Static and Dynamic Analysis for PHP
Security

V. C. Sreedhar
IBM TJ Watson Research Center
vugranam at us.ibm.com

Outline
= Security Issues

= Static Analysis

* Dynamic Analysis

* Future Challenges

Objective of the Talk

» Expose deep, fundamental, and state-of-the-
art research and technology in static and
dynamic analysis.

= Most existing tools for PHP only do shallow

and structural analysis.

Our Security Goals

= Static and dynamic analysis of PHP scripts to
detect vulnerabillities

= Best practices and coding guidelines for
secure PHP and Web Applications

» Language extensions to improve security
features of PHP

What is Security?

= Security Is a capability that satisfy three
classes of requirements

o Confidentiality: Assets/Artifacts are accessed
only according to well-defined policies.

o Integrity: Assets/Artifacts are not undetectably
corrupted, and altered only according to well-
defined policies.

o Availability: Assets/Artifacts are available when
they are needed.

Goal of Security

* The goal of Security Is the protection of
assets/artifacts against threats to
confidentiality, integrity, or availability, using
appropriate systems or infrastructure, tools,

methodologies, and processes.

Threats, Vulnerability, Attack, and Flaw

= A threat is an expression of an intention to
inflict pain, injury, evil, or punishment.

= A vulnerability, is a means whereby a hostile
entity can successfully violate a system’s
security.

o For example, a web application might be
vulnerable to a “poisoned cookie” (a maliciously
altered cookie, which the web app will trust
without verification).

Threats, Vulnerability, Attack, and Flaw

= An “attack” refers to the tool or technigue with
which an attacker will attempt to detect and
exploit a vulnerability.

= A flaw Is a defect in a system which can result
INn a security violation.

o Every vulnerability must be due to at least one
flaw, but it is possible for a flaw not to cause any
vulnerabilities

o E.g., the flaw might be masked

Common Criteria Evaluation
= How many of you have heard of CCE?

= How many of you follow the CCE process?

= \What is your Evaluation Assurance Level?
0 EAL1 to EAL7Y

Security Model According to Common Criteria

- wish

to reduce to
minimize

impose

that may be

that may possess et

may be aware of

that leading to
exploit

give rise that increase

to
wish to abuse and/or may damage -

Application Security

22% of reported vulnerabilities

are in applications, not networks
ENCRYPTION MODULE

5% NETWORK PROTOCOL STACK

0% 1% 2% 2%

OTHER

COMMUNICATION PROTOCOL
HARDWARE

OPERATING SYSTEM
NON-SERVER APPLICATION
SERVER APPLICATION

souRce: NIST

Security Engineering

= Security Principle

o0 One cannot just look at one software artifact and
declare that the software is secure.

= Security Engineering is all about considering
security across all phases of the software life
cycle.

Secure Software Lifecycle

lteratideSapnp

\ v,
Testing l

Requirements Deploym_ent
and use cases and Field

3

o AW

5 iR
| AR N
o FEREYINLE -
LI i
£ L -

ecurity
Manage

i)

% <
@

Auditor

L

Application Application R
Deployer Developer !1.,:‘2

Administrator

Security Models

= Multilevel Security (MLS)
o0 Bell-LaPadula

0 Biba

= Clark-Wilson Model
0 Chinese-Wall Model

= Role-based Model

= MAC/DAC

Information Flow

= High security information should not flow through low
security ~ channels”.

= A low security control should not influence the
outcome of high security output.

= Using the term “channel” in a generic way

= E.g. Lowx = Highx // bad assignment
= [f(LowX) then HighX // bad condition.

= In general, Policy certified information must not be
leaked through channels that do not satisfy the
policies

= Based on Multi-Level Security (Bell-LaPadula) Model

Reading and Writing Information

= Information flows up, not down
0 “Reads up” disallowed, “reads down” allowed

0 Sometimes called “no reads up” rule

= Information flows up, not down
o “Writes up” allowed, “writes down” disallowed

o Sometimes called “no writes down” rule

Implicit Flow of Information

= Information flows from x to y without an
explicit assignment of the form y := f(x)

o f(x) an arithmetic expression with variable x

= Example from previous slide:
oifx=1theny:=0
0 elsey:=1;

= So must look for implicit flows of information
to analyze program

Security Analysis

* Information Leak

* Tainted variables

= Permission programs

* |Inserting Security Hooks and Sanity Checks

= Complete mediation

= Consistent Role Assignment

= Escape Analysis (generalized escape analysis)
= Security races and deadlocks

= Intrusion Detection (part of) using dynamic info flow
= Exploit analysis

= Confinement Analysis

= Covert Channel (part of) analysis

Security Taxonomy

| Yulnerability |

I
v v '

| Designerror | | Implementation eror | |User interface | | Other problems |

v v v v v

Privileged Trusts Timing Basic Trusts something
programs untrustworthy windov prograr;rjmmg not designedto
information pracices support that trust

Check file
LWfl

— i that can be
Frivileged — [Netwiork protocol cperille replaced with
program Reusablg :
: ¢ a syrmlink
suUbject 1o _.,| Infrastructure | | resources no

inheritance " properly reset
between Users

Figure 2: CERT Vulnerability Taxonomy (subset)

CERT is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

A Few Bad Ones

Input/Output data not validated
o Tainted Variables

o Cross Site Scripting
0 SQL Injection Flaws

Buffer Overflows
Improper Error Handling
Insecure Storage
Formatting Errors
Complete Mediation

Insecure Default Configuration

Static and Dynamic Analysis

= Static analysis is a process for determining
the relevant properties of a (PHP) program
without actually executing the program

* Dynamic analysis is a process for
determining the relevant properties of a
program by monitoring/observing the
execution states of one or more
runs/executions of the program

Static Analysis

= At each program point (statement boundary)
iIn a (PHP) program, determine properties or
relations that may hold at that point during
execution.

0 These properties or relations are abstract
representation of the properties or relations that
are true during some execution of the program.

o E.g., uninitalized variable, whether two variables
alias or not, etc.

o0 Useful for finding security vulnerability

An Example: Register Global

<?php
if (ChecklAmGod($user)) {
$god = true;

}
It ($god) {
Include '/bless/you/child.php';

7>
L et usquery ?god=1& user=satan

An Example

<?php
if (ChecklAmGod($user)) { ¢mm $user=satan
$god = true;
}

if ($god) { @@ $god=true
Include '/bless/you/child.php';

7>} t Bloom!

thhing Wrong with Register Global!

Static Analysis

<P $god=uninitialized
if (ChecklAmGod($user)) {
$god = true; $god=initialized

1 $god=initialized AND $god=initialized
if ($god) { $god= uninitialized
Include '/bless/you/child.php’;

Why Static Analysis?

= Manual code inspection is necessary but not
sufficient

= Static Analysis helps developers and tester to find
bugs

= Static analysis often has many false positive

= Some deep static analysis can help reduce the
number of false positives.

= Combining static and dynamic analysis, along with
testing and manual inspection is the best bet

Analysis Pandora Box

Pessimistic Analysis
o Typically slower and conservative
Optimistic Analysis
o Typically faster and more aggressive (and sometimes unsound)

Sound Analysis
Unsound Analysis

0 Useless for code generation, but useful for error analysis (bug finding)
o Very fast

o High false positives. Use other techniques to filter many false positives

Static versus Dynamic analysis (and hybrid)
Demand-driven, Incremental, and Exhaustive
Monotonicity, Non-monotonicity, and Extensible

0 Monotonic/Extensible guarantees convergence

o Non-monotonic requires a different approach
Context/flow/path sensitive/insensitive analysis

Type-based and type-state analysis
Partial evaluation and semantic-based analysis

Threat Modeling and Abstraction

= To secure your application you must understand
threats from your attackers’ point of view.

= Threat modeling Is a process of assessing and
documenting potential risks created by an application

= Threat modeling Is a necessary step before you can
design your static and dynamic analysis for security

= A flaw may be due to insufficient threat modeling
= Threat modeling is a serious business and has to be

done very early in the lifecycle of the application
development

Threat Modeling: XSS

<?php
$uname="";
If (isset($_ GET['uname'])) {
$uname=3%$ GET['username];

}

echo $uname;

2> . .
In threat modeling we have to think
like an attacker

Suppose $uname =
<script>alert("Hello World'!");</script>

350: o ET@JQ RN LTREE Fp -

A I (75 B*E B
A R 1~ E-11
B
b e

Filtering or Sanitizing

= Most attacks can be mitigated by filtering and
sanitizing inputs and outputs.

= An unsanitized input or output is said to be
tainted

= A variable that contains unsanitized data is
said to tainted variable.

= Given a PHP program, how can we detect
variables and data that are tainted?

Taint Analysis

= Taint analysis essentially consists of
determining variables and data that have not
been sanitized

= Taint analysis relies on other kinds of

analysis such as Alias Analysis, Data
Dependence analysis, and Slicing

Alias Analysis

* In PHP whenever you use address reference
operator & you are essentially creating an
alias

<?php
$a=&%$b // $aand $b are aliases
$bar = new fooclass();
[/$bar pointsto the new fooclass obj ect

Alias Analysis

<?php
$start=0;
$index =& $start;
foreach (array(1,2,3) as $index) {

}

echo $start; // Can you guessthe value of $start”

Alias Analysis and Taint Analysis

<?php
$a=&%b: // $aand $b are aliases
echo $a:; // XSS

>

|1 f $b istainted then $a is also tainted

Alias Analysis
* Precision versus scalability

= Scalability is the abllity to deal with large
programs >1 Million Lines of Code

= Not many MLOC in PHP

Alias Analysis

= Many different kinds of analysis techniques
o Flow sensitive versus Flow insensitive

o0 Context sensitive versus context insensitive

* Flow sensitive and context sensitive analysis
IS more precise, but very expensive

= Analysis done over call graph and control
flow graph representations

Deep Analysis

* There are many different kinds of “deep analysis”
0 An example of a deep analysis is typestate analysis

0 Very expensive and does not scale well

= But can be used to find some nifty errors
0 Especially in OO and protocol related bugs

= Unfortunately there is a complex interaction between
typestate analysis and alias analysis

Typestates

= Strom and Yemini from IBM introduced the
concept of typestate as an extension to the
notion of a type. It requires that a variable be
In certain state before operations on the
variables can be performed.

= In OO programs, a method that is invoked on
an object o typically has a partial view of the
object 0. One can use typestates to define a
consistent view of an object prior to an
iInvocation of a method on the object.

= Very useful for finding flow-sensitive bugs.

Typestate Example

read()
/‘ create()
close()

open()

Typestate Analysis

» Typestate and alias analysis interaction

$x = new File) ; By = new Filg() ;
$7=& 9Py ;

if($blah) {
$y->close() ;
$z=&Px;

}
$z->read() ; // isthisok?

Our Analysis Framework

= Based on an IBM tool called CAPA/DOMO
= Common architecture for static & dynamic
program analysis technology

o quickly create software lifecycle applications
through composition.

o foster sharing and collaboration between
disparate research groups across the world.

0 speed technology transfer to our product groups.

al
I
al
O
[
R
9]
=
M
-
<
O
IS
p)

Typestate Analysis Tool

= Based on an IBM tool called SAFE
o Currently for Java

0 Recognizes patterns and anti-patterns

O
O
_I
R,
)
=
B
C
<
O
G
)
O
I
al

o ————

CAPAIDOMO

SWORD4J

= Yet another IBM tool for J2SE security
o IDE based on Eclipse

o0 Available at
http://alphaworks.ibm.com/tech/sword4|

= SWORDA4J statically analyzes Java bytecode and
detects:

0 Permission requirements
0 Recommended privileged code locations

o Mutability and accessibility violations
* Plan to leverage SWORD4J for PHP

IBM Research

.,):r)‘s'[Jle :I f

Privilege instruction markers with OSGi i

| KeyStore editor - Change KeyStore PW, impont &

Refactor

permission QuickFix - Double click on method ~ 5°F Wrdow nee
signature in Privileged Instructions view 1o » 5
open source filein editor.

g try

=

= 0O ||l cacerts 52

& @ | |C:\Sunljdk1.5.0_01reliblsee

expor cerificates, generate sell signed
certificatles, drag & drop key eniries & certificates
betwoeen open koystores elc, Y | «3=Plug-n Devel...
D[outine B[R R W o W T
nsgetlﬁsz[Sm[l)

e Al startupl(args, endsSpl

| 1ssuedte 3 = ° getStartLevel)

',;3 >org.edpse.core.runtime security g
r-‘[org.edipse.help security [dev.edy
47 >org.edpse.jface security [dev.e
7y >org.ecipse.osgl security [dev.ec
+ 1% consolesrc

1§ osgifsrc

% core/adaptor

% core/framework

% defaultAdaptor fsrc

§ edipseAdaptorfsrc

i resobverfsrc

getSysPath()
getSysPathFromCodeSource()
getSysPathFromURL (String)
getversionBlements(String)
initializeApplicationTrader ()
nitializeContextFnder ()

] mmmmﬁ. Baumic
@ * isRunning() G
& ® loadBasicBundies()

& ° loadConfigurationInfol)

E ¥ loadProperties(URL)

starcupFailed = fals™
if (Boolean.gatBoole
reatarn null;
retorn run(nall);
} catch (Throwable e)

Ch=Eguifax v
CN=VeriSign

OU=VeriSign

CN=VeriSian e

if (erdS;lasu"mdle.
endSplashHandle:

may use

| value

iy e Call paths display shows permission propagation
FrameworkLogEntry 1c from AccessController o privileged instruction,

if (log != mull)

b
Analysis Monitor - Displays progress of FCgm= | >

(D) Privieged instructions | £} Permissions Requirements by CodeSource

- [0'© edpsestarter (63)
O ¢ void main(java.lang.String[)
[¢ void main(java.lang.String[])
O & void main(java.lang.String[)
O & void main(java.lang.String[])
128 iaua lana Ohiact anl sy, lang. String[], java.lang.Runnable)

-
g
=0

JAR inspecion -

| andmmm;ronmulgmw by right mouse-
selecting

Error Log Tasks Problems mMMnW 3 Search | Call Hierarchy | Console | Progress
19 Calpaths|

* Displays JAR architecture in

tree viewer,

* Displays Signing information

* Displays OSGi bundle permissions entries

ra.lang.String [, java.lang.Runnable)
ra.lang. String], java.lang.Runnable)
ra.lang, String[], java.lang Runnable)

& % logunresolvedBundies(Bundie(l) [
i - B

u'_:_.;.'.'-?;:.,—l_.l

Mutabity [2] Framework permissions

=

ra.lang. String[], java.lang.Runnable)
——— B

&, Inspecton &3
2° Methods | &, Certificates' and Permissions by JAR

= () PermisssonTest.jar
= 8 com.ibm.security. test. permissionTest
- G PermissionTestPlugin

@ void PermissionTestPlugin()
@ wvoid start{org. osg. framework.BundieContext)
@ void stop{org. osgi. framework. BundieContext)
& com, ibm, security. test. permissionTest. Permission TestPlugin getDefau
& org.ecipse.jface.resource. ImageDescrptor getlmageDescriptor (java

+ 3 com.ibm.security. tests PermissionTest, actions

"::? June 14-16. 2006

Static and Dynamic Analysis for PHP Security

Spacily entrypoints for the analysis
by access modifiers, of specific
mathods.

" Selected JAR, packages, dasses and methods
W Public ™ Protected [V Private v Default

= B org.edipse.core.runtime.adaptor A
- G EdipseAdaptor SDomParsingSenvice o
A EdipseAdaptor $DomParsingSenvice(org. edipse. .core.run | =

@ pgetService(org.osgi. framework. Bundle, org.osgi. framews

@ ungetService(org.osgi. framework.Bundle, org. osgi. frame

Cancel |

L
© 2006 IBM Corporation

Dynamic Analysis
* Runtime detection of flaws and vulnerability

= How static analysis can help dynamic
Instrumentation and monitoring?

= Context Sensitive String Evaluation (CSSE)

CSSE Approach

= CSSE automatically applies the appropriate
checks for syntactic content in user-provided
iInput

= Ability to distinguish between user- and

developer-provided parts
» Metadata assignment to user-provided input

o0 Determine the appropriate checks on the user-
provided parts

o Context-sensitive string evaluation

CSSE Approach

» Metadata describes which string fragments
are user-provided and which developer-
provided

o All user-provided input is untrusted

= User input can be
0 network input: e.g., HTTP headers

0 environment variables

0 stored input: e.g., db, XML

Network Input:
GET, POST, cookie

Semail="allce@host",
fpincode="1234 or _=l"

CETECT & TRAM 11 - WUUEDT amad i r
.E_IL.L ERUM US 5 LPet SFas i =

AKD plncode=

l

Direct Input:
arguments, env.,...

Textual Representations

Stored Input:
DB, XML, CSV....

I e W

Inputs Metadata
Assignment

_I'-ll'l'\-' §<-1i5. 2AHNS

Metadata-Preserving
String Operations

* FROM users WHERE email="alicefhost'

ode=1234 or 1-1

Jjusr/bin/mail aliceghost

; Metadata .

Execute:

shell, XSLT,...

Query:

SQL, XPath,...

Locate:
URL, path

Render:

HTML, SVG....

_,(
_,(
_,(

Store:

DB, XML....

Mo g RN PN PN

Context-Sensitive
String Evaluation

Outputs

PHP String Analysis

= PHP string analyzer is a static analyzer that
checks the sanity of a PHP string using a
context-free grammar.

0 Useful for detecting security errors, including
flagging programmer sloppiness.

= hitp://lwww.score.is.tsukuba.ac.]p/~minamide/
phpsa/

= \We are extending this to handle more
complicated cases, including JavaScript, XML
and Web Services strings.

Combining Static and Dynamic Analysis

= Use static analysis for finding potential
properties and program points that you want
to track at run-time.

AJAX and PHP Security

» Focus for next year

Keyboard/Mouse events

AJAX Enabled Browser

Brower Ul

JavaScript Javascript Q

HTML+C

SST Render

Engine

UpdateDOM @ L

DOM

A

XML)HTTPRepuest
, Dynamic Page @ (. %u @

A

Satic Page @

PHP Engine

di\ 4
System

HTML File

@

fq.

Web PHP File
s | Services “@

Apache Server

PHP and AJAX

= Security can become more challenging,
especially with its rising the popularity

= Especially with support for Mashups.

o A mashup application uses content from more
than one source to create a completely new
service.

0 Rich/Fat clients present more challenges for
security

Ia web of daté sou rces,
Enterprlse MaShupS services for exploring &
manipulating data, and

Aﬂ I n d UStry Case ways that (end) users can

connect them togethet

Study
PHP meets Web.20

New York PHP Conference & Expo 2006
THE PHP BUSINESS COMMUNITY

Tom
Coates/Yahoo

i- 165, M6

Enterprise Mashups: An Industry Case Study

Web 2.0 Technologies converging
on a few key value proposition

Broad Collaboration

Simplicity & rich(er) internet
experiences

Remixability

» Enabling “applications” that can be
created by non-professional
programmers

* APIs based on open (defacto)
standards

PHP On Forefront of Opportunities
* It’s about instant results

* It’s about empowering line-of-business
professionals

. %‘%r@.‘ '\F"FJW ‘W W

2.0 Technologies Current Focus Areas

Focus on Simplicity
> COLLAEORAT IOM UIDGETSJD_‘{ of Use

Ly LnTs PE‘Fl"Ij.“QHl:}]._J].-[\'{'snﬁ;,

o [

SS OpenAPlIs Star ;;«w
DataDrwen

i o
g A

Web 2.0 - What technologies are we talking about?
Enterprise Mashups: An Industry Case Study

= Many Web 2.0 Technologies still in
Innovation stage

= Customer Interest High In:

v" AJAX is most tangible in terms of potential
business value

RSS/Atom - RSS & Atom/APP being seen as
potential approaches to simplify specific
content centric application architectures

Programmable Web - potential seen in
building/extending business ecosystems

Web 2.0 “instant™ applications

Tagging

= Comdent Syndication/Distributed Content Management 5

Web 2.0 Solutions
"Instant” Solutions

::' Rich .-m.--:-r Al ,,-...-u- Ul Exprmtence :
AJAX (Personalities) |

T

ar Cantent Classifring/Tharing ¥ W Shacing Common Structured Data B ¢ Generel Dats Shating

MicroFormats YL BOSON

© Programmable ‘Web - SOR

REST & \Web Serviees &

RSS/Atom (APP)

AN i, P ST Ao R

Future Effort
= Configuration analysis

» Feedback Analysis
o Combining Static and Dynamic Analysis

= Concurrency and Security

Acknowledgement

= Dana Glasner

= Gabriela Cretu

» Ted Habeck

= Julian Dolby

= Larry Koved

= \Wietse Venema

= Chris Vanden Berghe,
= Kouichi Ono

= David Boloker

Thank Youl!

c
O
e

G

5
O

c o
= O

L O

S N

c .

mC
L >

&
@
Q
&
=
%
g
&
qv)
-
=
o)
S
>

