 27:1–27:27, 2011, software available at http://www.csie.ntu.
edu.tw/∼cjlin/libsvm.

[50] S. Shalev-Shwartz and T. Zhang, “Stochastic dual coordinate ascent
methods for regularized loss minimization,” Journal of Machine Learn-
ing Research, vol. 14, no. Feb, pp. 567–599, 2013.

[51] S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter, “Pegasos: Primal
estimated sub-gradient solver for svm,” Mathematical programming, vol.
127, no. 1, pp. 3–30, 2011.

[52] A. Vedaldi and B. Fulkerson, “VLFeat: An open and portable library of
computer vision algorithms,” http://www.vlfeat.org/, 2008.

[53] M. Everingham, L. V. Gool, C. K. I. Williams, J. Winn, and A. Zisser-
man, “The pascal visual object classes (voc) challenge,” International
journal of computer vision, vol. 88, no. 2, pp. 303–338, 2010.

[54] P. Dollár, C. Wojek, B. Schiele, and P. Perona, “Pedestrian detection: A
benchmark,” in CVPR, June 2009.

[55] P. Dollár, “Piotr’s Computer Vision Matlab Toolbox (PMT),” https://
github.com/pdollar/toolbox.


