Spatial-Temporal Explanations for Storage Failure Predictions based on Multivariate Telemetry Sensors

Ioana Giurgiu, Anika Schumann

IBM Research – Zurich

- Explain predicted failures in large-scale real world storage environments based on multivariate telemetry sensors (key performance indicators = KPIs) collected periodically with fine granularity
- Explanations are spatial-temporal
- High-level approach:
 - Based on the underlying characteristics of the KPIs, we transform the multivariate time series into multivariate series of clustered anomalous events of the type KPI_t > threshold
 - These anomalous events are used in an LSTM-based network with attention and temporal progressions to predict failures 3 days in advance
 - Their types, occurrences and frequencies are used to explain the predicted failures, in both space (which KPIs) and time (when)

Motivation

Transforming the time series into event series is motivated by the data

 KPIs are spiky in nature, with no increasing or decreasing trends over time

Motivation (cont.)

Model-agnostic explainable approaches do not take the temporal component into consideration

Highest contribution is attributed to the earliest slice in the time series (does not reflect a system's behavior)

Quality of explanations highly depends on # slices

Slices have a fixed length

Fewer slices result in less discrimination in the explanations

More slices result in a vast number of imprecise and misleading explanations

Motivation (cont.)

Anomalous events co-occur within well-separated time windows

Approach

- Step #1 → Windows of anomalous events W₁, ..., W_p are detected in a time interval [0, t] (observation period) for each storage device in the data set

 Optimally with Ckmeans.1d.dp
- Step #2 → Unique anomalous events are embedded in a continuous vector space as v_e
- Step #3 → For each anomalous event e_n in a window W_r with N events, attention mechanisms aggregate context information in a context vector:

Approach (cont.)

Step #4 → For each event, we build a temporal progression function that quantifies its impact on the prediction depending on its type and when it occurred:

 $I(c_{e_n}, \Delta) = S(\theta_{e_n} - \sigma_{e_n} \Delta) \in [0, 1]$ Sigmoid function (diminishes contributions of events in the distant past) Initial contribution of e_n $\Delta = t + T - \zeta W_r$ (time elapsed from Wr to end of prediction window) Progression of the contribution over time

Step #5 → Each window is represented as a weighted sum of embeddings of its events:

 $w_r = \sum_{n=1}^{N} x_{e_n} I(c_{e_n}, \Delta) cv_{e_n}$ How many times event e_n occurred in W_r

Step #6 → The window representations are used in an LSTM to predict failures:

$$w_r = \sum_{x=1}^N \left(\sum_{n=1}^N I(c_{e_n}, \Delta) \alpha_{nx} x_{e_n} v_{e_x}\right)$$

7

Explanations for predictions

Approach (cont.)

Data

- 800+ KPIs collected with 5-min granularity for in 2018 for 130+ storage environments
 - Due to the typical complexity of large-scale storage environments, our dataset consists of over 50 million individual time series
- 266081 anomalous events based on KPI pre-defined rules
- Critical failure incidents used as labels for prediction validation (2% of all incidents)

Settings

1:32 ratio between the failure and non-failure classes

- Adam optimizer, batch size = [32,64]
- Initial contribution of event = 1, temporal contribution of event = 0.1
- Dimensionality of event embeddings = 100
- Dimensionality of attention query vectors (q_n) and key vectors (k_n) = 100
- Dimensionality of LSTM hidden state = 100

Results

■ Example #1 → Prediction = Fail with 0.87 probability

Cluster	Start	Duration	Event	Freq.	Contribution		
1	Day 1 22:58	115 min	Read response time Read transfer size Write transfer size	1 5 5	0.00 0.00 0.00		
6	Day 5 6:15	120 min	Read response time	2	0.015		
7	Day 5 22:55	20 min	Read response time	2	0.02		
8	Day 6 22:56	20 min	Read transfer size	1	< 0.01		
9	Day 7 23:01	15 min	Read transfer size	2	0.01		
10	Day 8 6:02	125 min	Disk utilization	3	0.00		
11	Day 8 22:57	20 min	Read transfer size Write transfer size	5 4	0.05 0.16		
12	Day 9 23:12	65 min	Read response time	3	0.06		
13	Day 11 20:28	205 min	Write response time	4	0.18		
14	Day 13 4:08	35 min	Read response time Write response time	4 2	0.1 0.34		
15	Day 14 22:59	15 min	Read response time Peak backend write response time Write response time	3 2 3	0.12 0.8 0.63		

Results (cont.)

■ Example #2 → Prediction = No fail with 0.77 probability

Wndw	Start	Event	Frequency	Contribution		
1	Day 1 10:07	Disk utilization	1	0		
6	Day 11 18:22	Read transfer size	2	0.05		
7	Day 13 2:47	Read response time Disk utilization	2 3	0.04 0.02		

Results (cont.)

■ Example #3 → Prediction = No fail with 0.69 probability

Wndw	Start	Event	Frequency	Contribution
1	Day 2 15:17	Peak backend write response time Read response time	2 3	0.05 0
2	Day 5 12:02	Peak backend write response time	2	0.06

One of the driving metrics shows anomalous events early and not in combination with other driving metrics

> Interactions between metrics and their temporal progression is considered when building the explanations

2-step snapshot

Step 1: Predictions list			Step 2: E	xplanations pe	er predictio	on								
Storage ID	Customer	Failure Risk	abc12	3 [XYZ]										
abc123	XYZ	Critical	Proba	ability: 📒	87%		0-50% 50-859	% 8	5-100%	[Heatma	ip]			
jdhf3874	XYZ	Moderate		Events an	nd their contrib	ution to ex	plaining the failure p	oredictio	on [Table]			KPI		τ
dsgh343	ABC	Critical		Cluster	Start	Duration	Event	Frea.	Contribution					eak B
djsj87	XYZ	Critical		1	Day 1 22:58	115 min	Read response time	1	0.00					acker
jdjhf875	ABC	Moderate					Read transfer size Write transfer size	5 5	0.00 0.00		Write	Re	Read	nd Write
65356	XYZ	Moderate) Res	ad Tr	d Res	Res
854mfm	XYZ	Low		6	Day 5 6:15	120 min	Read response time	2	0.015		ponse	ansfe	ponse	ponse
Lligh Javal	o robito otur			7	Day 5 22:55	20 min	Read response time	2	0.02		Time	r Size	Time	Time
Physical disks – – Logical disks				8	Day 6 22:56	20 min	Read transfer size	1	< 0.01	-			Ű	w.
			s	9	Day 7 23:01	15 min	Read transfer size	2	0.01	2 3				
				10	Day 8 6:02	125 min	Disk utilization	3	0.00	4				
	Po	ools (RAID array	s)	11	Day 8 22:57	20 min	Read transfer size Write transfer size	5 4	0.05 0.16	5 6 7 Cl				
	r		1	12	Day 9 23:12	65 min	Read response time	3	0.06	89 Jister				
I/O gro	oups	Volumes		13	Day 11 20:28	205 min	Write response time	4	0.18	10				
Node	es l	Hosts		14	Day 13 4:08	35 min	Read response time Write response time	4 2	0.1 0.34	1 12 13 1] ,		
	[Hosts	15		Day 14 22:59 15 min		Read response time Peak backend write	3 2	0.12 0.8	4 15			
Port	S						response time Write response time	3	0.63	- 0.00	- 0.15	- 0,45	- 0.60	- 0.75

Summary

- Goal: Spatial-Temporal explanations for predicted failures in storage environments on multivariate time series data
 - Agnostic explainable models do not take the temporal component into consideration
 - Exploit the spiky nature of the data with anomalous event series extracted from the original time series
- LSTM + attention + temporal progressions to predict and explain how each event depending on its type, frequency and occurrence contributed to the failure event
- Explanations are easy to read and understand
- For time series, explanations need to be validated by an SME
 - Essential to present enough explanations to an expert to enable trust in the model
 - ... but without providing an overwhelming volume of explanations

Thank you! Questions?

igi@zurich.ibm.com

https://www.zurich.ibm.com/predictivemaintenance/