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Outbreaks of influenza cause considerable public health concerns
and pose a potential threat of a global pandemic. In this paper, we
describe some of our recent work on modeling of influenza virus with
an IBM Blue GeneA supercomputer. The goal is to predict which
mutations [on the viral glycoprotein hemagglutinin (HA)] are likely
to occur in the next flu season, which mutations might escape
antibody (Ab) neutralization, and which mutations might cause its
receptor binding specificity to switch (e.g., from avian to human).
We have analyzed more than 4,000 influenza A/H3N2 HA sequences
from 1968 to 2010 to model the evolutionary path using a
weighted mutual information method, which allows us to build a
site transition network to predict antigenic drifts. We then used
large-scale free energy perturbation calculations to study the
mutation-induced effects on the antigen–Ab and antigen–receptor
bindings. For example, we found that a single mutation
T131I on H3N2 HA can decrease the HA–Ab binding affinity by
5.2 ! 0.9 kcal/mol, in excellent agreement with recent experimental
results. We also found that a double mutation, i.e., V135S and A138S,
could potentially switch the H5N1 HA binding specificity from
avian to human, thus allowing the virus to gain a foothold in the
human population. Detailed analyses also reveal a molecular picture
of the influenza virus Ab and receptor binding mechanisms.

Introduction
The wide spread of influenza virus has become one of the
most fatal diseases in humans and poultry [1–3]. The
subtypes of A/H1N1, A/H3N2, and recent A/H5N1 have
caused significant public health concerns due to the
emergence of potential pandemic threats [4–10]. The viral
surface glycoprotein hemagglutinin (HA) is the primary
protein component of vaccines to provide protective
immunity against influenza virus infection. However, the
high mutation rates of HA ("5:7# 10$3 substitutions per
site per year) make it difficult to effectively predict future
mutations and develop appropriate vaccines/antibodies for
potential emerging pandemics [11].
A number of studies aimed to understand the antigenic

evolution of influenza caused by those mutations in HA
[12–19]. Smith et al. [20] have mapped the antigenic drift

and the site mutations of H3N2 using the hemagglutination
inhibition (HI) assays, which were the first to directly
relate the viral genotype and the inferred phenotype [20].
Shih et al. [21] and later Du et al. [22] have found that
antigenic drifts might be enhanced not only by the
accumulation of single-site mutations but also by the
simultaneous multi-site mutations of HA. Meanwhile, some
key mutations that can escape antibody (Ab) neutralization
have been revealed by binding affinity studies of H3N2
HA/Ab complex [5]. However, the current lack of H5N1
HA/Ab complex structure and limited binding affinity data
of H3N2 HA/Ab present barriers to rigorous computer
modeling approaches [23, 24]. Glycan array experiments
allow qualitative estimation of the antigen–receptor binding
affinity and identify mutations that might switch the
H5N1 HA receptor binding specificity from avian
(!-2,3-linked sialylated glycan receptors) to human
(!-2,6-linked sialylated glycan receptors) [4, 6, 9, 25, 26].
However, conflicting results from different groups with

!Copyright 2011 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each reproduction is done without
alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this paper may be copied by any means or distributed

royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of this paper must be obtained from the Editor.

Z. XIA ET AL. 7 : 1IBM J. RES. & DEV. VOL. 55 NO. 5 PAPER 7 SEPTEMBER/OCTOBER 2011

0018-8646/11/$5.00 B 2011 IBM

Digital Object Identifier: 10.1147/JRD.2011.2163276



slightly different glycan arrays indicate the limits of these
techniques. Therefore, a better understanding of the genetic
evolution paths of influenza virus, as well as accurate
molecular modeling of the antigen–Ab and antigen–receptor
bindings, is critical for subsequent development of effective
vaccines against future strains. Rigorous modeling that yields
sufficient accuracy is computationally demanding. We
perform molecular simulations of binding affinities with
the free-energy perturbation (FEP) method, which, in turn,
uses large-scale molecular dynamics (MD) simulations to
sample the conformational space.
We use an IBM Blue Gene* supercomputer to

perform these computationally demanding tasks. The
Blue Gene Watson* supercomputer is a state-of-the-art
high-performance computing facility located at the IBM
Thomas J. Watson Research Center in Yorktown Heights,
New York. It is the 80th fastest supercomputer in the world
(see Top500** list: http://top500.org/list/2010/11/100).
The IBM Blue Gene Watson supercomputer earned that
distinction by demonstrating sustained performance of
91.29 teraflops on the linpack benchmark. The peak
performance of IBM Blue Gene Watson is approximately
114 teraflops. Blue Gene Watson consists of 20 racks of
hardware conforming to the IBM Blue Gene/L architecture.
Each Blue Gene Watson rack consists of 1,024 nodes,
and each node contains two 700-MHz IBM POWER*
440 processors and 512 MB of memory. The 20 racks are
arranged as five rows of four racks each. The primary mission
of Blue Gene Watson is to perform production science
computations that could not be successfully undertaken on
less powerful computers. Except for periodic maintenance,
it runs 24 hours a day, seven days a week in production
mode. For the binding affinity calculations, up to four racks
of Blue Gene Watson (4,096 nodes, 8,192 processors) have
been used to run the FEP calculations in parallel. To our
knowledge, these are the largest FEP calculations for
influenza viruses.
In this paper, we describe our recent work in order to

provide a novel systematic approach to facilitate the
development of influenza virus vaccine/Ab [17–19]. We
begin with mapping the genetic evolution of influenza H3N2
virus by analyzing all available sequence data. A weighted
mutual information (MI)-based machine-learning model is
utilized to design a site transition network (STN) for each
amino acid site of HA [18]. A novel five-step prediction
algorithm based on this STN is used to predict the likely
mutations that might occur in the next flu season. In the
next step, we perform large-scale FEP calculations to
quantitatively investigate the mutation-induced effects
[17, 19, 27–31]. The current FEP calculations not only
provide molecular mechanisms with detailed physical
interactions but also identify potential mutations that might
either escape Ab neutralization or switch the receptor binding
specificity from avian to human [32, 33]. Identification of

such key mutations could assist the development of
vaccines in advance of the emergence of new strains.
Detailed methods and results are reported and described
in the following two sections.

Prediction of the antigenic variation of
influenza virus

Network inference algorithm: Weighted MI
We use a weighted MI approach to predict the antigenic
evolution of influenza A virus [18, 34–37]. The MI value for
a pair of amino acid sites, i.e., x and y, can be defined as

IðX ; Y Þ ¼
X

y2Y

X

x2X
wðx; yÞpðx; yÞ log pðx; yÞ

pðxÞpðyÞ
; (1)

where IðX ; Y Þ is the MI value; wðx; yÞ is the weighting
factor (mutated sites have double the weight as nonmutated
sites); and pðxÞ, pðyÞ, and pðx; yÞ in (1) are the probabilities
associated with each discrete state, which are the
probabilities of each residue to be mutated or not in our
study.
We use A/H3N2 as an example to explain our model.

The methodology developed here is equally applicable
to H1N1 or H5N1 without any modification. All 4,311
HA1 full-length (9312 residue) sequences of A/H3N2 up
to the release date of December 31, 2010, are aligned before
the MI calculation [sequence data were downloaded from
the National Center for Biotechnology Information Influenza
Virus Resource] [38]. We then divided the sequences into
43 bins according to the year information (1968–2010). Ten
sequences from each bin were randomly selected to generate
one sample input sequence in each calculation. A total of
2,000 different samples are randomly selected to gather
sufficient statistics. The output MI matrices from these
samples were normalized (with mean 0 and standard
deviation of 1) to generate the final BMI matrix.[
The 2-D MI matrix obtained from the MI calculation

includes the co-mutation correlation (MI value) for any
pair of sites in HA1. A higher value between a pair of sites
means a higher likelihood of co-mutation. An STN for all
312 sites can then be generated by the MI matrix. The nodes
in the STN represent individual amino acid sites in HA1,
and the edges between the two nodes represent the
co-mutation correlation. An example of STN is shown in
Figure 1(a), in which 63 positive selection sites were
selected and the edge with the normalized MI value lower
than 0.5 was removed from the network [21]. The positive
selection sites are thought to be responsible for the most
antigenic variations. These are mainly distributed in the
receptor binding domain and the five known epitopes. The
effectiveness of the STN was evaluated by comparing STN
with the Bantigenic maps[ from Smith et al. [20]. The
antigenic map utilizes data from serum HI assays to measure
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the cross-immunity Bdistance[ between each strain of
influenza to every other strain in an Bantigenic space.[
We found that the antigenic drift in A/H3N2 occurs more
smoothly at a sequence level, which indicates that the
mutation on antigenic sites of HA occurs all of the time
and certain positive substitutions might result in a partial
structural change in the antigenic regions. It seems that
co-mutations and structural changes in a specific group of
these sites may confer sufficient advantage to induce an
antigenic change. To confirm this hypothesis, we performed
further cluster analysis of the MI matrix (see below).

Co-mutation sites responsible for the antigenic drift
We applied a hierarchical clustering analysis to cluster
mutation sites of HA1 in the MI matrix. The rationale behind
this is that if any two sites i and j each have high MI values
with some other common sites, they will all show high
correlations and thus appear as a cluster. A total of five
clusters were obtained from the cluster analysis, with each
cluster representing roughly one or several antigenic
transitions (see Table 1). For example, the mutations at sites
122, 207, and 188 responsible for the HK68-EN72 antigenic
drift appear as a cluster. Such cluster analyses suggest
that the sequence data alone, particularly for H3N2 where
historical data is abundant, is adequate to uncover most of the
antigenic variations of influenza virus. This finding implies

that a cluster of co-mutating sites on HA1 might create
large-enough structural change on the protein surface at
antigenic sites to escape Ab neutralization and induce
antigenic drift to a new strain.

STN-guided prediction of antigenic variation
The STN shows that antigenic drifts can be enhanced by
cumulative co-occurring multi-site mutations in the epitope
regions on the HA protein surface. These co-occurring
mutations can be exploited to predict future mutations from
the present network. Similarly, mutation hot spots can be
identified by calculating the mutation frequency for each site
of HA1. In addition, we observe nonrandom probabilities
for different amino acid types at each mutation site. These
strong preferences are a reflection of evolutionary selection.
A five-step algorithm has thus been designed to predict

future antigenic variations (see Figure 2). Before we start,
we first define the year that we want to predict as the target
year, i.e., N , and the years N $ 1 and N $ 2 as induction
years. The steps in the prediction algorithm are listed as
follows.

Step 1: Calculate all sites that are under positive selection in
HA1 before year N . Here, the Bpositive selection
site[ is defined as a site that has mutated in
successive years and then remained fixed in the

Figure 1

(a) Example of an STN from years 1968–2008. A total of 63 positive selection sites out of 312 were found, which were then chosen to plot the network
(other sites were omitted since they are mostly conserved with little interactions with other nodes and will appear as isolated nodes in the network if
plotted). Each node represents a site with its residue number marked on top, and each edge represents the interaction between a pair of mutation sites if
its normalized MI score is higher than 0.5. (b) Prediction accuracy for several different network inference methods applied to influenza antigenic
variation predictions. The weighted MI method, the regular MI method, and a random selection method are shown.
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population for at least one year, similar to the
definition used by Shih et al. [21].

Step 2: Among the positive selection sites, find the sites
that have just mutated in any of the induction years.
Such sites are considered as the initial state of the
present network.

Step 3: Use all of the available sequences before year N as a
data source to construct the aforementioned sample
sequence input file and calculate the MI matrix.

Step 4: Since the MI matrix quantifies the interaction
between any two sites by a MI score, for each site X
in HA1, we sum up the scores between the site X
and all the sites found in Step 2 (i.e., newly mutated
positive selection sites in induction years). The sites
with high MI scores are chosen as predicted sites.

Step 5: Find the most probable amino acid type for each
predicted mutation site from Step 4 by searching the
historical amino acid type database for each site.
Historical data suggests that there is a strong
preference for each residue site to have some
specific amino acid types (see the section BResults[).
Therefore, we use the most probable amino acid
type other than the current one as the final
mutated type.

The five-step predictive method based on STN was then
validated by testing the prediction accuracy of known years.
The prediction of mutating sites was tested for every year from
1999 to 2008 using only the sequence data of prior years (thus,
a blind test). We found that the accuracy of prediction was
reasonably good and fairly stable, approximately 70% for
most of the years tested, which means that the network-guided
method can be a reliable tool to predict the antigenic
variations. Figure 1(b) summarizes the statistical results and
comparisons among various methods, i.e., the weighted MI
method, the normal MI (unweighted) method, and a random
selection method. Obviously, the weighted MI method
performs best, whereas the random selection method is not
predictive, as one would expect.
Following the same procedure for the above validations,

we used all the sequence data available up to year 2010
to predict likely mutations in year 2011. Our method
predicted six possible mutation sites, i.e., N6I, N121I,

Table 1 Amino acid sites responsible for co-occurring mutations. A total of five clusters were obtained from the cluster
analysis, with each cluster representing roughly one or several antigenic transitions. The sites shown in red in rows 2 and
3 are the identical sites obtained from both the real historical data and our clustering analysis (and the ones in gray are
missed ones).

Figure 2

Five-step prediction algorithm based on STN.
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R142G, N144V, I192T, and R261H, that may appear in
the next flu season. These predictions will be validated
against actual strains in due course, as 2011 strains are
sequenced and the sequence information is released. These
predictions can also be used as starting points in structural
modeling of antigen–Ab and antigen–receptor binding
affinities in order to computationally forecast the
consequences of these mutations.

Modeling of receptor specificity and escape
from Ab neutralization

Large-scale FEP with Blue Gene Watson
The FEP method has been widely used to calculate binding
affinities for a variety of biophysical phenomena such as
solvation free energy values, enzyme catalysis, redox,
pKa, ion conductance, ligand–receptor binding,
protein–protein interaction, and protein–nucleic acid binding
[27–29, 31–33, 39–47]. A thermodynamic cycle is often
employed to estimate the relative free energy change ð!!GÞ
caused by a mutation ðA ! B : !GB $!GAÞ, since the
absolute binding free energy is usually very difficult to
directly calculate in FEP simulations. We follow a similar
approach as in previous studies and design a thermodynamic
cycle, as shown in Figure 3, to calculate the relative binding
affinities of the bound ð!G1 : antigenþ antibodyÞ and free
states (!G2: antigen only) (for details, see our previous

publications, i.e., [17] and [19]). The total free energy
change should be zero in any thermodynamic cycle, i.e.,

!GA þ!G1 $!GB $!G2 ¼ 0; (2)

which gives the binding affinity change due to the
mutation from A to B as

!!G ¼ !GB $!GA ¼ !G1 $!G2; (3)

where !G1, !G2, !GA, and !GB are the free energy
changes defined above.
Among several available computational methods

developed in the past years, FEP using an all-atom explicit
solvent model serves as the most accurate approach for our
current needs in estimating the relative antigen–Ab and
antigen–receptor binding affinities [45, 47]. Such simulations
for realistically sized biological systems often require large
computational resources [48–54]. Here, we have utilized the
massively parallel MD software developed on IBMBlue Gene
to perform these FEP calculations [48–53].

Escape from Ab neutralization
The accuracy of FEP calculations was first validated by
introducing an experimentally known mutation T131I [5].
This T131I single mutation in H3N2 HA can increase
the Ab–antigen dissociation constant Kd by a factor of
approximately 4,000 (equivalent to a binding affinity
decrease of $5 kcal/mol), thus causing an escape of the

Figure 3

Scheme of the thermodynamic cycle for the calculation of the antigen–Ab binding affinity change due to a mutation on the antigen (represented by viral
surface glycoprotein HA; antigen¶ stands for the mutant).
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Ab neutralization [5]. Our FEP calculation using the IBM
Blue Gene supercomputer estimated the HA–Ab binding
affinity decrease of 5.2 ! 0.9 kcal/mol, which is in excellent
agreement with the experimental results. The decomposition
of the total binding affinity revealed that the electrostatic
interactions dominate the free energy change, with about
70% from electrostatic and 30% from van der Waals
interactions. The physicochemical factors behind the FEP
results were also investigated in atomic detail. Two or
more bridging water molecules were constantly found
between the wild-type HA and the Ab near residue T131
in the simulation [see Figure 4(a)]. These bridge water
molecules form hydrogen bonds with the HA T131 side
chain’s hydroxyl group and the Ab fragment (Fab) heavy
chain residues (hydroxyl group or backbone), such as sites
Y107, S31, and A53. These water molecules appear to be
lubricants at the Ab–antigen interface; the water molecules
were not fixed in space but fairly mobile with hydrogen
bonds forming and breaking all the time. During the FEP
simulation, the T131 was gradually mutated to I (Ile); the
much bulkier hydrophobic side chain of I131 displaces these
two or three bridging water molecules [see Figure 4(b)].
Therefore, the displacement of bridge water molecules from
the binding site has contributed to the loss of the binding
affinity in the T131I mutation [17].
In addition to the T131I mutation, another 14 neutral

mutations and 4 charged ones were also performed at the
same site 131. All of the binding affinity changes with
standard deviations are listed in Table 2. For the neutral
residue mutations, T131W, T131Y, and T131F are found
to have even larger binding affinity decreases, with
!!G values of 7.46 ! 1.91, 6.01 ! 1.31, and
5.68 ! 1.48 kcal/mol, respectively. These mutations
also reveal a significant displacement of bridging water
molecules. Other residues such as T131H (3.84 kcal/mol),
T131L (3.15 kcal/mol), T131N (2.92 kcal/mol), T131V
(2.58 kcal/mol), and T131Q (1.22 kcal/mol) also show
a decrease in the binding affinity. Meanwhile, a few
others show an increase in the binding energy, such as
T131G ($3.72 kcal/mol), T131A ($2.81 kcal/mol), and
T131S ($0.48 kcal/mol). The smaller sizes of mutated
residues Gly (G) and Ala (A) seem to have accommodated
more bridging water molecules (three to four water
molecules) in the active site, as well as less Bsteric repulsion[
in the relatively flat binding pocket, resulting in a more
favorable binding. Interestingly, the T131A mutation was
observed in 1990, and then, a back-mutation A131T was
observed in 1994, indicating that it is not a favorable
mutation for the virus [21]. Although we are not suggesting
that this binding affinity increase is the only reason for
this back A131T mutation, our FEP simulation is consistent
with the real-world influenza A/H3N2 virus evolution in
this instance. All of the mutations to charged residues show
a decrease in binding affinity. The negatively charged

residues (T131D and T131E) have a significantly larger
decrease than the basic residues (T131K and T131R). This is
because the nearby acidic residue D98 from the Ab heavy
chain contributes favorable electrostatic interaction with
K131 and R131.

Receptor binding specificity modeling
The high pathogenicity and human mortality rates of H5N1
virus infections have raised serious public health concerns
that this virus may seed the next pandemic. The determining
factor to the host specificity of influenza viruses is thought

Figure 4

Bridging water between T131 and the Ab: (a) bridging water in native
T131–Ab complex; (b) bridging water disappeared at the end of the
T131I mutation. The bridge water and hydrogen-bonding residues A53
and Y107 from Ab are shown with sticks. The T131I residue is colored
by dual topology (red: T131; blue: I131). (Reproduced from [17], with
permission.)

7 : 6 Z. XIA ET AL. IBM J. RES. & DEV. VOL. 55 NO. 5 PAPER 7 SEPTEMBER/OCTOBER 2011



to be the linkage between sialic acids (SAs) and the
penultimate sugar in the host cell receptors [55–58]. A switch
in the receptor specificity from !-2,3-linked to !-2,6-linked
sialylated glycans is believed to facilitate bird-to-human,
as well as human-to-human, transmission of influenza
viruses [56, 57, 59–61]. Unfortunately, the HA–SA binding
affinity at each HA monomer level is only in millimolars
(i.e., a few kilocalories per mole), which poses a
significant challenge for computer modeling, since the
thermal fluctuations can be easily seen at kT level
("0.6 kcal/mol at body temperature). In this paper, we
again use the IBM Blue Gene supercomputer to carry out
large-scale FEP calculations to investigate the HA–glycan
binding at the atomic level and identify likely mutations in
currently circulating H5N1 influenza viruses that may be
critical for binding to human receptors. The goal is to
characterize the effect of mutations on HA–glycan binding
specificity [17, 27–31].
Similar to the FEP simulation for Ab–HA, the simulation

protocol was also validated by comparing the simulated
binding affinities to experimentally available data [6, 9, 25].
The simulated binding affinities agree fairly well with
currently available glycan array data for several H5 HA
mutants. Then, a number of single/double amino acid
mutations were performed at position 135 and/or 138 to find
mutations causing such a switch in the H5 HA receptor
specificity from !-2,3-glycan (avian) to !-2,6-glycan
(human) [19]. Overall, the binding affinities for those
mutations suggest that the majority of them results in either
no change or a decrease in binding affinity to !-2,6-glycan

over !-2,3-glycan. However, V135S and A138S single
mutations result in a small preference for !-2,6-glycan,
with a !!G of $0:6! 0:19 kcal/mol for V135S and
$0:41! 0:32 kcal/mol for A138S (see Table 3).

Table 2 FEP simulation results for the H3N2 HA/Ab
binding free energy change due to various mutations of
T131. (*Data were obtained by incorporating no counter
ions when T131 was mutated to charged residues.)

Table 3 Receptor binding free energy changes of avian
H5 HA on a number of mutations at V135 and A138. The
results for V135S and A138S double mutations are in red.

Figure 5

Conformational change observed in the free state of modeled avian H5
HA on the (V135S and A138S) double mutation. The backbone of
the wild-type protein is shown in yellow, whereas the backbone of the
double mutant protein is shown in cyan. Side chains are shown for the
two mutation sites, i.e., 135 and 138, in addition to the residues E190,
K193, K222, N224, and Q226. Clearly, introduction of the double
mutation alters the conformation of the receptor binding pocket of
H5 HA, which significantly facilitates human receptor binding.
(Reproduced from [19], with permission.)
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The double mutation (V135S and A138S) in H5 HA
significantly enhances the human receptor binding by
!!G ¼ $2:56! 0:73 kcal/mol over the avian one
ð!!G ¼ 0:84! 1:02 kcal/molÞ. Simulating the same
double mutation in another H5 HA–receptor complex,
the Sing97 virus has reproduced this effect, where this double
mutation also shows a substantial increase in the human
receptor binding ð!!G ¼ $1:18! 0:57 kcal/molÞ
over the avian one ð!!G ¼ $0:15! 0:99 kcal/molÞ.
Considering that the HA–glycan binding is weak in general,
a $2.56 kcal/mol relative binding free energy change per
monomer of H5 HA should be regarded as a strong indication
for a substantial increase in HA receptor binding affinity.
A free energy component analysis indicates that the
electrostatic interactions dominate the contribution to the
free energy change associated with human receptor binding
of the double V135S and A138S mutant ("80% from
electrostatic and "20% from van der Waals interactions).
A structural analysis offers further explanation of why the
double mutant prefers the human receptor (see Figure 5).
The HA–glycan hydrogen-bonding network is rearranged
in the double V135S and A138S mutant. Residues Y95,
S135, S136, S137, E190, K222, G225, and Q226 of
this altered receptor binding domain form favorable
hydrogen-bonding interactions with the human-like receptor,
similar to the human-adapted HAs. In addition, the crucial
presence of S138 in human H1 HA further emphasizes
the significance of this predicted double mutant of avian
H5 HA in gaining pandemic potential.

Conclusion
In summary, we have proposed a novel systematic approach
to facilitate the development of vaccines against influenza
virus (see Figure 6) [17–19]. We first use machine-learning
techniques to predict likely mutations that might occur in

the next flu season. A weighted MI algorithm is developed
to capture the nonlinear correlation for each amino acid site
of HA. Then, the variations at the predicted sites of mutation
could be structurally modeled in order to investigate the
consequence of these mutations. A few examples have been
provided for the antigen–Ab and antigen–receptor binding
affinity calculations. These advanced structural modeling
and simulations provide detailed atomistic mechanisms
and help identify potential mutations that could escape Ab
neutralization or switch the receptor specificity from avian
to human. Overall, our comprehensive approach could
provide potent leads for the design of future vaccines
against influenza virus.
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