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ABSTRACT
Mashup applications mix and merge content (data and code)
from multiple content providers in a user’s browser, to pro-
vide high-value web applications that can rival the user ex-
perience provided by desktop applications. Current browser
security models were not designed to support such appli-
cations and they are therefore implemented with insecure
workarounds. In this paper, we present a secure component
model, where components are provided by different trust do-
mains, and can interact using a communication abstraction
that allows ease of specification of a security policy. We
have developed an implementation of this model that works
currently in all major browsers, and addresses challenges of
communication integrity and frame-phishing. An evaluation
of the performance of our implementation shows that this
approach is not just feasible but also practical. The tech-
nology discussed in this paper allows mutually mistrusting
client-side components to communicate safely without any
modifications to current browsers, and hence has the poten-
tial to achieve immediate and widespread adoption.

Categories and Subject Descriptors: D.2.0 [General]:
Protection mechanisms, D.2.11 [Software Architectures]: In-
formation hiding, domain-specific

General Terms: Security, design.

Keywords: Web 2.0, browser, mashup, component model,
phishing.

1. INTRODUCTION
Web applications increasingly rely on extensive scripting

on the client-side (browser) using readily available JavaScript
libraries. One motivation for this is to enable a browser user
experience comparable to that of desktop applications. The
extensive use of scripting on the client side and program-
ming paradigms such as AJAX [1] has also led to the growth
of applications, called mashups, which mix and merge con-
tent1 coming from different content providers in the browser.
Mashups are now prevalent in a number of contexts, includ-
ing news websites, which have integrity requirements, or web
email, which handles confidential information. They are es-
sential to an advertising supported business model, and for

1 We use the term content to refer to active content, i.e.,
both data and JavaScript.
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allowing user-generated content in Web 2.0 websites. The
tremendous additional value that can be provided to users by
mixing and merging content implies that such applications
will eventually be prevalent in contexts with stricter data
security requirements, like consumer banking sites and en-
terprise applications. Since existing browser security models
were defined and developed without anticipating such appli-
cations, these applications are pushing the boundaries of
current browser security models.

Since content in a mashup application can stem from mu-
tually untrusting providers, it is clear that they should be
built on a sound security foundation protecting the interests
of the various involved parties such as the content providers
and the end-user. For example, consider a mashup applica-
tion scenario of a car portal where information from multiple
car dealers, insurance companies and the user’s bank could
be combined and co-resident on the user’s browser. It is
clear that, at a minimum, we want certain security require-
ments to be enforced, such as the dealer’s scripts not being
able to modify each others car prices, nor should they be
able to spy on a user’s bank account information.

The traditional browser security model dictates that con-
tent from different origins2 cannot interact with each other,
while content from the same origin can interact without con-
straints (reading and writing of each others’ state). This
model does not support mashups, where controlled interac-
tion is desirable. To overcome the no interaction restriction,
mashup developers typically enable interaction by either (1)
using a web application proxy server which fetches the con-
tent from different servers and serves it to the mashup, or
(2) by directly including code and data from different ori-
gins (using <script> tags). In both cases, it appears to
the browser that the mashup originates from a single origin,
though it contains content from different trust domains3,
enabling uncontrolled interaction.

In this paper we examine the problem of building se-
cure componentized mashups. We propose an abstraction on
which security policies can be specified, and an implementa-
tion that realizes this abstraction for unmodified browsers.

2Origin is a pair of hostname (DNS domain or IP address)
and URI-scheme (protocol) from a given URL. The “same-
origin policy” [2] usually includes also the port. However,
this is not done by all browsers, e.g., Internet Explorer 6
ignores ports when comparing origins.
3Clearly trust domain is not the same as DNS domain. How-
ever, designing a secure solution for current browsers in-
volves some mapping between the two. In the remainder of
the paper, the term domain used alone refers to DNS domain
or IP address.
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1.1 Our Approach
Our abstraction involves encapsulating content from dif-

ferent trust domains as components running in a browser
window. Components can be loaded and unloaded dynam-
ically, as the application in the browser window evolves.
Components are wired together using communication chan-
nels, which are the only means for them to interact in the
browser. The channel abstraction and security policies as-
sociated with channels are implemented by an event hub
that is part of the Trusted Computing Base (TCB) from
the mashup provider’s perspective. Components are loaded
from their own server (as opposed to being proxied or using
a <script> element) and isolated from the mashup applica-
tion code. This has security advantages in (1) not requiring
the component to completely trust the mashup application,
and (2) making the component abstraction compatible with
password anti-phishing mechanisms that use the component
(DNS) domain or the certificate of the SSL connection, like
Passpet [3] and Microsoft CardSpace [4].

By creating a high level abstraction for cross-component
interaction, we ensure that the different communication tech-
nologies used in our implementation can be replaced by,
or even combined with, other technologies as they become
available on the browser platforms.

We realize the component abstraction using the HTML
<iframe> element (Section 16.5 of [5]), which was designed
as a container for loading sub-documents inside the main
document. The technical challenges that we address in the
implementation are (1) enabling parent to child document
communication links when the parent and child are from
different trust domains, (2) ensuring integrity and confiden-
tiality of information on these links, and (3) guarding against
frame-phishing, where a malicious component in a mashup
can change which component is loaded in another part of the
mashup. Our implementation is a JavaScript library which
is used by the mashup and component providers. It is avail-
able as open-source in the OpenAjax Alliance [6] Source-
Forge project. We have tested our library on Internet Ex-
plorer (IE), Firefox, Safari, and Opera.4

There are several competing technologies under develop-
ment that attempt to address the problem of secure mashups.
We briefly contrast them here and discuss them in more de-
tail in related work (see Section 6). Many of these proposals
require HTML and browser modifications, but the long time
line of adoption by standards committees, browser vendors,
and eventually by end-users, makes these nonviable for any-
one wanting to build secure mashups in the near term. In ad-
dition, there are some proposals that work without browser
modifications. These are either targeted at client-server
cross-domain communication for mashups, which is a very
different programming model, or web widget/gadget deploy-
ments. Our components have some conceptual similarity
with web widgets, but need not have a user-interface. Also,
web widget deployments offer a programming abstraction
only to widget developers, not mashup developers. All these
proposals typically, (1) are vulnerable to frame-phishing, (2)
consider untrusted components but not untrusted mashup
applications.

4More specifically, the tested browser versions are Internet
Explorer 7.0, Firefox 2.0.0.7, Safari 3.0.3, and Opera 9.24.
There is no technical reason, though, that the library would
not work on different versions or other browsers.

1.2 Building Secure Mashups
We believe that using our high-level abstraction of com-

ponents which communicate through a mediated event hub,
using channels, will provide a key primitive for secure com-
ponentized mashups. The mashup provider does not need
to proxy all the components so that they appear to be from
the same origin, nor resort to other unsafe practices, such
as directly including scripts from different domains. It is
also in line with the general principle of least privilege [7]:
unavoidable programming and configuration errors mandate
decomposition of web applications into small isolated units
even when they come from the same administrative domain.
Finally, it provides a general security mechanism to guard
against cross-site scripting (XSS) attacks, as discussed next.

In the context of attacks on web applications, XSS at-
tacks [8] are getting significant attention. These affect a
special case of a mashup, where a website insecurely com-
bines content generated by the website with content gener-
ated by its users, which are different trust domains. XSS
attacks allow user-generated malicious content to not just
read and write website-generated (trusted) content, but also
gives it access to browser-cached credentials (e.g., cookies)
for that trusted content. The common XSS mitigation ap-
proach is to disallow users to generate content that contains
JavaScript, using content filters, but this is both (1) difficult
to implement, resulting in many attacks against incomplete
content filtering, and (2) limiting for user creativity. Us-
ing our component abstraction, user-generated code can be
safely placed in a separate, less-trusted component.

The paper is structured as follows. In Section 2 we present
our secure component model, followed by a discussion of se-
curity policies in Section 3. Then we describe our imple-
mentation and how we addressed various attack vectors in
Section 4. We present a performance evaluation in Section 5,
discuss related work in Section 6, and conclude in Section 7.

2. SECURE COMPONENT MODEL
In this section, we describe our secure component model

for mashups. As discussed in the introduction, the current
browser security model either allows different content to ar-
bitrarily interact if they are from the same origin, or disal-
lows all interaction if they are from different origins. Thus,
it is clear that the current browser security model is in-
sufficient for mashup applications. What is desirable is a
new security model that allows content to be separated by
trust domain, with a carefully mediated interaction between
such separated content. Furthermore, to make this accessi-
ble from a programmer’s perspective, there must be a high
level programming interface that allows creation of secure
mashups, and makes this easy.

Both from a programmability and usable security perspec-
tive, it is essential to follow the concept of information hid-
ing [9] by limiting the exposure of internal design and state.
Thus, our model is analogous to using a message-passing in-
teraction style instead of a shared-memory style. We first
present the model, and then explicitly specify the security
requirements.

2.1 Model
Figure 1 graphically represents, in an abstract manner,

our proposed model for secure mashups. The model consists
of components, with input/output ports, and an event hub,
with mediated communication channels.
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Figure 1: Component Model

The mashup application, provided by the mashup provider,
consists of an event hub and one or more components, which
can be provided by third-party component providers. Com-
ponents could be visible or invisible. Visible components
share the browser display in a manner determined by the
mashup application. A component contains (active) content
from one trust domain. The components, and therefore also
the trust domains, are logically separated and can only com-
municate with each other through the mediated channels
implemented by the event hub. A component may spec-
ify input/output ports (respectively depicted in the figure
by white and gray ellipses) that define the types of input
and output that the component expects in order to function
properly. The event hub wires the component ports to the
appropriate channels (depicted by the arrows in Figure 1).

The event hub is a publish/subscribe system with many-
to-many channels on which messages are published and dis-
tributed. This model differs from a traditional publish/sub-
scribe model by separating the namespace of the compo-
nent ports from the namespace of the channels. This avoids
clashes in the namespace of the component ports and en-
hances the re-usability of the components. In Figure 1, Com-
ponent A can publish to Channel 1 and Channel 3 and is
subscribed to Channel 2 and Channel 3. The channels sup-
port asynchronous pass-by-value communication. An asyn-
chronous model, though typically considered harder to pro-
gram to, is a natural one for applications running in the
browser, since they have significant logic for asynchronous
event handling related to user-interface (UI) events. In ad-
dition, an asynchronous model allows more implementation
choices, since application code running in a browser is single-
threaded.

The model can be extended hierarchically, i.e., a compo-
nent could contain sub-components, and an event hub which
mediates between these sub-components.

2.2 Security Requirements
We explicitly list the security requirements for the previ-

ously presented model, when embodied in a browser.

1. The DOM (Document Object Model) [10] tree of each
component is completely isolated from other compo-
nents. That is, there is no reading and writing of DOM
elements across trust domains.

2. The JavaScript namespace of each component is com-
pletely isolated from other components.

3. Components can be loaded directly from the compo-
nent provider. From a security perspective, this has

the following advantages: (1) A component is pro-
tected (isolated) even from the mashup application
code; (2) It is compatible with password anti-phishing
mechanisms, like Microsoft CardSpace [4] and Pass-
pet [3], that take into account the (DNS) domain of the
component, or the certificate of the SSL connection.
This is important if the component needs to authen-
ticate the user to perform its function; (3) It retains
the possibility of using cookies, secured by the DNS
domain, as is still common practise for session authen-
tication. This also has the benefit of not needing to
deploy an additional web proxy.

4. Inter-component communication is secure: Malicious
components can not affect the integrity and confiden-
tiality of communication between other components
other than (unavoidable) denial-of-service attacks re-
sulting in aborted connections. Specifically, the model
provides one-way authentication of components to the
mashup application. Mutual authentication could be
implemented with a slightly more elaborated protocol.
However, the context in which we use our client-side
library does not require it: that aspect is addressed
with server-side access control for component loading
(section 3.2).

5. Component loading and unloading is completely un-
der the control of the mashup application. A ma-
licious component cannot replace a peer component
in another part of the application without detection
and appropriate (context-specific) remediation by the
mashup application.

6. Channel access control is completely under the control
of the mashup application.

Limiting Trust in Mashup Application Based on these
security requirements, a mashup application cannot directly
attack the integrity or confidentiality of a component. How-
ever, a component has to trust the mashup application for
the integrity of its user interface (excluding user authenti-
cation, as mentioned above). This is reasonable from an
end-to-end perspective since the end-user trusts the mashup
application for integrity of the overall user interface (UI),
and there is a simple delegation of trust from the mashup
application to components for parts of the UI. Note that
the mashup application cannot attack the confidentiality of
information displayed by a component in its UI.

A component needs to trust the mashup application for
integrity and confidentiality of communication with its peer
components. Removing this trust is expensive without in-
built browser support. The cross-document messaging pro-
posal in HTML 5 (section 6.2) addresses this.

3. SECURITY POLICY
The component model described in the previous section

provides component isolation and mediated inter-component
communication. To describe which component interactions
are permitted and which are forbidden, we need to define a
security policy for the model.

The policy specification can be derived from many sources
of high level policies. This is especially true for enterprise-
class mashups, where the security policy may be a com-
bination of enterprise-level policy, department policy, and
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end-user policy. Component providers may want to express
how their components are to be integrated into a mashup
application. For example, a component provider may con-
strain what data is exposed by the component to a mashup
provider, and what the mashup provider may do with it.
On the other hand, mashup providers may not trust compo-
nents equally, and may want to prevent certain components
from communicating with each other. In general, security
policies for componentized mashups can have many facets,
depending on which entity specifies the policy.

We have identified two different levels at which policies
can be expressed: low level policies that express basic access
control, and high level policies which express interactions
at a more semantic level. We consider basic access control
policies in the remainder of this section. We envision that
basic policy is derived by inputs from high level policies.

Next, we describe two complimentary aspects of access
control: component interaction in the browser, and compo-
nent to server interaction. Both are necessary for end-to-end
control on what accesses are permitted to whom.

3.1 Component Access Control in the Browser
This controls who is allowed to (1) create and destroy

named components, (2) create and destroy named channels,
and (3) which components can publish or subscribe to events
on a named channel. The policy is enforced by the event
hub. The subjects in the policy are named components or
trust domains.

We consider a special case of such a policy, where com-
ponent and channel creation (and destruction) can only be
done by the mashup application. This special case is in line
with current practice, and has the advantage that it makes
policy specification very straightforward. The policy is im-
plicitly specified by the mashup application code by, creating
channels, loading the different components, and then wiring
them together by specifying the channels that connect to
the input/output ports of each component.

Another alternative is for the event hub to read security
policy constraints from a configuration policy file. This pol-
icy file could possibly be provided outside of the mashup
application, potentially even by third parties. In this sce-
nario, when input ports are being wired to channels (i.e.,
components are being subscribed) or output ports are being
wired to channels (i.e., components are given permission to
publish) the event hub checks if this is an allowed interac-
tion according to its policy file. This decouples the policy
definition from the actual coding process of the mashup ap-
plication and enables scenarios in which the mashup devel-
oper is not the one defining the policy for the component
interaction.

3.2 Component to Server Access Control
For non-public services exposed by web servers, user au-

thentication is typically required in order to perform the
access. Components should not have to trust the mashup
application to acquire user credentials. Following the prin-
ciple of least privilege [7], the authentication should also be
coupled with limited delegation logic, e.g., as in SecPAL [11].

While the details of our current solution are outside the
scope of this paper, we give a brief overview here. In addi-
tion to traditional user authentication, potentially improved
by phishing-resistant technologies such as CardSpace [4], our
access control model authenticates a component and its as-

sociated (limited) access rights, as well as the mashup appli-
cation it is loaded in. In particular, it makes sure that com-
ponents are loaded in a proper iframe of the component’s
domain, not vulnerable to a man-in-the-middle attack, and
only after verifying that the requesting code has explicitly
been granted the right to load the component. This ap-
proach allows us to have a unified access control policy spec-
ification for expressing limited delegation within and across
trust domains, and for both client-side mashups (mashup
happens in browser) and server-side mashups (mashup hap-
pens at server). Our solution can be considered an extension
of current authentication and delegation protocols, such as
Yahoo’s BBAuth [12] or Google’s AuthSub [13].

The authentication is based on two credentials, user cre-
dentials and code credentials. User credentials are used to
authenticate the secure channel to the user’s browser and to
bootstrap the secure loading of components into an iframe
from the proper domain. Each component contains an addi-
tional code credential, imprinted at creation time. To autho-
rize a service request, the requester has to prove possession
of both the user and code credential.

4. IMPLEMENTING THE MODEL
In this section, we discuss our design and implementa-

tion of the secure component model. Our approach is to
leverage the current browser security model to isolate com-
ponents belonging to different trust domains, and then to
enable interaction by sending-receiving on named compo-
nent ports. These get translated to send-receive on named
shared channels. Our approach does not require any browser
modifications, hence adoption can be immediate.

In section 4.1 we give some background on browser ab-
stractions and their security, which is relevant to our solu-
tion. Section 4.2 provides an overview of our solution, and
section 4.3 gives details on the key aspects of the solution.

4.1 Background
We review a few concepts from HTML documents and

their properties, including the “same-origin” security policy
of browsers.

An HTML document loaded into a browser is represented
in an object model called the Document Object Model. A
document has a domain property which is the hostname of
the server it was accessed from. The hostname could be a
numeric IP address or a DNS domain name. DNS names are
hierarchical, and browsers allow a document to relax its ori-
gin via the domain property. For instance, a document with
domain foo.bar.baz.com can change it to bar.baz.com or
baz.com. A document has a window object with a location

property that represents the URL of the document. It is
possible to change the location property of the document,
by updating the window.location. This will cause a new
document to be loaded to and to replace the current docu-
ment in that window.

Documents can include frames using HTML <frame> and
<iframe> tags where each frame is a document with domain

and location attributes (and a window object). Frames can
include sub-frames, forming a hierarchy, which we will refer
to as a frame hierarchy. For consistency of terminology, we
will refer to even the top-level document in the frame hier-
archy as a frame. The “same-origin” policy says that doc-
uments from different domains that are in the same frame
hierarchy cannot examine or alter each others internal state.
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Figure 2: Isolated components with component-
mashup communication

Code running in a frame can read/write the internal state of
all documents from the same origin (that is, domain) that
are part of the same frame hierarchy. For purposes of our
discussion, we will use the terms origin and domain inter-
changeably.5

Even if frames are from different domains, a frame can
typically write the location property of any frame in the
same frame hierarchy, regardless of origin. Such browsers
are labeled permissive browsers [14], and include Firefox,
Safari, and some configurations of IE 6 and IE 7. However
code from one domain can never read the location property
of a frame from another domain.

4.2 Solution Overview
In this section, we give an overview of the key features and

issues addressed in our solution, which include component
isolation, enabling and securing component-mashup commu-
nication links, and protection against frame-phishing.
Component isolation using iframes: In our solution,
we load components which come from different trust do-
mains into different iframes, i.e., they represent different
sub-frames. Even in the case where a single host is serv-
ing components from multiple trust domains, isolation is
obtained by having the host use multiple DNS names, one
for each trust domain.6 However, given that components
can change their domain properties as described earlier, the
DNS domains used are such that a component cannot relax
its domain property to attack another component. For in-
stance, a server foo.bar.com that serves components from
trust domain t1 and t2 can create two DNS domains t1.foo.
bar.com and t2.foo.bar.com. Unless both components re-
lax to the same super-domain no attacks are possible.
Component-mashup communication links: While iso-
lation can be achieved by placing components in different
frames, the challenge is to enable cross-domain inter-com-
ponent communication, since it is not explicitly supported
in browsers. Recently, an approach to communicate be-
tween iframes using the fragment identifier of the URL of
the iframe has been discovered [15]. The communication is
based on the observation that even though the parent and
child iframes have different origins, the parent can write to

5 Origin is not identical to domain, as origin is semantically
something that cannot be modified, and indeed this con-
stant aspect of origin is taken into account for constraining
XMLHttpRequest. However, the distinction is not critical
to our discussion.
6HTTP virtual hosts and DNS aliases, e.g., wildcard re-
source records, allow easy realization of such co-residence.

the child’s location property. Note that if we only modify
the fragment identifier of the location property the docu-
ment will not be reloaded and hence the document state can
be preserved because the fragment identifier was designed to
be used for navigation inside a document. This technique
has been used in the Dojo JavaScript toolkit [16] to circum-
vent the same-origin policy for client-server communication,
and more recently in XDDE [17]. We reused this technique
to enable communication between components.

As mentioned previously, browsers vary in the constraints
they place on navigating the frame hierarchy. Hence, one
needs to organize the iframes in a way that allows for frag-
ment communication. Figure 2 illustrates the iframe config-
uration used with three trust domains in the mashup. The
first trust domain, represented by origin www.mashup.com,
is that of the mashup application. It uses two components,
both from the same server with DNS domain component.

com, but from two different trust domains. To leverage the
iframe isolation, the components are loaded from different
origins: component A is loaded into c1.component.com and
component B into c2.component.com. In each of the compo-
nents, there is a tunnel iframe loaded from www.mashup.com.
This tunnel can access the JavaScript context of the mashup
application since it is in the same origin as the mashup appli-
cation. The tunnel and the component iframes communicate
cross-domain using fragment identifiers. We have also inves-
tigated the use of other inter-frame communication mecha-
nisms, details of which are described in Section 5.
Link Security: Permissive browsers allow complete nav-
igation of the frame hierarchy. For example, in Figure 2,
component B can get direct access to the window object of
component A even though they both come from different
origins. Note that it is not possible for B to read the lo-

cation property of an iframe not in the same origin. This
ensures confidentiality of the link between component A and
the mashup. However, integrity is not guaranteed.

To ensure integrity, we extend the fragment communica-
tion protocol with an additional security token. The details
are discussed in the next section.
Protection from frame-phishing: Since it is possible
for a malicious component to write to the location property
of another component’s iframe, it can navigate a component
away from its URL to another, possibly malicious, URL. We
refer to this as frame-phishing, and is a common vulnerabil-
ity of current sites that use iframes for isolating untrusted
content.

Frame-phishing is dangerous for a number of reasons, (1)
it compromises integrity of a part of the application view
that was not meant to be controlled by the malicious com-
ponent, (2) it can be used to steal information entered into
the phished frame, much like the more common phishing of
sites, which could include personally identifiable information
(PII) or passwords. Since the URLs loaded by iframes are
not visible in the browser’s URL bar, one cannot rely on the
end-user to detect frame-phishing, and so it has to be done
in an automated manner.

Vulnerability to frame-phishing is also quite common. A
well-known portal, aggregating components into a single page,
suffers from this attack.7 Each component is placed in an
iframe and comes from a server with a DNS alias which looks

7We did inform the provider about this vulnerability. How-
ever, as countermeasures are only about to be put in place,
we refrain from naming it explicitly.
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Figure 3: Layered communication stack

like <n>.foo.com, where <n> is a small integer. Thus on
each page the component appear to come from different do-
main providing isolation. However, there is a serious flaw in
the implementation: the binding of the component to DNS
alias is not global. The server <n>.foo.com can proxy and
serve any component. To attack this, we were able to create
components which successively loads itself from 1.foo.com,
2..foo.com,.... Once loaded from a particular DNS location,
it traverses the frame hierarchy of the document, reading the
location of the different component iframes. If it shares the
same origin as the attacked component, it can read the loca-
tion property and then replace the location U of the the frame
with the URL http://<man-in-the-middle>/U where the
server at <man-in-the-middle> is controlled by us and can
thus transparently relay and completely record the interac-
tion of the user with the site at url U, including any cre-
dentials which the user may supply to this site. Since our
malicious components can quickly exhaust the small num-
ber of aliases used to serve components, we can easily hijack
the entire set of components. Furthermore, this attack also
completely circumvents the inherent masquerading protec-
tion provided by the offered personalization.

Note that frame phishing is not only limited to changing
the location of a component’s iframe. It can be performed
on the tunnel iframe, and even the main mashup document.
One could argue that such an attack on the mashup docu-
ment could be detected using the browser’s URL bar, but
(1) the URL bar has been shown to offer very weak phishing
protection [18], and (2) the timing of the attack can be ar-
bitrary, unlike conventional phishing attacks. For instance,
a user that keeps a web application open in one of the tabs
of their browser could be attacked at an arbitrary point in
the lifetime of the application, after the user has verified the
URL in the URL bar.

We use a combination of event handlers, timeouts, and
communication using the tunnel iframe, to detect such at-
tacks. The details are discussed in the next section.

4.3 Solution Details
Our implementation is the SMash JavaScript library used

by both the mashup application and component program-
mer. The library is structured as a layered communication

stack, where the peer layers in the component and mashup
application communicate using the lower layers. This is
shown in Figure 3: the event hub layer, event communi-
cation layer and the fragment communication layer.

The event hub layer is aware of component ports and
channels wiring these ports. In the mashup application, this
layer is responsible for loading and unloading components,
creating and deleting channels, and wiring the ports of the
components to channels. In a component, this layer is aware
of the component’s ports and handles sending and receiving
events on these ports. The event communication layer is re-
sponsible for composing the messages which are used to mul-
tiplex the multiple component ports on a single link. The
fragment communication layer is the only layer aware of the
use of fragments to communicate between the component
and the mashup application. By substituting this layer, it is
possible to employ another low-level communication mecha-
nism, e.g., inter-iframe communication potentially built into
future browsers (see Section 6).

In the following subsections, we describe the API offered
to mashup and component programmers, provide some de-
tails on fragment communication and corresponding integrity
protection, and describe how we detect frame-phishing.

4.3.1 API
The API offered by SMash is shown in Table 1. Most

of the API is self-explanatory. We draw, though, atten-
tion to the component state lifecycle, shown with the get-

ComponentState function. This state management is of-
fered as a way for the programmers to deal with the asyn-
chrony of component loading/unloading, and the concur-
rency of wiring a loaded component. The state transition
from loaded to wired is done by the mashup application,
to indicate to the component that it can start publishing
events. The transition to startedCleanup is also done by the
mashup application, when it intends to unload the compo-
nent, while the transition to doneCleanup is typically done
by the component (subject to a timeout, to handle misbe-
having components). The remaining transitions are initi-
ated inside SMash. To avoid polling of component state,
the constructors of the hub (not shown) allow the mashup
application and the component to register listener functions
on the state transitions.

4.3.2 Fragment Communication and Link Integrity
As mentioned earlier, fragment communication is used to

implement the links between the mashup application and a
component. However, such communication is limited since
current browsers implement a limit on the URL length. In
SMash, we work with a conservative limit of 4000 bytes,
which works well in all major browsers. Long messages have
to be split correspondingly into segments which, with pay-
load and protocol overhead, do not exceed that limit.

To send a segment to the tunnel, the component writes it
to the fragment in the tunnel’s location property, and vice
versa. To write the next segment, the component has to
wait till the previous segment has been read by the tunnel.
This is implemented by using a periodic timer at both the
component and the tunnel, and polling for changes to one’s
own location property. As the component cannot read the
location of the tunnel, it needs to get an explicit acknowl-
edgment when the tunnel has read the previous segment.
This is accomplished using acknowledgment messages.
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Mashup API

loadComponent(componentId,inPortNames,outPortNames) load a component with a given id

createChannel(channelName) create a channel with the given name

deleteChannel(channelName) delete a channel

addReader(channelName, componentId, inPortName) wire an input port to a channel

addWriter(channelName, componentId, outPortName) wire an outport port to a channel

removeReader(channelName, componentId) unwire an input port

removeWriter(channelName, componentId) unwire an output port

broadcastOnChannel(channelName, message) event broadcast by mashup application

getComponentState(componentId) get component state: start→loaded→wired
→startedCleanup→doneCleanup→unloaded

componentWired(componentId) transition to wired state

startCleanupComponent(componentId) transition to startedCleanup state

Component API

getComponentState() get component state

registerCallback(inPortName, callback) register function to handle event on input port

publish(outPortName, message) send event on output port

doneCleanupComponent() transition to doneCleanup state

Table 1: API

Link Integrity: As mentioned previously, link confiden-
tiality is implicit in fragment communication. For link in-
tegrity, we have to guard against a malicious component
modifying the location property of a peer component or
the peer’s tunnel.

We cannot prevent a malicious component from modify-
ing location. However, it can only do so atomically, i.e.,
it has to overwrite the complete value of the current frag-
ment (overwriting the non-fragment part is discussed under
frame-phishing, in the next section). Therefore we use the
approach of embedding a shared secret, in each fragment, to
authenticate the sender of the fragment, and hence ensure
its integrity. This shared secret is embedded in the clear,
as the attacker cannot read the location. Note that this is
sufficient to provide (one-way) authentication of the compo-
nent to the mashup application as required by Section 2.2.
If we would require direct mutual authentication using the
identity implied by the domain of the tunnel-url (instead on
relying on component-load access control), a protocol such
as Lowe-Needham-Schroeder [19] could be used.8

We also need to securely distribute this shared secret be-
tween the mashup application and the component. The
SMash library in the mashup application creates the secret,
an unguessable random value. 9 When creating the com-
ponent, it includes the secret in the fragment of the compo-
nent URL. When the component creates the tunnel iframe
it passes the secret in the same manner. After receiving the
secret, the tunnel iframe provides the secret to the mashup
application which verifies if the received secret is the same
as the originally generated secret. If it is the same, it allows
the tunnel to accept this secret as proof of message integrity.
If not, the application is informed, which can take some
recovery action, for instance, unloading and reloading the
component. One of the reasons for doing the initial secret
distribution to the component using the fragment part of the
URL is that RFC 2616 forbids fragments in the <Referer>

8We thank Colin Jackson and Adam Barth for the corre-
sponding suggestion.
9Unlike a nonce in cryptographic protocols, which is used
to protect against replay attacks, we use the same randomly
generated value repeatedly on the same link. This is secure
as there is no possibility of eavesdropping and so we can use
this value as an authenticator.

header. So this secret will not be leaked by the component
to remote parties when it loads data from them.

To ensure that the attacker cannot mount an attack by
deleting fragments, we use sequence numbering on consec-
utive fragments, so missing fragments will be detected and
attributed to an attack. We currently do not try to recover
from such attacks by retransmitting, and leave it up to the
application to decide on the high-level action to take. One
reasonable action would be to (1) notify the mashup server
about the components present in the application when the
attack occurred, (2) notify the user, say using an alert box,
and then (3) shut down the application. The notification to
the server can be used to search for the possible attacker,
since we cannot identify the attacker in the browser.

4.3.3 Protection from Frame-Phishing
As described earlier, frame-phishing is a dangerous attack

on mashups that use iframe isolation. We describe how we
detect such attacks in SMash.

Since the mashup application cannot read the location

property of its components, we cannot simply poll for changes
to this value. The parent iframe could set onload and onun-

load event handlers on the child iframe. But browser imple-
mentations vary and are unreliable in invoking these han-
dlers when a child event happens. We use a combination of
onunload event handler on one’s own frame (which in our
experience is reliable), timeouts, and communication using
the tunnel iframe, to detect such attacks.

There are three targets to consider with respect to such
attacks: (1) component, (2) tunnel, (3) mashup application.

When the component is replaced by an attacker, the com-
ponent’s onunload event handler is called. At this point, it
could try to notify the mashup application. However, since it
communicates with the mashup application asynchronously,
using the tunnel, there is no guarantee that this communi-
cation will succeed before the unload completes. Instead, we
utilize the fact that replacing the component will also cause
the onunload event on the tunnel to fire, as it is a child of
the component iframe. The tunnel can communicate syn-
chronously with the mashup application using a JavaScript
function call, and informs it of the unloading before it re-
turns from the onunload event handler. Hence, we handle
cases (1) and (2) in a unified manner.
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Another possibility for the attacker is to replace the com-
ponent before the tunnel iframe is loaded. This case is han-
dled by setting a timeout, in the mashup application, for suc-
cessfully establishing initial communication with the tunnel.
If this timeout expires, an application specific error-handler
is called, which could decide to unload and reload the com-
ponent.

Using the tunnel’s onunload event handler, though, poses
a challenge as the event is also called when the user nav-
igates away from the mashup application. To avoid false
positives, we briefly delay the alert issuing in a timer. The
timer will only fire and notify the application of a potential
frame-phishing attack, if the user remains in the mashup
application.

Finally, we need to detect frame-phishing of the mashup
document. We have found it hard to distinguish between the
two cases of either a frame-phishing attack, or the user vol-
untarily navigating away from the document. In the interim,
we use an alert box to notify the user about the change in
the document URL. This has a negative impact on usability,
but in the absence of browser support to distinguish the two
cases, it seems the only way to ensure protection of the user.

The authors acknowledge that providing the end-user with
pop-up warnings, albeit being a best effort, is hardly a fail-
safe solution. However, there are limits what can be done
with current browsers. The ideal solution to these prob-
lems is to revisit browser policies and fix browsers corre-
spondingly. Recently, there has been an in-depth study of
the navigation behavior of browsers resulting in several im-
provements [20]. Until these fixes become widespread, our
solution can be applied on current browsers.

5. PERFORMANCE EVALUATION
In this section we describe a preliminary performance eval-

uation of our implementation. The evaluation consists of
micro-benchmarks in which we vary the number of com-
ponents, to measure the scalability of the implementation
(assuming all components are in different trust domains).
Additionally, we vary a system parameter, the polling timer
interval used for fragment communication, to see how it im-
pacts communication throughput. The metrics used in the
experiments are:

1. Event Rate: This measures the maximum event rate
we can sustain, for small event payloads. This is typ-
ical for many mashup applications where components
exchange short events in response to user actions.

2. Data Throughput: This measures the maximum rate in
kilobytes/s, and is important for data intensive mashup
applications that want to transfer large volumes of
data between trust domains, inside the user’s browser.

3. Component Load Latency : This measures the latency
to load a component and setup the communication link
between the component and the mashup application.

Next, we describe our testbed, followed by the results for
each of the above metrics. Finally, we briefly discuss using
an alternative inter-frame communication mechanism that
uses Java applets, in the context of SMash.

5.1 Testbed
To do a fair comparison across the different browsers, all

tests were performed on exactly the same test platform. The

underlying test machine was an Intel Core 2 Duo T7300 @
2.0 GHz with 2 GB of RAM. This machine was running
Windows XP with VMware player 2.0.1. The actual perfor-
mance evaluation was done on a VMware virtual machine
emulating a single processor @ 2.0 GHz, 1 GB of RAM and
running a clean fully patched Windows XP. Within this ma-
chine, we had Apache Tomcat 6.0.14 serving the data to
the browsers. All of the tests were performed on Firefox
2.0.0.7, Internet Explorer 7.0 (IE), Safari 3.0.3, Opera 9.24.
To minimize measurement errors, all tests were performed
multiple times until the standard deviation of the results
became acceptably small. The main text presents only the
event rate and data throughput results for Firefox and IE,
since they are the most popular browsers. Corresponding
data for Opera and Safari can be found in the Appendix.

5.2 Event Rate
We used a small payload of 13 characters, representing a

simple event name/value pair. Figure 4 (top) gives a sum-
mary of the measured performance as the number of com-
ponents is increased from 1 to 32 and the polling timer is
varied from 10ms to 80ms. Both the X and Y axis are on a
log scale.

For each browser we observed a saturation point. This
point, mainly caused by CPU load, varies across browsers,
timer intervals, and number of components. Prior to reach-
ing this saturation point, there is a linear increase in aggre-
gate rate with increasing number of components and timer
frequency. Once the saturation point is reached, and more
components are added, or the timer frequency is increased,
performance loss due to over-saturation becomes apparent.
An adaptive timer frequency, that detects and reacts to over-
saturation, may be able to avoid this behavior. Overall,
Firefox shows significantly better performance than IE.

For many mashups the inter-component events are trig-
gered by user actions, requiring only a low event rate. The
measured rates are sufficient for such applications.

5.3 Data Throughput
The data throughput was tested by transferring a total of

1 megabyte (MB) of data from the mashup application to the
components. Given the approximately 4 kilobyte (KB) limit
of the fragment payload10, this resulted in transferring 256
messages from the mashup application to the components.
Figure 4 gives a summary of the measured performance.

Like the event rate experiments, the throughput increases
linearly with the number of components and timer frequency,
prior to the saturation point. At the saturation point, adding
additional components or increasing the timer frequency re-
sults in degraded performance.

5.4 Component Load Latency
For evaluating the component loading performance, we

measured per component loading latency while increasing
the number of components being concurrently loaded. The
overall loading latency is measured from the moment at
which the mashup application creates the components until
the moment at which the mashup application receives con-
firmation of a successful load of all components. This con-
firmation is communicated across domains using fragment

10This limit was chosen based on the limit for IE, which had
the smallest fragment length limit of the tested browsers.
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Figure 4: Event rate (top) and data throughput (bottom) for Firefox and IE.

communication. Figure 5 gives an overview of the measured
performance.

We observe that load latency does not increase with an
increase in number of components. In fact, the loading la-
tency per component initially decreases and and then starts
to increase back towards its initial value. The latter can
be explained by the additional system load due the concur-
rent loading of many components. Note that caching was
disabled on all browsers except for Safari 11.

5.5 Alternative Inter-Frame Communication
As mentioned in section 4.3, it is possible to employ alter-

native inter-frame communication mechanisms in SMash, by
replacing a layer in the communication stack. In particular,
alternatives such as Java applets, Adobe Flash, or Google
Gears, though lacking universal support in browsers, could
be used to increase throughput when available. In this ex-
periment, we investigated the use of Java applets.

Our implementation employs different components that
load applets from the same location, and use the static vari-
ables of the applet to communicate in a secure manner with
the mashup application (ensuring that components cannot
interfere with each other’s communication). The LiveCon-
nect feature in browsers is used to communicate between a
component written in JavaScript and the low-level communi-
cation layer written in Java. We use polling from JavaScript
to Java to detect the reception of a new message. This is
necessary since browsers enforce the same-origin policy, and
prevent a method call from Java to JavaScript from crossing
origins.
Results: On both Firefox and IE there were stability prob-
lems in loading large number of applets on the same page, so
we limited the throughput tests to pages which had no more
than 8 applets, which implies no more than 8 components.
For Firefox and Opera we observed aggregate throughput of
16 MB/s, independent of the number of components. For IE,

11We were unable to disable caching on Safari due to the
unavailability of cache configuration parameters.

Figure 5: Component loading latency.

we observed an aggregate throughput of 8 MB/s. Our con-
clusion is that for browsers that do support Java applets and
LiveConnect, componentized mashup applications could use
this mechanism to get significantly higher throughput than
fragment communication.

6. RELATED WORK
Related work can be largely divided into three groups:

proposals working with unmodified browsers; extensions to
HTML requiring browser modifications; solutions based on
browser plugins. In the following subsection, we will have a
closer look at each of them.

6.1 Unmodified Browser
Alternatives for unmodified browsers fall into three cat-

egories: (proxied) iframes with client-side communication,
(proxied) iframes with server-side communication, and server-
side induced JavaScript rewriting or restrictions.

6.1.1 Iframes with Client-Side Communication
Closest to our work are XDDE [17] and the recently an-

nounced Google PubSub [21]. Both use iframes and frag-
ments for client-side communication similar to our approach.
Neither of them, though, seems to address the integrity and
frame-phishing issues raised and addressed in this paper.
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A second technique for client-side communication is Sub-
space [14]. It exploits domain-relaxation of the domain DOM
attribute, mentioned in Section 4.1, to place a request to a
foreign service safely in an iframe served from a one-time-
use sub-domain of the mashup server. While their primary
goal is secure cross-domain client-server communication, it
could also be used for secure cross-domain component com-
munication within the browser. After some setup cost in-
volving multiple iframes, this solution allows exchange of
JavaScript objects of arbitrary length and hence scales very
well in terms of bandwidth. Depending on the particular
browser, though, the event rate will be bounded by the limits
of polling similar to our approach. As a drawback, Subspace
requires that all connections are setup in the very beginning,
prohibiting dynamic on-demand loading of components. 12

More importantly and contrary to our approach, Subspace
requires complete trust of the component providers in the
mashup provider as their code is executed in DNS domains
controlled by the mashup provider.

6.1.2 Iframes with Server-Side Communication
An alternative to the above is to do server-side communi-

cation between client-side components that are represented
as iframes. Each client-side component has a correspond-
ing server-side communication object. Communication be-
tween component A and B would occur by component A
sending a message to its server-side communication object
which would pass it to component B’s communication ob-
ject, which would then pass it back to component B. This
solution requires asynchronous server to client communica-
tion, which could be implemented using emerging techniques
like the Bayeux protocol [23] and Cometd [24]. We did not
choose this approach since it needs a complicated connec-
tion setup, and all component-component communication
in the client needs to go through two (logical) servers, with
increased server load and considerable latency.

6.1.3 JavaScript Rewriting or Restrictions
An alternative to browser isolation mechanisms is to use

language analysis and rewriting. A combination of static
analysis, language restrictions and dynamic code rewriting
could achieve isolation of JavaScript code [25, 26, 27, 28].
However, due to the complexity of rewriting self-modifying
code in weakly documented and varied runtime environ-
ments, it makes it hard to verify that the isolation achieved
is complete. Furthermore, it requires a trusted server, lim-
iting the use to a single administrative domain. Finally, it
faces considerable performance and integration challenges
on client as well as server side.

6.2 HTML Extensions
There are a number of competing proposals to extend

the HTML specifications with goals similar to our secure
component model: the <module> tag proposal [29], cross-
document messaging in the HTML 5 working document of
the Web Hypertext Application Technology Working Group
(WHATWG) [30] and the <friv> element proposal [31].

All three proposals provide an isolated DOM container
element – essentially variations of <iframe> – which enables
cross-domain communication by offering a message passing

12The open-source implementation CrossSafe [22] relaxes this
requirement. However, it essentially requires all components
to trust each other, clearly unacceptable for many contexts.

interface. Invoked in a controlled fashion and assisted by
additional meta-data about the caller, the receiving element
can then process such messages in a secure way.

While the granularity of isolation in HTML5 is based on
the same-origin policy, different <module>s and <friv>s are
isolated even when they are loaded from the same origin.
This will simplify administration of servers hosting multi-
ple components — not each of them has to be assigned a
separate DNS sub-domain — and encourage finer-granular
components. However, it raises the question of how well
it integrates with traditional authentication schemes, often
tied to the same-origin policy due to cookies.

The key difference from a programming model perspec-
tive is that these proposals implement one port for each
component, which multiplexes all communication, while we
support multiple ports. In addition, we support (multi-cast)
channels directly between components, and not just between
a component and the parent. This allows us to define fine-
grained access control policies, which cannot be directly de-
fined using these proposals. However, as pointed out in Sec-
tion 4.3, these proposals could easily be integrated into our
overall architecture by replacing the fragment communica-
tion layer in Figure 3.

These proposals all require browser modifications and hence
there will be a considerable time lag before they are adopted
by all end-users.

6.3 Plugins
A third communication approach is to use browser plug-

ins to facilitate cross-domain communication. Good candi-
dates are Adobe Flash, Java Applets or Google Gears. An
implementations based on these can be more efficient (see
Section 5.5). They also increase the trust requirements, for
applets the components have to trust completely the mashup
application, similar to SubSpace, and all of them it increases
the TCB by including the code of the plugin. However,
the required plugins might not be installed in each browser,
or not even available on a given platform, and are mostly
based on proprietary technology. That said, as discussed
above for HTML extensions, such plugin-based cross-domain
communication could serve, where available, as an alterna-
tive provider in our lowest communication layer with the
fragment-based communication as a guaranteed fallback.

7. CONCLUSION
This paper addresses the problem of securing mashup ap-

plications which mix active content from different trust do-
mains. As a solution, we propose a secure component model
comprising a central event communication hub and governed
communication channels which mediate the communication
between isolated components. We illustrated how such a
model can be used to enforce basic access control policies
which define the allowed interactions between components.

We described SMash, an implementation of this model on
current browsers, which can be used right away in build-
ing secure mashup applications. Our implementation de-
pends on iframes for isolation while bootstrapping a publish-
subscribe model of communication using URL fragment iden-
tifiers. Our programming model is intentionally general
enough that other communication techniques could be used
instead of URL fragments. SMash is resilient to attacks such
as channel spying, message forging, and frame-phishing. We
have evaluated our implementation and find that it scales
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well with increasing number of components in the mashup,
and has enough data throughput to be useful in a number of
mashup application scenarios. Our implementation is avail-
able as an open-source JavaScript library.
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APPENDIX

A. COMPLETE PERFORMANCE EVALU-
ATION RESULTS

Following the complete set of performance evaluation fig-
ures omitted from Section 5: Figure 6 and Figure 7 give the
event rate and throughput, respectively, for all four tested
browsers. Note that for Opera, we observed some anoma-
lies in system load, that are probably due to a bug in the
rendering engine when using fragments in invisible frames.
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Figure 6: Event rate for Firefox, Internet Explorer, Safari and Opera.

Figure 7: Data throughput for Firefox, Internet Explorer, Safari and Opera.
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