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ABSTRACT

Driving behavior modeling is an essential component of Advanced
Driver Assistance Systems (ADAS). Existing methods usually an-
alyze driving behaviors based on generic driving data, which do
not consider personalization and user privacy. In this paper, we
propose pBEAM, a collaborative cloud-edge computation system
for personalized driving behavior modeling. The driving behavior
model is built on top of Generative Adversarial Recurrent Neural
Networks (GARNN), which adapts to the dynamic change of nor-
mal driving. Transfer learning from cloud to edge improves the
model performance and robustness on the edge. We prune the deep
neural networks in the cloud in order to minimize the model trans-
ferring load while maximally preserve the original model perfor-
mance. A personalized edge model is trained on top of the pruned
model using CGARNN-Edge (Conditional GARNN), which consid-
ers drivers’ personal or contextual information as additional con-
ditions. User privacy is well protected as no personal data needs
to be uploaded to the cloud. Experimental results on driving data
from both real world and driving simulator show that the proposed
CGARNN-Edge achieves the best performance among all the meth-
ods.
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1 INTRODUCTION

The past decades have seen significant improvements in road safety.
However, numerous traffic accidents are still occurring every day.
It is estimated that over 1.2 million people worldwide die in road
crashes each year, with millions more sustaining serious injuries
and living with long-term adverse health consequences [25]. Most
traffic accidents are caused by human errors, such as speeding, dis-
tracted driving, drowsy driving, and drunk driving.

Advanced driver assistance system (ADAS) are developed to au-
tomate, adapt and enhance vehicle systems to increase road safety.
ADAS provides various safety features including blind spot mon-
itoring, lane change assistance, and forward collision warnings.
Driving behavior modeling is an essential component in ADAS to
detect abnormal driving behaviors, send early alerts, and therefore
reduce accidents [38]. Driving behavior modeling can also be used
by insurance companies to determine the vehicle insurance pre-
mium [3, 24].

Many methods have been proposed to model driving behaviors
and detect anomalies. For example, the driver’s facial features, such
as the state of eyes and mouth, are used in classification methods
to detect whether the driver is drowsy or distracted [16]. These
methods usually require drivers to wear glasses or leverage in-car
cameras. Driving data, such as vehicle velocity, angular velocity,
and acceleration, is also used in driving behavior analysis [20, 36].
These data are often collected through on-board diagnostic (OBD)
sensors or smart phones. While many research efforts have been
devoted to driving behavior analysis, several open challenges still
remain when deploying the driving behavior models in real prac-
tice:
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(1) Personalization. Existing driving behavior models are usu-
ally trained on generic datasets, which do not consider driving con-
textual information, such as drivers’ individual difference, location,
weather, and traffic conditions. However, driving is significantly
influenced by these factors, which lead to personalized driving be-
haviors. Drivers may have distinct driving behaviors because of
their individual difference, such as age group, gender, and driving
experience. For example, the driving behavior model that is built
on datasets from experienced drivers cannot appropriately capture
the behavior of novice drivers. The same driver may have differ-
ent behaviors under various situations. For example, the driving
speed of 60 miles per hour on US highways is normal in sunny
days. However, it is dangerous in blizzard. If the driving behavior
model is only trained on data under normal weather conditions, it
will not be able to detect abnormal behaviors under severe weather
conditions.

(2) Latency. Real-time performance is a stringent requirement
for ADAS. For example, fatigue driving or other abnormal driving
behaviors should be detected immediately, in order to avoid acci-
dents or minimize damage. There are two types of methods to run
the driving behavior model: cloud-based and edge-based methods.
For the cloud-based method, the computing unit sends the driving
behavior data to the model in the cloud and then receives decisions
over the network [37]. This method suffers greatly from the stabil-
ity and latency of the network. For the edge-based method, ADAS
analyzes the driving behavior on board, which can minimize the
network latency. However, the computing unit on vehicle usually
has limited computation and storage resources, which are not suf-
ficient to run a large driving behavior model.

(3) Privacy. As General Data Protection Regulation (GDPR) [28]
has already taken effect, the collection of driving data as well as the
modeling of driving behavior need to consider various privacy reg-
ulations. However, most existing approaches usually collect users’
driving data, send them directly to the cloud, build the model and
then conduct analysis. This process may put the user privacy at
risk.

(4) Integration. The driving data is being collected by vari-
ous applications for their own driving behavior analysis. For ex-
ample, the insurance company analyzes driving data to dynami-
cally adjust the insured’s premium. The ride sharing company de-
tects abnormal driving behaviors, in order to increase ride safety.
It is desired to have an integrated driving behavior model that can
provide a universal service to various applications. The efforts on
data collection and computational analysis can therefore be signif-
icantly reduced.

To address these challenges, we propose pBEAM, a collaborative
cloud-edge computation system for personalized driving behavior
modeling. Comparing with the traditional cloud-based approaches
which upload all the data to a centralized cloud service, edge com-
puting can reduce or minimize network latency [29, 30] and ad-
dress privacy concerns [21]. Vehicles are important players in edge
computing, which are suitable to perform certain computational
tasks [33] when building driving behavior models. Figure 1 shows
the high level work flow of our method. Specifically, we first train
a common baseline model in the cloud using all the driving data,
such as velocity, orientation, and acceleration over time. There data
are anonymized and integrated from users who would like to share
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Figure 1: The collaborative cloud-edge method

their data in the cloud. The cloud model is based on Generative
Adversarial Recurrent Neural Networks (GARNN), which adapts
to the dynamic change of users’ normal driving. This deep neural
network model is further pruned or compressed to a smaller model,
and transferred to the edge device on each vehicle. After compress-
ing or pruning, the computational cost of running the deep learn-
ing model can be reduced, thereby satisfying the computing power
restrictions of the on-board hardware. We then train a personal-
ized model on top of the pruned model through transfer learning,
considering the specific driving condition or context information.

There are several advantages of our method. First, the Gener-
ative Adversarial Recurrent Neural Networks (GARNN) are adap-
tive to the dynamic change of normal driving. Instead of only train-
ing a binary classifier to identify abnormal driving behaviors, GARNN
learns both a generator that tries to produce true driving data as
well as a discriminator that tries to distinguish between generated
data and true driving data. Essentially, GARNN learns what the
true driving data should look like. Any abnormal driving behav-
iors that do not follow the distribution of true driving data will
be considered as anomalies. The labeling of anomalous data is not
needed when training the model, and is only used for the model
performance evaluation. Second, the transfer learning from cloud
to edge improves the model performance and robustness. The prun-
ing of deep neural networks minimizes the transferring load of the
model while maximally preserves its original performance. Third,
the model trained on edge devices outperforms the original cloud
model, since personal and contextual information are considered
in the training. Last but not the least, users’ privacy is well pro-
tected because they do not need to upload personal data to the
cloud.

We summarize the contributions of this paper as follows:

e A personal driving behavior modeling system, pBEAM, is
presented. pBEAM can improve the overall performance of
detecting abnormal driving behaviors and reduce detection
latency, while ensure the privacy of drivers. A RESTful en-
gine in pPBEAM provides universal modeling services to dif-
ferent applications.
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o A deep learning model, CGARNN-Edge, is developed to model
the driving behavior. Experimental results on driving data
from both real world and a driving simulator show that the

proposed CGARNN-Edge achieves the best performance among

all the methods.

e A collaborative cloud-edge computation method that trains
and prunes common models in the cloud and conducts trans-
ferring learning on the edge is developed. This method is
general and can be used in other cloud-edge applications.

The rest of the paper is organized as follows. We introduce the
related work in Section 2. The system design and implement are
presented in Section 3 and Section 4, respectively. The performance
evaluation and experimental results are reported in Section 5. We
finally conclude and discuss future work in Section 6.

2 RELATED WORK

Driving behavior modeling has enjoyed wide applications in au-
tomotive engineering, for example, to increase road safety, to op-
timize battery consumption in electrical vehicles, to detect driver
drowsiness from facial expressions, and to assess driving risk on
certain routes. In this work, we are focused on developing deep
learning methods for driving behavior modeling.

A lot of research efforts have been devoted to abnormal driving
behavior detection, which are roughly divided into two categories:
detection based on drivers data and detection based on driving data.
For example, [10] uses driver facing cameras to record a large scale
in-vehicle videos. They analyze drivers’ facial expressions to detect
drivers’ drowsiness and distraction. Models based on driving data
generally collect the driving trajectories and driving related fea-
tures. For example, by analyzing the GPS trajectory data, [32] de-
velops a Peer and Temporal-Aware Representation Learning based
framework for driving behavior analysis and detects the driving
operations and states of each driver. [14] proposes a smartphone-
based sensing platform to detect aggressive driving behaviors.

Generative adversarial networks (GAN) is proposed to generate
various types of data via adversarial training, where a generative
neural network and a discriminative neural network are trained
in tandem [7, 11, 15]. The generator tries to produce samples that
look like true data while the discriminator tries to discriminate be-
tween generated samples and true data. In this work, we use GAN
to detect abnormal driving behaviors. Specifically, the true data
is the normal driving data. The generator and discriminator are
built on top of Recurrent Neural Networks (RNN), which model
the distribution of sequential driving data. The generator tries to
produce data that match normal driving data as much as possible.
The discriminator distinguishes between generated data and nor-
mal driving data. If there are abnormal driving behaviors, the cor-
responding driving data will be different from normal driving data.
Therefore, we can use the finally trained discriminator to detect ab-
normal driving behaviors. Most recent work [18] applies GAN to
imitate driving behaviors. However, it is used to learn how to drive
via generative adversarial imitation learning (GAIL), which is fun-
damentally different from our problem. Our work is inspired by
C-RNN-GAN [23], a recurrent neural network trained to generate
continuous musical sequences via generative adversarial training.
However, our final application is focused on discrimination, rather

SEC ’19, November 7-9, 2019, Arlington, VA, USA

than generation. Conditional GAN is proposed by [22] to add ad-
ditional conditions to both the generator and discriminator. In the
same spirit, we apply conditional Generative Adversarial Recur-
rent Neural Network (CGARNN) to develop personalized driving
behavior model, considering personal or contextual information in
the model training.

Edge-based Al has attracted a lot of research attention recently.
[31] propose a distributed deep neural networks over cloud, edge
and end devices. [27] propose an edge cloud collaborative frame-
work for video analysis, where a small model is implemented on
the edge while a large model is implemented on the cloud. Privacy
is an important issue in driving behavior modeling, which has not
been well studied in the past. Edge computing enables us to train
personalized driving model on edge devices, respecting data pri-
vacy. In this work, we propose a collaborative cloud-edge comput-
ing method for personalized driving behavior modeling. Instead
of training a personalized model on the edge from scratch, we first
train a common baseline model in the cloud and then transfer it to
the edge device for personalized training or transfer learning.

However, it is non-trivial to transfer a large machine learning
model from cloud to edge, as the storage and computing resources
on edge are limited. Various deep neural network pruning or com-
pression methods have been developed. [12] propose a simple but
effective pruning method, where the importance of neural network
connections are determined by their absolute weight values. Spar-
sity constraints are used in CNN pruning [34], where group spar-
sity is applied to find unimportant parameters and guide the prun-
ing. [2] prune the model by iteratively deleting unimportant filters.
[8] propose a filter-wise pruning pipeline to remove redundant fil-
ters from a trained CNN. In this work, we apply pruning to remove
unimportant parameters from the cloud model to reduce the model
size while preserve the model performance as much as possible.

Distributed machine learning and federated learning [4][17] also
train models through the collaboration among multiple computing
devices. The goal of distributed machine learning is to train a final
and universal model on the decentralized data. Federated learning
belongs to the general category of distributed machine learning,
but focuses more on privacy protection. It enables edge devices to
collaboratively train a shared machine learning model while keep-
ing all the personal data on device. While the goal of our proposed
method is to train a personalized model on each edge device, the
model is not trained through a distributed approach, but rather
transfer learned from a pruned common model in the cloud.

3 SYSTEM DESIGN

3.1 System Overview

In this section, we introduce pBEAM, a collaborative cloud-edge
computation system for personalized driving behavior modeling.
The traditional cloud-based methods require the uploading of driv-
ing data to the cloud, which may cause privacy issues as the driv-
ing data usually contain personal information. In addition, it is not
efficient or even feasible to store all the data and perform model
training on edge devices as the storage and computing resources
are limited.

To address these challenges, we propose pBEAM in this paper.
As shown in Figure 2, it has four stages to build pBEAM: (1) build
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Figure 2: The overview of pBEAM. pBEAM includes four
parts: GARNN-Cloud, GARNN-Pruned, CGARNN-Edge, and
RESTful Engine.

a common baseline model in the cloud using all the driving data,
denoted by GARNN-Cloud, (2) prune the baseline cloud model to
reduce the total number of parameters and model size, denoted by
GARNN-Pruned, and (3) transfer the pruned model to the edge de-
vice and retrain an edge model by considering conditional or con-
textual information, denoted by CGARNN-Edge, and (4) provide
RESTful web services for third-party applications development, de-
noted by RESTful Engine. RESTful Engine is designed on top of
CGARNN-Edge and provides normalized APIs to developers. For
example, the CGARNN-Edge model can be used in the driving
assistance systems to detect abnormal driving behaviors. In prac-
tice, GARNN-Cloud and GARNN-Pruned are located in the cloud
servers in order to leverage the large-scale storage and computa-
tion infrastructure. The pruning of GARNN-Cloud helps to reduce
the cost of training CGARNN-Edge on the edge. CGARNN-Edge
and RESTful engine are deployed on the vehicle computing unit to
train on personalized data and reduce the amount of data to be up-
loaded to the cloud. We will present the details of GARNN-Cloud,
GARNN-Pruned, CGARNN-Edge, and RESTful Engine in the fol-
lowing sections.

3.2 GARNN-Cloud

To model the common driving patterns, we first build a baseline
cloud model using Generative Adversarial Recurrent Neural Net-
works (GARNN) which is inspired by C-RNN-GAN [23]. GARNN
is a continuous recurrent neural network with adversarial training.
The overall architecture is shown in Figure 3. GARNN consists of
two components: generator (G) and discriminator (D), which are
built based on LSTM (Long Short-Term Memory networks), a type
of recurrent neural networks [13]. The generator is trained to gen-
erate data that is indistinguishable from real normal driving data,
while the discriminator is trained to identify whether the gener-
ated data is real or not. Note that since the driving data is time
series, we use unidirectional LSTM in the generator to capture the
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Figure 3: The architecture of GARNN-Cloud

temporal direction. In the discriminator, we instead use a bidirec-
tional LSTM as the goal is to classify the driving data without the
constrain of a particular sequential order.

The input of discriminator includes the fake data generated by
generator and the real driving data. The loss functions of generator
and discriminator, Lp and L, are defined as follows:

Lo = = ) log(1-D(G(),
i=1
b = =3 [-logD(x!) - log(l - D(G(=))]

i=1

where z(9) is a time series of uniform random vectors in o, l}k, k
is the feature size, and x(!) is the time series of true driving data,
normalized between 0 and 1 .

3.3 GARNN-Pruned

When the cloud model is finished training, we use pruning to re-
duce the total model size so that the model can be transferred
to the edge device which has limited storage and computing re-
sources. As shown in Figure 4, we prune the connections with low-
absolute values. All connections with weights below a threshold
are removed from the network, therefore converting a dense net-
work into a sparse one. The threshold is a hyper-parameter that
depends on the trade-off curve between compression ratio and pre-
diction accuracy. We use the mask mechanism to implement model
pruning; weights below the threshold are masked by zeros, while
those above are masked by ones. By taking the dot product be-
tween the original weight tensor and the mask tensor, the connec-
tions with weights smaller than the threshold are set to zero, i.e.,
pruned.

We apply an automated gradual pruning algorithm [40] to cut
the unimportant connections. Over a span of n pruning steps, the
sparsity is increased from an initial sparsity value s; to a final spar-
sity value sy. The sparsity at time ¢ is defined as follows:

o=+ ) (105
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where 1 is the start step and At is the pruning frequency. In this
paper, we start pruning the model at the first step and empirically
set the pruning frequency to be 10. The initial sparsity s; is 0 and
the target sparsity sy is set to 0.5. As the sparsity of the network in-
creases, the weight masks are updated. Once the model’s sparsity
st achieves the target sparsity, the weight masks are no longer up-
dated and the pruning process is completed. Comparing with the
original cloud model, the pruned model may suffer an accuracy
loss, but achieve a considerable reduction in the model size.

3.4 CGARNN-Edge

After the pruned model is transferred to the edge device, we will
train a personalized model on top of GARNN-Pruned through trans-
fer learning, considering the contextual information. Specifically,
GARNN-Pruned is used as the initialization of the personalized
model. We propose to use CGARNN as the personalized model,
where both the generator and discriminator are conditioned on the
context information y. y can be any kind of contextual informa-
tion, such as drivers’ personal data, location, weather condition,
and traffic situation. We perform the conditioning by feeding y
into both discriminator and generator as additional input. Figure 5
shows the architecture of CGARNN-Edge.

The new loss functions of generator and discriminator, Lp and
Lg, are defined as follows:

Lg =

—Zlogl D(G('ly))) ,

Ip = 12 [~ log D(xly) - (log(1 - D(C('ly))))] -

5

where the random input noise z and y are combined as a joint hid-
den representation in the generator, while x and y are combined
as new input to the discriminator.

As shown in Figure 5, CGARNN-Edge will be deployed on the
computing platform of the vehicle and trained on the personalized
data. After the model training, the discriminator of CGARNN-Edge
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Figure 5: The architecture of CGARNN-Edge

can be used to detect whether the driving behavior is normal or not.
The input is the real-time driving behavior and the output is the
probability of being an anomaly.

Recent research work is devoted to train the machine learning
models on the edge based on the local data, along the same line
as CGARNN-Edge [1]. However, one of the most significant chal-
lenges of training model on the edge is training data labeling [9].
For example, it is difficult to train an object detection model on the
vehicle with images generated from the on-board camera, which
requires image labelling in real time. CGARNN-Edge does not need
the labeled data at the training stage as it only uses the driver’s nor-
mal driving behavior as the input. The drivers’ personal data (such
as age group and gender) is the one-time input and CGARNN-Edge
can obtain it at the beginning. CGARNN-Edge can acquire the in-
formation of location, weather condition, and traffic situation by
using web services, such as the weather report services and the
Google maps APL

3.5 RESTful Engine

After CGARNN-Edge is trained, the RESTful Engine will call for
it and provide web service for the third-party applications. Figure
2 lists three potential services: (1) insurance companies leverage
the driving behavior analysis for credit rating and premium ad-
justment, (2) driving assistant provides driving reference, and (3)
ridesharing companies can detect abnormal driving behaviors to
increase ride safety [19] and send alarms.

Figure 6 lists two RESTful APIs and their purposes when us-
ing GET operations. CGARNN-Edge is represented by a URI which
consists of four fields. The first field is the IP address and port num-
ber of the vehicle. The second field represents the particular driving
behavior model, i.e., CGARNN-Edge. The third field indicates the
request type, such as real-time and batch. The fourth field is the
arguments which will be sent to the RESTful Engine. For example,
if the driving assistant system needs to obtain the driving behavior
in the real time manner for the sake of safety, it should follow the
URI shown in Example 1 in Figure 6 and send the timestamp ar-
gument. The response is the detection probability that the driving
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Example 1: —
GET http://vehicle ip: port/CGARNN-Edge/real-time/{timestamp}

Purpose: Get the real time driving behavior by “timestamp”

Example 2:

GET http.//vehicle ip: port/CGARNN-Edge/batch/{start, end}
Purpose:  Get driving behavior over a period of time by “start” and “end”

Figure 6: The examples of RESTful Engine

behavior is normal or not at that moment. If an insurance company
wants to know the driving performance of a customer in the last
month, it needs to follow the URI shown in Example 2 and sends
the starting and ending timestamp. The response is the probability
of the driving behavior being abnormal during that period.

The design of RESTful Engine can address the challenge of in-
tegration. In this case, there is no need to build a driving behavior
model for each application separately. The integration function of
the RESTful Engine and the privacy-preserving goal of the pro-
posed system do not conflict. The original driving data and the
trained CGARNN-Edge will be kept on the vehicle and not be trans-
ferred. The third-party application can only call the model via the
RESTful APIL. Moreover, the access permission of the RESTful En-
gine is managed by the driver, which will protect user privacy.

4 SYSTEM IMPLEMENT

We will present the implementation and hardware/software con-
figuration of the entire system in this section. Figure 7 shows the
overview of the system implementation. The GARNN-Cloud and

GARNN-Pruned models are trained on the cloud server and CGARNN-

Edge model is trained on the edge, i.e., vehicle computing unit.
When the training process of CGARNN-Edge is completed, it will
predict the driving behavior based on the real-time driving data
collected by the on-board sensors.

4.1 Data collection and processing

There are many options to collect the driving data, such as On-
board diagnostics (OBD), Inertial Measurement Unit (IMU), and
even GPS sensors in the mobile phone. In this work, we adopt
Xsens MTi-G-700 [35] to collect the real-time driving data. The
MTi-G is an integrated GPS and IMU with a Navigation and At-
titude and Heading Reference System (AHRS) processor. The sam-
pling frequency is 100ms. As shown in Figure 8 [6], the data col-
lected by Xsens MTi-G-700 has three coordinates, x, y, and z. It
consists of 12 dimensions: orientationy., orientationy, orientation,

velocity,., velocityy, velocity , angularrate,, angularratey, angularrate,

latitude, longitude and altitude.

The driving data is essentially multivariate time series data. To
analyze the driving data and model driving behaviors, we divide
the time series into overlapping sliding windows. Each sliding win-
dow consists of driving data over five seconds, such as 0.0-5.0s, 1.0-
6.0s, and 2.0-7.0s. Since the collection frequency is 100 ms, each
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Figure 8: The Xsens Mti-G-700 sensor [6]. x positive to the
East (E), y positive to the North (N), and z positive when
pointing up (U).

sliding window has 50 samples. Each sliding window is consid-
ered as an input of the driving behavior models, including GARNN-
Cloud, GARNN-Pruned, and CGARNN-Edge.

4.2 Hardware Configuration

The GARNN-Cloud and GARNN-Pruned models are trained on a
high performance server, Dell PowerEdge R730, which has two
NVIDIA Tesla P100 GPUs and two Intel Xeon E5-2640 CPUs. The
CGARNN-Edge model is trained on the edge, i.e., the vehicle com-
puting unit.

Since the same model will have different system performance
when running on different hardware architectures, we choose NVIDIA
Drive PX2 (AutoChauffeur), NVIDIA Jetson TX2, and Intel FogN-
ode to simulate the heterogeneous vehicle computing units. NVIDIA
Drive PX2 and Jetson TX2 are GPU-based hardware platform and
Intel FogNode only provides CPU in this paper. The configurations
of the hardware are listed in Table 1.
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Table 1: Hardware Setup

Hardware CPU GPU CPU Frequency | Cores | Memory (ON]

Dell PowerEdge R730 | Intel Xeon E5-2640 2x Tesla P100 2.4GHz 40 128GB | Linux 4.4.0-128-generic
NVIDIA Drive PX2 Denver 8, Cortex A57 | 2x 512-core Pascal 2GHz 12 16GB Linux 4.9.80-tegra
NVIDIA Jetson TX2 | Denver 2, Cortex A57 | 256-core Pascal 2GHz 6 8GB Linux 4.4.38-tegra

Intel FogNode Intel Xeon E3-1275 Null 3.6GHz 4 32GB | Linux 4.13.0-32-generic

NVIDIA Drive PX2 is designed as an high-performance and energy-

efficient autonomous vehicle computing platform for functionally
safe Al-powered self-driving, which is also suitable for the ADAS
development. NVIDIA Jetson TX2 is a fast, power-efficient embed-
ded AI computing device which is built around the NVIDIA Pascal-
family GPU. It is also one of the most popular edge devices. Jetson
TX2 is appropriate to be used as a vehicle computing unit. Intel
FogNode is a versatile reference design in a self-contained enclosed
chassis for testing and demonstration of edge use cases. Although
the computing power cannot compare with the high-performance
computer on the cloud, it is better than a normal personal com-
puter. It can be used as the CPU based computing unit on the ve-
hicle.

4.3 Software Configuration

The performance of deep learning libraries varies on heterogeneous
hardware platforms [39]. Based on the popularity and the overall
performance, we choose TensorFlow as the deep learning library
and use Python API to build driving behavior models. The entire
system is implemented in Python 2.7 programming language. For
the GPU based hardware platform, CUDA library is leveraged to
improve the performance. Table 2 shows the software setup in the

system.
Table 2: Software Setup
Hardware | Python | CUDA version | TensorFlow
PowerEdge | 2.7.12 9.0.176 GPU, 1.7
Drive PX2 2.7.11 9.2.78 GPU, 1.7
Jetson TX2 | 2.7.12 9.0.252 GPU, 1.7
FogNode 2.7.15 Null CPU, 1.7

To provide RESTful service, we build a web server based on the
event-driven networking engine twisted. Twisted accepts the re-
quest with the argument from the third-party applications and re-
turns the driving behavior. A built-in database is used to store the
historical driving behavior.

5 PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed method
and compare it with several anomaly detection baselines. We first
describe the data sets and experimental setup, and then present the
performance of different methods from both system and algorithm
perspectives.

5.1 Dataset

Two datasets are used in our experiment: one is from the real-
world driving environment and the other is from a driving sim-
ulator.

As is described in Section 4.1, the real-world driving data is col-
lected through Xsens Mti-G-700 at a frequency of 100 ms. We di-
vide the time series driving data into overlapping sliding windows.
The collection frequency is 100 ms, so each sliding window has
50 samples. This vehicle is driven in the Bay area of California.
The real-world driving data is divided into two sets. The first set
is used to build the generic GARNN-Cloud model. It includes six-
teen driving trajectories from eight drivers. The total driving time
is 432 minutes and the total sample size is 259,205. We construct
a dataset based on the first set. Since the real-world driving data
only includes normal driving behaviors, we simulate several differ-
ent kinds of abnormal driving data, which will be introduced later.
The real-world normal driving data is labelled as 1 while the sim-
ulated abnormal driving data is labelled as 0. The ratio of normal
and abnormal data is one to one. The dataset is split into training
and test based on the 80%-20% principle. Note that the simulated
abnormal driving data is not needed when we train the GAN-based
model, and is only used in the model performance evaluation.

The second set of the real-world driving data is carefully de-
signed to train CGARNN-Edge which considers different driving
conditions. Table 3 summarizes the details of the data for building
CGARNN-Edge. There are three drivers A, B, and C. Driver A has
three driving trajectories while the other two have one trajectory,
respectively. These five trajectories are collected at different time
and under different weather. Note that all the driving trajectories
follow the same driving routes, i.e., the same start and end points.
The eight drivers in the first set of the data also include the three
drivers in the second set. However, the sixteen driving trajectories
in the first set do not include the five trajectories in the second set.

Table 3: Real world driving data for CGARNN-Edge

driver time | weather | sample size
driver A1 | 2pm | cloudy 15255
driver A2 | 5 pm rain 19143
driver A3 | 5pm | cloudy 15402
driver B | 2pm | cloudy 18993
driver C | 2pm | sunny 15751

The second dataset was obtained from driving simulators in a
controlled experiment [26]. The driving data was collected at a fre-
quency of 1.0 second. Similar to the real-world data, we also divide
the driving simulator data into overlapping sliding windows. The
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data has 5 samples in each sliding window, as its collection fre-
quency is 1.0 second. The driving simulator data contains data from
68 volunteers who drove on the same highway under four different
conditions: no distraction, cognitive distraction, emotional distrac-
tion, and sensorimotor distraction. The drivers include male and
female, with age group divided into young and old. The detailed
sample size are summarized in Table 4. This data has six features
related to the driving behavior: speed, acceleration, brake force,
steering, lane offset, and lane position signal. For this data set, we
also use 80% for training and the remaining 20% for test.

Table 4: Driving simulator data

driver no distraction|cognitive [emotional sensorimotor
Young Male 785 826 795 827
Young Female 794 797 766 793
Old Male 791 768 697 793
Old Female 856 831 822 1026

5.2 Experiment Setup

5.2.1 Baselines. We compare the performance of the proposed meth-
ods with three anomaly detection baselines: Local Outlier Factor
(LOF), LSTM, and Bi-directional LSTM (Bi-LSTM). LOF is an unsu-
pervised distance based method, which measures the deviation of a
data point with respect to its density in the neighborhood formed
by the k nearest neighbors [5]. We empirically set the numbers
of neighbors to 200. LSTM is widely used to model and classify
sequential data. Both bidirectional and unidirectional LSTMs are
used as baselines. We use the many-to-one LSTM architecture, fol-
lowed by a fully connected layer and a softmax classifier, which
outputs the probability of a sequence being abnormal or not. All
the deep learning models are implemented using TensorFlow 1.7
and LOF is from the sklearn python package.

5.2.2 Abnormal driving behaviors. Since real-world driving data
only includes normal driving behaviors, we simulate four different
kinds of abnormal driving behaviors as follows:

e Anomalous Driving 1: Speeding is one of the most danger-
ous driving behaviors. We multiply velocity, and Velocityy
by 1.3 to simulate speeding.

e Anomalous Driving 2: When the driver is distracted, driv-
ing trajectory may show abnormal or unexpected turn. We
simulate such scenario by adding Gaussian noise (mean 1.0,
variance 1.0) to each angularrate, and angularratey.

e Anomalous Driving 3: Lots of accidents are caused by drowsy
and fatigue driving, where the exhibited driving orientation
is abnormal. We simulate such scenario by adding Gaussian
noise (mean 1.0, variance 1.0) to orientation, and orientation,,.

e Anomalous Driving 4: In certain emergent scenario, the speed,
orientation and angular rate can all become abnormal. We
add Gaussian noise to all the dimensions to simulate this
scenario. The Gaussian mean and variance are set to 0.2, a
relatively smaller value than the previous three scenarios,
since there are changes in every dimension.
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5.2.3 Hyper-parameters. For all the deep learning methods, we
use the RMSProp optimizer, as it has shown good performance in
modeling sequential data. The learning rate is set to be 107°. The
batch size is 10 and the number of epochs is 100. In Generative Ad-
versarial Recurrent Neural Networks, the number of LSTM layer
in both generator and discriminator is 1. Each LSTM cell has 32
neurons.

5.3 Experiment Results

We evaluate the proposed method and baselines on two aspects:
system performance and algorithm performance. As a core com-
ponent in ADAS, the time requirement of abnormal driving behav-
ior detection is stringent. Therefore, the model inference time is
an important metric. When the model is transferred from cloud to
edge, the model size and the memory footprint are also important
for the edge device. Therefore, in our evaluation, the system perfor-
mance includes inference time, model size, and memory footprint,
while the algorithm performance includes AUC (area under curve),
Precision, Recall, and F1.

Table 5: System performance on NVIDIA Jetson TX2

Model Time (ms) | Size (KB) | Memory (MB)
LOF 1321.0 NA 76.9
LSTM 119.2 1153.0 530.1
Bi-LSTM 214.9 2364.0 546.9
GARNN-Cloud 260.2 9405.0 611.3
GARNN-Pruned 220.8 7403.0 521.6
CGARNN-Edge 222.1 7403.0 524.5

Table 6: System performance of CGARNN-Edge

Hardware Time (ms) | Memory Footprint (MB)
NVIDIA Drive PX2 10.2 819.3
NVIDIA Jetson TX2 96.3 820.1
Intel FogNode 44.25 251.8
5.3.1 System Performance. As shown in Table 5, on the edge de-

vice NVIDIA Jetson TX2, we evaluate the system performance of
our proposed methods and the baselines on the real-world data. For
the deep learning models, we calculate their average inference time
for 10 times. When LOF is used to detect the abnormal driving be-
havior, it has to read all the data and calculate the distances among
all the data points, which is time consuming. As a comparison, the
inference time of deep learning models is much smaller. On aver-
age, LOF takes 5 times longer than the deep learning models when
detecting an anomaly. Because LOF has the simplest architecture
and the smallest number of parameters, its memory footprint is
the least, which is only about 1/7 - 1/8 of the other models. When
GARNN-Cloud gets pruned, its inference time, size, and memory
are reduced by 15.38%, 21.29%, and 14.49%, respectively.

Since the proposed CGARNN-Edge will be deployed on hetero-

geneous computing platforms, we evaluate the performance of CGARNN-

Edge on Drive PX2, Jetson TX2, and FogNode. Table 6 shows the in-
ference time and memory footprint of CGARNN-Edge. We run the
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Table 7: Performance on real-world data with simulated
anomalies.

Models Anomaly1|Anomaly2/Anomaly3|Anomaly4
LSTM 0.762 0.707 0.901 0.835
Bi-LSTM 0.821 0.727 0.878 0.849

AUC GARNN-Cloud | 0.892 0.757 0.897 0.891

GARNN-Pruned, 0.831 0.712 0.832 0.772

LOF 0.782 0.784 0.89 0.863
LSTM 0.730 0.723 0.940 0.843
P Bi-LSTM 0.793 0.795 0.932 0.864

GARNN-Cloud | 0.832 0.798 0.940 0.883
GARNN-Pruned, 0.792 0.705 0.920 0.801

LOF 0.820 0.789 0.890 0.853
LSTM 0.793 0.732 0.860 0.845
R Bi-LSTM 0.79 0.785 0.870 0.872

GARNN-Cloud | 0.943 0.801 0.892 0.892
GARNN-Pruned| 0.734 0.692 0.872 0.865

LOF 0.801 0.786 0.890 0.858
LSTM 0.760 0.727 0.898 0.844
F1 Bi-LSTM 0.791 0.790 0.900 0.868

GARNN-Cloud | 0.884 0.799 0.915 0.887
GARNN-Pruned, 0.762 0.698 0.895 0.832

CGARNN-Edge model 10 times and perform 100 inferences each
time. We then calculate the average inference time and its standard
deviation. The average inference time of CGARNN-Edge on Drive
PX2, Jetson TX2, and FogNode are 10.2ms, 96.3ms, and 44,25ms,
with standard deviations 3.92, 7.21, and 4.35, respectively. The in-
ference time of CGARNN-Edge is all less than 100ms, which meets
the real-time requirement. Drive PX2 spends a shorter time than
Jetson TX2 and FogNode since Drive PX2 has a powerful GPU. The
memory footprint of Drive PX2 and Jetson TX2 are similar and
they are more than 3x of FogNode.

Summary: The system side experimental results indicate that
the proposed system can meet the real-time requirement on het-
erogeneous hardware platforms.

5.3.2  Algorithm Performance. For all the deep learning models,
we use AUC (area under curve), Precision, Recall, and F1 to eval-
uate their algorithm performance. Note that AUC is not available
in the performance evaluation of LOF. Since the algorithm perfor-
mance is independent of the hardware platform, this paper only
presents the experimental results on NVIDIA Jetson TX2. Table 7
shows the performance of all the methods on the real-world driv-
ing dataset under four different types of anomaly simulations. We
abbreviate Precision and Recall as P” and "R” in all the tables and
figures. To demonstrate the overall performance of the methods,
in Figure 9, we show their average AUC, Precision, Recall, and F1
over four anomaly simulations on the real-world dataset. As we
can see, GARNN-Cloud achieves the best performance on all the
metrics. When GARNN-Cloud is pruned (i.e., the GARNN-Pruned
method), all the performance metrics are decreased. For anomaly
1, anomaly 2, and anomaly 4, the AUC, Precision, Recall, and F1 of
GARNN-Cloud are much higher than that of the other models. For
anomaly 3, LSTM has the highest AUC and Precision, which are
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0.901 and 0.940, respectively. However, the Recall of LSTM is not
as good as GARNN-Cloud, which leads to a lower F1 than GARNN-
Cloud. The Precision of LOF is lower than Bi-LSTM on all the anom-
alies while the Recall of LOF is better than Bi-LSTM on anomaly 1,
anomaly 2, and anomaly 3. Overall, LOF has similar F1 as Bi-LSTM,
but lower than GARNN-Cloud. Through the above comparison, we
can see that the performance of GARNN-Pruned is better than the
other models on the real-world data.
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Figure 9: The average AUC, F1, P, and R on real-world data.

Table 8 shows the performance of all the methods on the driv-
ing simulator data with three types of abnormal driving behaviors
i.e., cognitive distraction, emotional distraction, and sensorimotor
distraction. For the cognitive and emotional distraction, GARNN-
Cloud achieves the highest performance among all the methods.
For the sensorimotor distraction, Bi-LSTM and LSTM have simi-
lar performance, outperform GARNN-Cloud. LOF has worse per-
formance than LSTM and Bi-LSTM on all the metrics for cogni-
tive and sensorimotor distractions, but performs much better than
LSTM and Bi-LSTM for emotional distraction. Similar to the results
on real-world data, after model pruning, GARNN-Pruned performs
worse than GARNN-Cloud. Figure 10 shows the average AUC, Pre-
cision, Recall, and F1 of all the methods on the driving simula-
tor data over three abnormal driving distractions. As we can see,
GARNN-Cloud has the best overall performance on all the metrics.

Comparing GARNN-Cloud and GARNN-Pruned on both real-
world data and driving simulator data, we can see that the model
pruning process decreases the original performance of the cloud
model significantly. The overall performance of GARNN-Cloud is
the best among all the methods.

Comparing Figure 9 and Figure 10, we can find that the detec-
tion performance of these models on the real-world data is better
than the driving simulator data. For the real-world data, it is dan-
gerous and difficult to collect true abnormal driving data, so we
simulate four different kinds of abnormal driving behaviors. These
artificially simulated anomalies are relatively easier to be detected,
comparing with the driving simulator data, where the abnormal
driving trajectories are actually from human volunteers, closer to
real world driving scenarios.
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Table 8: Performance on driving simulator data

Models Cognitive | Emotional | Sensorimotor
LSTM 0.730 0.606 0.786
AUC Bi-LSTM 0.783 0.650 0.789
GARNN-Cloud 0.821 0.700 0.720
GARNN-Pruned| 0.785 0.690 0.720
LOF 0.705 0.692 0.754
LSTM 0.740 0.625 0.792
P Bi-LSTM 0.793 0.638 0.793
GARNN-Cloud 0.823 0.690 0.720
GARNN-Pruned 0.790 0.655 0.705
LOF 0.700 0.690 0.750
LSTM 0.730 0.645 0.784
R Bi-LSTM 0.763 0.682 0.784
GARNN-Cloud 0.820 0.700 0.740
GARNN-Pruned 0.780 0.682 0.715
LOF 0.702 0.691 0.752
LSTM 0.735 0.635 0.788
F1 Bi-LSTM 0.778 0.659 0.788
GARNN-Cloud | 0.821 0.695 0.730
GARNN-Pruned| 0.785 0.668 0.710
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Figure 10: The average AUC, F1, P, and R on driving simula-
tor data.

Table 9: Drivers’ information on real-world data

Age group | Gender | Driving experience
driver A 30-40 Male at least 15 years
dirver B 30-40 Male at least 15 years
driver C 40-50 Male at least 20 years

5.3.3  Personalized Model. When GARNN-Pruned is transferred
to the edge devices, we add personalized or contextual feature as
conditional input and train a new model on top of GARNN-Pruned,
that is, perform transfer learning. We denote the new model as
CGARNN-Edge. Specifically, GARNN-Pruned serves as the initial-
ized training model for CGARNN-Edge.
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We consider the personalization on two levels: The first level is
the drivers’ individual difference and the second level is the driving
environment or context for the same driver. For the first level, we
use the driving data of driver B and driver C from the real-world
data. As shown in Table 9, driver B and driver C are of different
ages and driving experience. They drove along the same trajectory,
at the same time of the day, and under the same weather. However,
they had different driving behaviors: driver B used 1899.3s to fin-
ish the drive while driver C only used 1575.1s. Driver C drove sig-
nificantly faster than Driver B. Therefore, we consider these two
datasets having individual difference. For the second level, we con-
sider two conditions: weather and traffic. As shown in Table 3, dri-
ver Ag and driver A3 are the same driver who drove at the same
time, but under different weathers, cloudy and rainy, which may
lead to different driving behaviors. Meanwhile, driver A1 and dri-
ver Ag are the same driver who drove under the same weather, but
at different traffic time, 2pm (off-peak) and 5pm (peak). For the
driving simulator data, as shown in Table 4, each data is labeled
with the drivers’ age group and gender, which present their indi-
vidual difference. However, the driving simulator data does not
provide the environment information, such as weather and traffic
condition. Therefore, we only consider the first level personaliza-
tion for the driving simulator.

Table 10: AUC and F1 on real-world data with personaliza-
tion

Individual Weather Traffic
Metrics AUC| F1 |AUC| F1 |AUC| F1
LOF NA |0.875| NA |0.871 | NA | 0.872
LSTM 0.741 | 0.770 | 0.729 | 0.770 | 0.731 | 0.77
Bi-LSTM 0.819 | 0.859 | 0.803 | 0.858 | 0.824 | 0.829

PGARNN 0.860 | 0.893 | 0.848 | 0.899 | 0.814 | 0.826
GARNN-Cloud | 0.876 [0.895 | 0.845 | 0.896 | 0.834 | 0.894
GARNN-Pruned | 0.755 | 0.765 | 0.753 | 0.789 | 0.753 | 0.792
CGARNN-Edge |0.880| 0.893 | 0.852|0.921|0.901 | 0.932

Table 11: AUC and F1 on driving simulator data with person-
alization

Age group Gender

Metrics AUC F1 AUC F1
LOF NA 0.752 NA 0.754
LSTM 0.650 0.680 0.671 0.680
Bi-LSTM 0.700 0.690 0.710 0.696
PGARNN 0.770 0.780 0.790 0.790
GARNN-Cloud 0.760 0.760 0.762 0.770
GARNN-Pruned 0.664 0.760 0.640 0.766
CGARNN-Edge 0.780 0.784 | 0.790 0.804

Based on the two level personalization definition, we construct
three personalized datasets from the real-world data to evaluate
the model performance. These datasets are denoted by: individual,
weather, and traffic. For driving simulator data, we construct two
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Figure 11: Average AUC and F1 with personalization on real-
world data
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Figure 12: Average AUC and F1 with personalization on driv-
ing simulator data

personalized datasets, which are denoted by: age group and gen-
der. For each dataset, we train a CGARNN-Edge model, which is
built on top of GARNN-Pruned and takes the personalization infor-
mation as the condition input. To further compare with CGARNN-
Edge, we build a new baseline, PGARNN, which has the same deep
learning architecture as GARNN-Edge. PGARNN is trained from
scratch on edge devices using personalized data while CGARNN-
Edge is trained through transfer learning from GARNN-Pruned.
For the real-world data with personalization, as shown in Table 10,
GARNN-Edge achieves the highest F1 and AUC on all the datasets,
except for F1 on the individual data, which is very close to the best
performer GARNN-Cloud (0.895 and 0.893). For the driving simu-
lator data, as shown in Table 11, GARNN-Edge has the best perfor-
mance among all the methods. Since F1 can be regarded as the har-
monic mean of Precision and Recall and due to the space limitation,
we only show the results of F1 and AUC. We have a similar con-
clusion on the Precision and Recall. The results that GARNN-Edge
outperforms PGARNN indicate that our proposed transfer learning
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process improves the model performance. Through transfer learn-
ing, GARNN-Edge is also able to learn the patterns from the base-
line cloud model, which is trained using all the driving data. On
the other hand, PGARNN is trained using only the personal driv-
ing data on the edge. Therefore, GARNN-Edge tends to be more
robust and adaptive to the potential data distribution change.

We also calculate the average AUC and F1 of all the methods
over three personal conditions on real-world data and two per-
sonal conditions on driving simulator, data which are summarized
in Figure 11 and 12. As we can see, on the real-world data, the AUC
and F1 of PGARNN is similar to that of GARNN-Cloud, CGARNN-
Edge has the best performance. The AUC and F1 of CGARNN-Edge
is 0.881 and 0.915 while the AUC and F1 of BiLSTM is 0.815 and
0.849. On the driving simulator data, PGARNN and GARNN-Edge
have better performance than the other models. The performance
of GARNN-Pruned suffers due to pruning. CGARNN-Edge achieves
the best performance among all the methods, the AUC and F1 is
0.785 and 0.794.
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Figure 13: Overall performance of all the methods on real-
world data

5.3.4  Performance Summary. Figure 13 integrates the system per-
formance and algorithm performance of all the methods on real-
world data. As a core component of ADAS, near real-time detection
is one of the most important requirements. Therefore, we choose
inference time for the system performance. AUC on real-world
data is used for the algorithm performance. The size of bubble
shows the model size. As we can see, LSTM has the smallest in-
ference time and model size due to its simple architecture. How-
ever, its algorithm performance, i.e., AUC, is also the lowest. On
the other hand, CGARNN-Edge has the best AUC. The inference
time of CGARNN-Edge is also ranked in the middle, less than 230
ms. GARNN-Cloud has the largest model size and largest inference
time, since it has the most number of parameters. We have similar
observations on the driving simulator data.

The experimental results from the system side and algorithm
side indicate that the proposed system can meet the real-time re-
quirement while achieving promising performance.
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6 CONCLUSIONS AND FUTURE WORK

We propose a collaborative cloud-edge computation method for
personalized driving behavior modeling. This method models driv-
ing behaviors using Generative Adversarial Recurrent Neural Net-
works, which is adaptive to the dynamic change of normal driving.
To address the challenges of personalization and privacy, the pro-
posed collaborative cloud-edge computation method first trains a
common baseline model in the cloud and then trains a personalized
model on the edge through transfer learning, considering personal
and contextual information as additional conditions. Model prun-
ing is applied to minimize the transferring load as well as to max-
imally preserve the original cloud model performance. The pro-
posed CGARNN-Edge model achieves the best performance among
all the models.

In the future, we plan to further investigate how to enhance
the collaboration between cloud and edge. For example, it is in-
teresting to study how the collected data and trained model on
the edge can improve the common baseline model in the cloud
without violating user privacy. As the driving condition can be
changed, it is non-trivial to update the personalized driving behav-
ior model dynamically and efficiently. We would like to investigate
how incremental learning can be applied to solve such problems in
a cloud-edge collaborative framework. In addition, we find that the
GARNN-Pruned model usually has a worse performance than the
original GARNN-Cloud model. Most recently, more sophisticated
pruning methods for deep neural networks have been developed.
We would like to explore if such pruning methods can further im-
prove the model performance.
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