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Abstract

We propose a new approach for mixture modeling based only upon pairwise distances via the

concept of hypothetical local mapping (HLM). This work is motivated by increasingly commonplace

applications involving complex objects that cannot be effectively represented by tractable mathematical

entities. The new modeling approach consists of two steps. A distance-based clustering algorithm is

applied first. Then HLM takes as input the distances between the training data and their corresponding

cluster centroids to estimate the model parameters. In the special case where all the training data

are taken as cluster centroids, we obtain a distance-based counterpart of the kernel density. The

classification performance of the mixture models is compared with other state-of-the-art distance-

based classification methods. Results demonstrate that HLM-based algorithms are highly competitive

in terms of classification accuracy and are computationally efficient. Furthermore, the HLM-based

modeling approach adapts readily to incremental learning. We have developed and tested two schemes

of incremental learning scalable for dynamic data arriving at a high speed.

Keywords: Distance-based; Mixture modeling; Classification; Hypothetical local mapping; Kernel

density; Incremental learning; Complex data; Large-scale

1 Introduction

Distance-based classifiers categorize objects using only the pairwise distances between samples in the test

and training data sets. Because only the pairwise distances are required in training and prediction, the

representation of the instances can be of great variety or even unspecified. This feature is particularly

appealing to classification problems where the object cannot be described effectively by a mathematical

entity permitting well-studied analytical operations, for example, vectors. The term distance is used

in a loose sense here for the pairwise similarity or dissimilarity relationship between data samples, not

necessarily a true metric. Distance-based classification is widely used in the fields of computer vision [1],

bioinformatics [2], information retrieval, etc.
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1.1 Overview of Our Work

In this paper, we investigate distance-based mixture modeling for classification using hypothetical local

mapping (HLM), a mechanism originally proposed by Li and Wang [3] (refined in [4]). The major

contribution of our current work is to extend Gaussian mixture modeling for the Euclidean space to a general

distance-endowed space via HLM.

HLM has been successfully applied to model categories of images. The images are characterized by their

color and texture signatures, each being a set of weighted and unordered vectors [4]. To estimate a mixture

model, HLM takes as input the distances between the training image signatures and their corresponding

cluster centroids. Conceptually, instances in one cluster and the cluster centroid are mapped to a Euclidean

space, preserving maximally the pairwise distances. In the mapped space, this cluster of data is modeled

by a Gaussian distribution with spherical covariance and a mean vector equal to the mapped centroid. The

parameters of the Gaussian distribution and the dimension of the mapped space can be estimated by fitting

a Gamma distribution using only distances between each data point and the cluster centroid in the original

space. The distance-preserving mapping is thus bypassed, causing no additional computation, and hence

called hypothetical. Finally, a mixture model is constructed to account for multiple clusters.

In the current work, we explore the potential of HLM as a mixture modeling technique in a more general

setting than what has been pursued in [4]. In the previous work, the clustering algorithm exploits the

mathematical representation of an image and is thus not pairwise distance-based. Although HLM only

uses the distances after clustering, it has not been coupled with distance-based clustering algorithms. We

hereby address this gap in the methodology of HLM and investigate its performance on more general

data sets. Because the parameter fitting in HLM is computationally negligible in comparison with the

pairwise distance-based clustering performed first, mixture modeling by HLM is almost as fast as the

clustering process itself. With the existence of some fast distance-based clustering algorithms, HLM can

be substantially faster than several major pairwise distance-based classification methods.

Moreover, noting the kinship between a finite mixture model and a kernel density, we find it natural

to develop an HLM-based counterpart of the kernel density for a general space. In this case, every data

point is treated as a centroid; and we propose a method to choose the bandwidth of the Gaussian kernel.

This extension of the kernel density is especially useful for small training data prone to losing valuable

information if clustering reduces the data even more. Finally, we push the consideration on computational

efficiency one step further by proposing and evaluating two incremental learning schemes for HLM-based

mixture models. The intrinsic characteristics of HLM lend it readily to incremental learning, an important

scenario in light of the abundance of high velocity stream data.

1.2 Related Work

Our work is most related to distance-based generative models. Besides HLM exploited by Li and Wang

[3, 4], another distance-based generative model was proposed by Cazzanti and Gupta [5], namely, local

similarity discriminant analysis (local SDA). They assume that the expectation of the similarity between

2



a random sample X and a random class centroid µ equals the average similarity between the k nearest

neighbors of X in the same class and the class centroid µ. Suppose the number of classes is K. The

assumption of local SDA induces K2 number of constraints. Given these constraints, each class-conditional

distribution of X is estimated by the principle of maximum entropy. Cazzanti et al. [6] proposed a more

generalized SDA by assuming that the expectation of the descriptive statistic of a random sample X with

respect to the class-conditional distribution equals the average sample statistic over all the training data

in each class. In SDA and local SDA, each class is modeled by a single parametric distribution. As an

extension, mixture SDA was proposed [7], where K2 number of mixture distributions have to be estimated.

If the number of classes is large, the quadratic growth in the number of mixture distributions will hinder

scalability. A multi-task regularized local SDA was later proposed [8, 9], which treats the estimation of

different class-conditional distributions as multiple tasks and achieves the best performance among all the

SDA-family algorithms.

As a generative mixture modeling approach, HLM is profoundly different from mixture SDA [7].

Because pairwise constraints on all the classes are assumed in mixture SDA, the distribution estimation for

one class depends on all the other classes. Thus its complexity grows quickly with the number of classes.

In contrast, HLM, along the line of mixture modeling, estimates the density of each class separately. In

comparison with discriminative approaches, e.g., support vector machines (SVM) with pairwise distances

modified into kernels [10, 11, 12], HLM inherits multiple advantages of the generative modeling approach,

including the ease of handling a large number of classes, the convenience of incorporating domain expertise,

and the minimal effort required to treat new classes in an incremental manner.

Other distance-based classification methods are not generative. K-nearest neighbor (k-NN) classifies a

test sample based on its distances to all the training samples. The majority class of the k closest data points

is assigned as the class label of that sample. K-NN is sensitive to noisy training samples especially when the

distance measure is not well defined. To mitigate this issue, various distance measures or transformations

have been proposed [13, 14, 15]. Several weighted versions of k-NN have also been proposed [12, 16, 17].

Another distance-based classification approach treats distances to training samples as features. Standard

discriminative classifiers, such as SVM and Fisher linear discriminant analysis (LDA), are applied to these

distance feature vectors [13, 18, 19]. A major limitation of this approach is that the dimension of the feature

vector equals the number of training data, often prohibitively large. Additionally, as Chen et al. [12] found

out, in the case of large inter-class variance relative to intra-class variance, treating distances as features may

yield low discriminative power even when the classes are well separated.

If the pairwise distance matrix between training samples is symmetric and positive definite, it can be

treated as a kernel and used in any kernel classifiers, e.g., SVM. Many distance matrices, however, do

not satisfy these conditions. Several methods for modifying distances into kernels are discussed in [12].

Hochreiter and Obermayer [10] proposed potential support vector machines (P-SVM) applicable to any

input data matrix, but the final kernels in these methods are N × N matrices, where N is the data size.

As a result, P-SVM is computationally intensive with large N . A hybrid approach of SVM and k-NN [11]

computes the pairwise distance matrix for the union of the test sample and its k nearest neighbors, modifies
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the matrix into a kernel, and then applies standard SVM. One difficulty with modifying distances into kernels

is that the original distances between the test and training samples have to be transformed so that they are

consistent with the modified distances in producing the kernels.

The rest of the paper is organized as follows. Preliminaries on HLM and distance-based clustering

methods are in Section 2. We propose two distance-based classification algorithms via HLM-based mixture

modeling in Section 3. In Section 4, two HLM-based incremental learning schemes are presented. Section 5

is on experiments and results. Finally, we conclude in Section 6.

2 Preliminaries

We introduce in this section HLM-based mixture modeling for a general space and several distance-based

clustering methods used in this work.

2.1 Hypothetical Local Mapping

Consider data points in a general space Ω provided with pairwise distances. To form a distribution for

such data, there are two major schools of approaches in machine learning: discretization by clustering and

mapping to the Euclidean space with the attempt of preserving distances. After discretization, a probability

can be assigned to each cluster. The drawbacks of this approach include the neglect of difference between

points in the same cluster and non-smooth transition from one cluster to another. These issues are addressed

by the other approach of mapping. However, a Euclidean space may not allow accurate approximation of

the original distances. HLM is proposed to leverage advantages of both schools. Under HLM, the clusters

are mapped to separate Euclidean spaces, motivated by the belief that the local geometry of data is much

simpler than the global. To account for complexity at the global level, discretization is then utilized.

HLM forms a smooth distribution by placing a smooth parametric distribution at each cluster centroid.

This idea is inspired by the mixture model estimation for a distribution in the Euclidean space. The well-

known classification expectation maximization (CEM) algorithm for estimating a mixture model iterates

essentially a clustering step and a component-wise parameter fitting step. The EM algorithm can be viewed

as performing soft clustering instead, while in the kernel density, every data point is treated as a cluster

centroid. The technical difficulty for a general space is the lack of a parametric distribution. The basic

assumption of HLM is that each cluster can be mapped to a distance-preserving Euclidean space and the

mapped points follow a Gaussian distribution. It is theoretically difficult to validate this assumption for

some well defined general spaces. In practice, we may not even have a mathematical specification of the

space, so the assumption of HLM can only be taken as a computational mechanism. As a result, the mixture

model constructed by HLM may not induce a proper probability measure on the original space. On the

other hand, HLM is in line with the common practice in machine learning to analyze points mapped to a

Euclidean space.

Consider a distance preserving mapping M: Ω→ Rd, where Rd is the d-dimensional Euclidean space.

Denote the distance on Ω by D(·, ·). Suppose Z is a random variable on Ω. Let a realization of Z be z.
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For η ∈ Ω, suppose M(η) = µ. We assume the mapped variable X = M(Z) ∈ Rd follows a normal

distribution N (µ,Σ): µ is the mean and Σ = σ2I is the covariance matrix, where I is the identity matrix.

Denote a Gamma distribution by (γ : b, s), where b is the scale parameter and s is the shape parameter.

Let Γ(·) be the Gamma function. The probability density function (pdf) of (γ : b, s) is

f(u) =
(ub )s−1e−u/b

bΓ(s)
, u ≥ 0.

It is known that the squared Euclidean distance between X and the mean µ, ‖X − µ‖2, follows a Gamma

distribution (γ : d
2 , 2σ

2). The key idea of HLM is to estimate the parameters of the Gaussian distribution by

estimating those of the Gamma distribution using only the squared distance ‖X−µ‖2. Because the mapping

M preserves the distance, D2(Z, η) = ‖M(Z)−M(η)‖2 = ‖X − µ‖2. Hence, the estimation can be based

on distances in the original space, bypassing mapping (“hypothetical” mapping). Moreover, by estimating

the Gamma distribution, the dimension d is determined. With b and s estimated, d = 2s and σ2 = b/2.

The pdf of X , ϕ(x) =
1√

(2πσ2)d
e−
‖x−µ‖2

2σ2 , can be recast with the Gamma distribution parameters b

and s and the distance in the original space. Note that x = M(z).

ϕ̃(z) := ϕ(x) =

(
1√
πb

)2s

e−
D2(z,η)

b . (1)

We call ϕ̃(z) the pseudo-density function on Ω. It is a density for the mapping of Ω onRd, but is expressed

in terms of the point z ∈ Ω.

In the above discussion, a single Gaussian distribution is used to model the mapped data. We now

impose a clustering structure on Ω. Consider a set of data points G = {z1, z2, ..., zN}, zi ∈ Ω. Suppose G
is partitioned into M clusters Gj with corresponding centroid ηj , j = 1, ...,M . By HLM, cluster Gj and its

centroid ηj can be mapped to Rd preserving the pairwise distance. Denote the mapping for Gj by Mj . The

mapping is performed separately for each cluster, but the mapped spaces have a common dimension d.

Under HLM, it is assumed that the mapped points of Gj can be modeled by a multivariate Gaussian

distribution N (Mj(ηj), σ
2
j I) with mean equal to the mapped centroid Mj(ηj) and a spherical covariance.

Then for zi ∈ Gj , ‖Mj(zi) − Mj(ηj)‖2 are samples from Gamma distribution (γ : s = d
2 , bj = 2σ2

j ).

The pseudo-density of the jth cluster can be expressed by Equation (1). The pseudo-density on the overall

Ω is then given by a mixture model, denoted by φ(z). We will from now on use cluster and component

exchangeably since every mixture component is estimated using the data in one cluster. Let the prior

probabilities for the components be ωj , j = 1, ...,M , which are estimated by the empirical frequencies

of the clusters. Then

φ(z) =
M∑
j=1

ωj

(
1√
πbj

)2s

e
−
D2(z,ηj)

bj . (2)

Next, we describe how to estimate the Gamma distribution parameters s and bj , j = 1, ...,M . Denote

the set of indices for data points in Gj by Ij , j = 1, ...,M . That is, if i ∈ Ij , then zi ∈ Gj . Denote the
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cardinality of Ij by |Ij |. Obviously, N =
∑M

j=1 |Ij |. We estimate the component prior ωj by |Ij |/N ,

j = 1, ...,M . If data point zi ∈ Gj , define ui = D2(zi, ηj), the squared distance to the corresponding

centroid. Let the mean of the squared distances ui, i ∈ Ij , be ūj = 1
|Ij |
∑

i∈Ij ui, and the overall mean

ū = 1
N

∑N
i=1 ui.

Let ψ(·) be the di-gamma function [20]: for s > 0, ψ(s) =
d log Γ(s)

ds
. It is shown that the

maximum likelihood estimation for s and bj , j = 1, ...,M , obeys the following equations, easily solvable

numerically [4]:  log ŝ− ψ(ŝ) = log
[∏M

j=1 ū
|Ij |/N
j /(

∏N
i=1 ui)

1/N
]

b̂j = ūj/ŝ, j = 1, 2, ...,M .
(3)

It is assumed above that ui > 0 for every i, which normally holds if the cluster centroid is different from any

data point. However, in pairwise distance-based clustering, the centroid is often itself a data point. We thus

exclude all the centroids from the data set once they have been determined. Moreover, in practice, we may

obtain singleton cluster (with only one data point) due to limited data or outliers. To avoid zero distances,

we remove all the singleton clusters from estimation. In addition, to increase the robustness of parameter

estimation against small clusters, we shrink b̂j toward a common value. We modify b̂j = ūj/ŝ slightly to

b̂j = λ
ūj
ŝ

+ (1− λ)
ū

ŝ
, where λ is a shrinkage factor. We set λ =

|Ij |
|Ij |+1 , which imposes stronger shrinkage

on smaller clusters. When |Ij | → ∞, the amount of shrinkage diminishes to zero. Finally, because the

dimension of space d = 2s should be an integer, we adjust the estimation ŝ above to s∗ = b2ŝ+ 0.5c /2.

In a more general scenario, the data points are assigned with weights wi, i = 1, ..., N . Without loss of

generality, assume normalized weights
∑N

i=1wi = 1. Define ˇ̄uj =

∑
i∈Ij

wiui∑
i∈Ij

wi
as the weighted mean of ui’s

in cluster Gj , j = 1, ...,M . We prove in Appendix A that the weighted maximum likelihood estimation for

s and bj , j = 1, ...,M , is solved by log ŝ− ψ(ŝ) = log

[∏M
j=1

ˇ̄u

∑
i∈Ij

wi

j /
∏N

i=1 u
wi
i

]
b̂j = ˇ̄uj/ŝ, j = 1, 2, ...,M .

(4)

Equations (3) and (4) are equivalent when wi = 1/N for all i.

2.2 Clustering Methods

Before HLM is applied to estimate mixture models, we first need to cluster data in each class and solve the

cluster centroids. Distance-based clustering is a rich research topic with many algorithms developed. In our

work, the following three methods are used, which we briefly explain.

Agglomerative Clustering (aka, linkage clustering) starts with every data point being treated as an

individual cluster and merges recursively a pair of clusters with the minimum distance [21]. Different

schemes are used to define the distance between a newly formed cluster and an existing one based on the

latter’s distances to the two clusters just merged. Suppose there are N data points. Then the computational
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complexity is in the order O(N2), prohibitive for scaling up with large data sets.

Generalized k-means minimizes the total within cluster distance, in the same spirit as k-means, and is

also referred to as k-medoids [22]. It can be regarded as a heuristic method for the well-known p-median

problem in operation research [23]. As with k-means, the algorithm iterates the steps of cluster assignment

and centroid update. The difference is that the cluster centroid is not the arithmetic mean of the data in

a cluster because such a mean is not defined for general data. Instead, the data point with minimum total

distance to all the other data points in the cluster is taken as the centroid. Suppose there are M clusters with

roughly equal sizes. The computational complexity is in the order of O(N ·M +N2/M).

Vertex Substitution Heuristic (VSH) was first proposed by Teitz and Bart [24] as another heuristic

approach to p-median problem. Similar to the generalized k-means, it first randomly selects several data

points as the initial set of centroids and assigns the remaining data points to their closest centroids. Then

in one sweep, every non-centroid data point is checked as a candidate for exchanging with a centroid. The

exchange resulting in the largest reduction in the total within cluster distance is selected. This process is

repeated until no further reduction can be found. The worst case complexity of VSH is O(N2). In practice,

VSH is often fast and achieves more stable performance than generalized k-means [24].

3 Distance-based Classification via HLM

In this section, we present two approaches to classification based on HLM. The first approach, called Mixture

HLM (M-HLM), performs clustering before estimating a mixture model via HLM. Here clustering plays the

roles of a smoothing mechanism to suppress outliers and a data reduction mechanism to save computation.

Experiments show that the smoothing effect of clustering can overshoot. Taking all the original data as

centroids often outperforms a much reduced set of cluster centroids, albeit at the cost of more computation

during testing. Our second approach, called Kernel HLM (K-HLM), yields a kernel version of the mixture

model based on HLM without clustering. This approach is particularly appealing when the number of data

points in a class is small, in which case clustering will likely cause the loss of valuable information.

3.1 Mixture HLM

Suppose there are K classes on Ω. M-HLM generates the classifier by the following steps.

1. Perform clustering on the data in each class k = 1, ...,K, by a distance-based method and identify

the cluster centroids. Compute the distance between every data point and its corresponding centroid.

2. Introduce the following notations.

• Mk, k = 1, ...,K: the number of clusters (aka, components) in each class.

• M̄ =
∑K

k=1Mk: the total number of clusters for all the classes.

• Fk: the set of indices for components in class k. Fk =
{
M̆k + 1, M̆k + 2, ..., M̆k +Mk

}
,

where M̆k =
∑k−1

k′=1Mk′ , for k > 1, and M̆1 = 0.
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• ηj , j = 1, ..., M̄ : the centroid of each cluster.

• ωj , j = 1, ..., M̄ : the component prior probability with respect to its corresponding class.

• πk, k = 1, ...,K: the prior probability of each class.

Estimate the component prior ωj , j = 1, ..., M̄ , by the empirical frequency of the component with

respect to its class. Also, estimate the class prior πk, k = 1, ...,K, by their empirical frequencies.

3. Form a mixture modelMk for each class k. The pseudo-density for Z ∈ Ω underMk is

φ(z|Mk) =
∑
j∈Fk

ωj

(
1√
πbj

)2s

e
−
D2(z,ηj)

bj , (5)

where bj is the scale parameter for component j and s is the common shape parameter shared by

all the components in all the classes. These parameters are estimated by Equation (3). It is in fact

straightforward to let the shape parameter s vary with the class, that is, to have sk. In the case of a

common s, distances between data points and centroids in all the classes are used by Equation (3) to

solve s, while for separate sk’s, only distances within the particular class k are used to estimate sk.

4. To classify a test data point z ∈ Ω, compute the posterior probability of z belonging to each class k:

pk(z) =
πkφ(z|Mk)∑K
l=1 πlφ(z|Ml)

, k = 1, 2, ...,K . (6)

The class of z is then set to argmax1≤k≤K pk(z).

To determine the number of components Mk for every class k, we use cross validation. In our

experiments, we set an equal number of components for each class for simplicity.

3.2 Kernel HLM

In this approach, a mixture model is formed by HLM without performing clustering, but instead in the

manner of a kernel density estimate. Specifically, each training data point is treated as a cluster centroid in

its class. Let the training data be {z1, z2, ..., zN}. The number of data points in class k is nk,
∑K

k=1 nk = N .

Without loss of generality, we assume the indices of the data in class k are {zn̆k+1, ..., zn̆k+nk}, where

n̆k =
∑k−1

k′=1 nk′ , for k > 1, and n̆1 = 0. We form a nonparametric model for class k:

φ(z|Mk) =

n̆k+nk∑
i=n̆k+1

1

nk

(
1√
πb

)2s

e−
D2(z,zi)

b ,

where the scale parameter b and the shape parameter s of the Gamma distribution are obtained by the

following data-driven method. For each data point zi, we find its nearest neighbor in the same class, say

zi′ . We then set ui = D2(zi, zi′), and model ui, i = 1, ..., N , by the Gamma distribution (γ : b, s).
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Let ū = 1
N

∑N
i=1 ui, ũ = (

∏N
i=1 ui)

1/N . The maximum likelihood estimator for s is solved by

log ŝ − ψ(ŝ) = log(ū/ũ), where ψ(·) is the di-gamma function; and that for b is b̂ = ū/ŝ. In practice,

we find this approach to choose kernel parameters effective. After the kernel pseudo-density for each class

is obtained, a test sample is classified by maximizing the posterior probability in Equation (6).

Kernel HLM is similar to k-NN in the sense that both require distances to all the training data to classify

a test point. In Kernel HLM, every training data point contributes smoothly to the decision function, while

in k-NN, only the closest k neighbors matter.

4 Incremental Learning via HLM

Data streams are ordered sequences of data records that often arrive in batches at a high speed, or in

bursts. They are common in the digital world, for instance, network traffic, financial transactions, web

search, and social media feeds. It is desirable to train statistical models on the fly—to exploit available

data immediately and to adapt efficiently with newly arrived data. Another scenario that motivates learning

models incrementally is when the entire data cannot be loaded into memory at once. In this section, we will

show that our proposed mixture models based on HLM can be estimated conveniently in an incremental

learning setup. Two incremental learning schemes are proposed. The first is more efficient in computation,

while the second attempts to achieve better clustering by combining old and new data.

4.1 Scheme I

The main idea of Scheme I is to cluster each batch of data separately and update the mixture model by

adding new components. Let us follow the notation in Section 2.1 and Section 3. Recall that Ij is the set

of indices for data in the jth cluster and ui, i = 1, ..., N , is the squared distance between the ith data point

and its corresponding centroid. Given any clustering result, to estimate the parameters in the mixture model,

an inspection of Equation (3) reveals that we only need the following information about every cluster: the

cluster size |Ij |, the arithmetic mean of the ui’s with i ∈ Ij , denoted by ūj , and the geometric mean of

all the ui’s, ũ = (
∏N

i=1 ui)
1/N . Therefore, in incremental learning, data up to the current batch can be

discarded after those statistics are stored. Only ũ needs to be updated when new data arrive, while |Ij | and

ūj for any existing jth cluster can simply be stored. With every new batch of data, more |Ij | and ūj will be

computed and stored for the newly created clusters. Suppose the number of data that have arrived so far is

N1 and the number of data in a new batch is N2. Let N = N1 + N2. Let ũ1 = (
∏N1

i=1 ui)
1/N1 , which has

been stored. When a new batch arrives, the geometric mean of all the squared distances can be updated by

ũ = ũ
N1/N
1 (

∏N
i=N1+1 ui)

1/N , which does not require the old ui’s, i = 1, ..., N1. The new statistics along

with those computed from previous data are then combined to solve the parameters using Equation (3).
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4.2 Scheme II

Although Scheme I is highly efficient in computation, it is a concern that clustering each batch of data

separately degrades the quality of the clusters in comparison with clustering all the data together. This issue

becomes more severe when an individual batch is small. We therefore propose Scheme II which trades off

performance of clustering and computational intensity by sampling from the past data. To exploit clustering

result on the past data, we draw samples per cluster and assign them weights so that data in clusters of

different sizes are equally important. Then, weighted clustering is performed on randomly sampled points

from the past data and all the data in the new batch.

We randomly sample a small number of data points in each cluster already obtained and assign them

relatively large weights (assuming the cluster size is large). Smaller weights are given to data in the new

batch because they are not subject to sampling. Specifically, in the past data, for a cluster j, if the cluster

size |Ij | is larger than a pre-determined threshold v, we randomly select v samples as well as the cluster

centroid from that cluster. The cluster centroid is taken because it is a natural representation for the whole

cluster. If |Ij | ≤ v, all the samples from that cluster will be selected. In practice, v can be a small number.

Suppose the ith sampled point is from the jth cluster. Assign weight wi by

wi =


√
|Ij |+1
v+1 if |Ij | > v

1 if |Ij | ≤ v .

Larger weights are put on individual points from down sampled clusters with |Ij | > v. On the other hand,

the weight is dampened from a linear proportion in order to lower the influence of “old” data and to reduce

the effect of decreased dispersion in sampled data. For data in the new batch, their weights are set to 1.

A weighted clustering algorithm is then applied to the sampled data and the data from the new batch.

The three distance-based clustering algorithms introduced in Section 2.2 can be applied, taking a weighted

distance matrix as input. Let the distance matrix D = (di,i′) be the original symmetric matrix of distances

between any pair of data points i and i′, and H be the diagonal matrix with weights on the diagonal. The

weighted distance matrix is defined by R = HD, no longer symmetric in general. We use the VSH

clustering algorithm supplied with a weighted distance matrix [24]. Because the old cluster centroids

have been assigned relatively large weights, they are likely to become new centroids again. In practice,

we gradually increase the total number of clusters when new data arrive to boost the chance of new data

becoming cluster centroids.

After the cluster centroids are obtained, we re-assign to their nearest centroids data points that are neither

in the new batch nor among the sampled data. Thus all the data that have arrived so far are partitioned into

the new clusters, although many did not participate in generating the centroids. The new clustering result is

then used to estimate the parameters by Equation (3). This process is repeated at the arrival of every new

batch. A possible way to save computation is to estimate the parameters using only the weighted samples

and the new batch based on Equation (4).
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5 Experiments

In this section, we compare our classification methods via HLM with several other distance-based

classification methods on twelve data sets of wide variety. We first describe the experimental setup and data

sets, and then present the classification results, computational time, and the performance of the incremental

learning methods.

5.1 Methods and Setup for Comparison

The methods we have examined are described briefly below.

1. SVM: The standard SVM is applied in three ways. In the first version (SVM-similarities as kernel), the

N ×N symmetric distance matrix is modified into a kernel (positive semidefinite) by spectrum clip,

which clips all the negative eigenvalues to zero [12]. In the other two versions (SVM-similarities as

features), a feature vector is formed for each data point by its similarities to all the training data; then

SVM with linear or Gaussian radial basis function (RBF) kernel is applied to those feature vectors.

2. Potential-SVM: This is a more generalized SVM applicable to any given N × N distance matrix

which may not be square or positive definite [10].

3. SVM-KNN: A standard SVM is applied to classification using a kernel modified from the pairwise

distance matrix for a test sample and its k nearest neighbors.

4. Similarity Discriminant Analysis (SDA): A group of generative modeling approaches to classification

based on similarities (or distances) are considered, including the basic SDA, local SDA, and mixture

SDA. Since local SDA consistently performs well in practice and is comparable to the other two [12],

we select local SDA as the representative of this particular set of methods for comparison. Local SDA

is reduced to k-NN if there is not enough data to fit distributions over the distances [12].

5. k-NN: Choose the class with the highest occurrences among a test sample’s k nearest neighbors.

6. Weighted k-NN: The weight design can have two different aims: affinity (assign larger weights to the

data points that are closer to the test sample) and diversity (assign smaller weights to highly similar

data points). Specifically, three approaches of weight assignment are tested: affinity weights, kernel

ridge interpolation weights (KRI), and kernel ridge regression weights (KRR) [12]. KRI-KNN and

KRR-KNN consider both affinity and diversity.

7. Mixture HLM (vsh, gknn, agg) and Kernel HLM: Three clustering methods, VSH, generalized k-

means, and agglomerative clustering, are used with Mixture HLM. The three algorithms are denoted

in short by HLM (vsh), HLM (gknn), HLM (agg). Kernel HLM does not require clustering.

In Mixture HLM, we exclude clusters containing fewer than three data points from parameter estimation.

The Ward’s method [25] is used in agglomerative clustering. Generalized k-means algorithm is initialized
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by the k-center algorithm which is also based on pairwise distances. For VSH, we select the clustering

which yields the minimum total within cluster distance based on 20 random initializations.

For each data set, we randomly select 20% as test data and the remaining 80% as training. Parameters

that need to be pre-chosen for the classifiers, such as the penalty parameter C and the RBF parameter γ

for SVM, weight λ for KRI k-NN and KRR k-NN, the neighborhood size k for k-NN and local SDA,

and the number of components in HLM, are all selected by 10-fold cross validation on the training set.

The trained model is then applied to classify the held out test data. We repeat this process for 20 random

partitions into training and test data. The“one-versus-one” scheme [26] is used in the multi-classification of

SVM. We assume an equal number of components in each class for HLM; and the number of components is

selected from {1, 2, 3, .., 10, 12, 14, 16} by cross validation. For the other classifiers, the candidate values of

parameters subject to cross validation selection are the same as those in [12] 1. The only tuning parameter

which users select for HLM is the number of components in each class, relatively simple compared with the

other classifiers. For Kernel HLM, no tuning parameter is required.

5.2 Data Sets

Table 1: Summary of Data Sets

Name # data # classes Symmetric Vector Distance Type
Amazon-47 204 47 No No Percentage
Aural Sonar 100 2 Yes No Human judgment
Caltech-101 8677 101 Yes Yes Kernel

Face Rec 945 139 Yes No Cosine similarity
Mirex07 3090 10 Yes No Human judgment

Patrol 241 8 No No Frequency
Voting 435 2 Yes Yes Value difference metric
Protein 213 4 Yes No Sequence-alignment similarity

Color Signature 600 6 Yes No Wasserstein distance
Photo Composition 150 3 Yes No IRM distance

Imagery 1400 5 Yes Yes Euclidean distance
Sonar 208 2 Yes Yes Euclidean distance

Table 1 presents the basic information about the data sets, e.g., data size, the number of classes. The

column entitled “Symmetric” shows whether the distance is symmetric, and the column entitled “Vector”

shows whether the data object is a vector. For details on the first eight data sets, we refer to [12]. We add

four more new data sets described below.

Imagery data contains 1400 images from 5 semantic classes: mountain scenery (300), women (300),

flower (300), city scene (300), and beach scene (200). We indicate the class size in the parenthesis. Each

image is represented by a 64 dimensional feature vector and the Euclidean distance is used.

Color signature contains 600 images each represented by its color signature, which is a set of weighted
1See Table 2 in [12] for details on the ranges of parameters.
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vectors (or discrete distribution). There are 6 classes in total, 5 of which are the classes in Imagery data

and the last one is a new semantic class named “man-made items”. Every class includes 100 images. The

color signature of an image is formed based on its segmentation. The average color vector of the pixels in

each segment and the percentage of pixels in the segment with respect to the whole image are recorded in

the color signature. The number of segments is dynamically determined, the average for this data set being

10. The distance between color signatures is the Kantorovich-Wasserstein distance [27], better known as the

Mallows distance in statistics [28].

Photography composition is used in [29] as a benchmark data set for composition classification. There

are 150 photos equally divided into three classes: horizontal, vertical, and centered. The spatial layout of

each photo is represented by a set of weighted spatial relational vectors (SRV). We refer to [29] for details

on SRV. The distance used is the integrated region matching (IRM) distance [30], a greedy variant of the

Wasserstein distance.

Sonar data is from the UCI machine learning repository, with 208 samples from two classes (111, 97).

The data are 60-dimensional vectors under the Euclidean distance.

Because HLM takes distances as input, for some data sets given with similarities, we need to convert

similarities into dissimilarities, aka, distances. If the similarity S has an obvious upper bound S̄, the

corresponding distance is defined as S̄ − S, otherwise, 1/S. On the other hand, for the algorithms taking

similarities as input, we also need to convert distances into similarities. Since distances have no upper

bound, the corresponding similarities are defined as their reciprocals. We use an appropriate upper bound of

all the similarities as the self-similarity of a data point. In addition, if the distance between two data points,

D(z, z′), is not symmetric, for example, those for the Amazon-47 and Patrol data, we use the symmetrized

distance [D(z, z′) +D(z′, z)]/2.

The Amazon-47, Face Rec, and Patrol data sets are so small that it is not meaningful to perform

clustering in each class. Among the HLM-based algorithms, we thus only apply Kernel HLM to these data

sets. For the data set Patrol, the distances between data points only take three values: 0.0, 0.5, and 1.0. The

distance between a data point and its nearest neighbor is often 0.0, causing numerical issues for parameter

estimation in Kernel HLM. Therefore, for Patrol, we manually select the shape and scale parameters from

the range of estimated values based upon HLM (vsh).

5.3 Classification Results

We have tested fifteen classification algorithms. These algorithms fall into several categories: k-NN and its

variations, SVM-based, local SDA, and HLM-based. For clarity, we present results for six representative

algorithms in Table 2. For completeness, we report the results of the other nine algorithms in Table 3. We

choose one algorithm from each of the three categories in existing literature, namely, k-NN, local SDA,

and SVM-similarities as features (rbf). These algorithms are well-known and basic among their respective

categories. In addition, the more complicated versions are not evidently stronger. For the newly developed

Mixture HLM algorithms using clustering, we found that HLM (vsh) consistently works well while HLM
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(gknn) exhibits more variation in performance. HLM (agg) is also relatively stable in performance but is

more expensive in computation. We thus show results of HLM (vsh) and Kernel HLM in Table 2.

Because the results of HLM (vsh) and Kernel HLM differ considerably on several data sets with either

outperforming the other in some cases, one may naturally raise the question which algorithm should be used

in practice. Can we reliably select the better of the two algorithms during training? We propose a solution

by cross validation. As described in Section 5.1, cross validation is used to select the number of components

per class for HLM (vsh). We simply augment the candidate pool for the number of components by nk, the

total data size in the kth class. The case of nk corresponds to Kernel HLM. We denote this meta-algorithm

by HLM (kernel-vsh) and also report its classification results in Table 2.

Table 2: Classification error rates of distance-based classifiers (I)

Classifier Amazon-47 Aural Sonar Caltech-101 Color-signature

k-NN 16.95 (4.85) 17.25 (6.80) 41.55 (0.95) 33.25 (3.65)

Local SDA 16.83 (5.11) 17.75 (7.66) 41.99 (0.52) 35.71 (2.67)

SVM-similarities as features (rbf) 82.68 (5.92) 14.00 (7.18) 38.16 (0.75) 36.58 (3.54)

Kernel HLM 15.61 (5.37) 13.75 (5.67) 40.18 (1.00) 31.54 (3.96)
HLM (vsh) NA 16.00 (5.39) 48.52 (1.08) 36.42 (3.42)

HLM (kernel-vsh) NA 15.25 (4.60) 40.18 (1.00) 32.92 (5.06)

Classifier Face Rec Imagery Mirex Patrol

k-NN 4.23 (1.43) 36.64 (3.04) 61.21 (1.97) 11.88 (4.42)
Local SDA 4.55 (1.67) 42.87 (2.52) 60.94 (1.94) 11.77 (4.62)

SVM-similarities as features (rbf) 13.97 (2.08) 47.16 (2.38) 55.72 (2.06) 21.98 (4.86)

Kernel HLM 3.81 (1.36) 36.64 (3.13) 69.42 (2.33) 11.46 (4.09)
HLM (vsh) NA 44.73 (2.71) 61.62 (1.92) NA

HLM (kernel-vsh) NA 36.64 (3.13) 61.62 (1.92) NA

Classifier Protein Photo Composition Sonar Voting

k-NN 29.88 (9.82) 24.83 (6.79) 20.71 (6.48) 5.52 (1.61)

Local SDA 17.44 (6.52) 22.67 (8.92) 20.00 (6.79) 6.38 (2.07)

SVM-similarities as features (rbf) 1.05 (1.37) 19.67 (7.14) 21.31 (5.71) 6.03 (1.85)

Kernel HLM 29.07 (7.52) 23.17 (8.66) 23.81 (5.05) 6.09 (1.86)

HLM (vsh) 23.49 (10.55) 23.50 (7.11) 24.40 (4.69) 4.89 (2.12)
HLM (kernel-vsh) 24.42 (9.91) 23.50 (7.11) 23.57 (5.42) 4.89 (2.12)

In Table 2 and 3, for each method, we show its mean error rate in percent and standard deviation (values

in parenthesis) across 20 random partitions of training and test data. The one-sided Wilcoxon signed-rank

test at the significance level 0.05 is used to test whether the result of one method, in terms of the error rates

obtained from the 20 random partitions, differs significantly from another, as is done in [12]. The lowest

classification error rate in each column of Table 2 is underscored. For each data set, we show in bold font

the lowest error rate among all the methods (that is, the best across results in both Table 2 and Table 3). In

order to mark the methods that yield error rates not significantly worse than the best result according to the

Wilcoxon test, we also show in bold font the error rates of these methods.

According to Table 2, Kernel HLM ranks on the top most frequently. Among the algorithms reported
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Table 3: Classification error rates of distance-based classifiers (II)

Classifier Amazon-47 Aural Sonar Caltech-101 Color-signature

affinity k-NN 15.24 (5.05) 15.50 (5.89) 39.20 (0.86) 32.21 (3.12)

KRI k-NN (clip) 17.44 (4.89) 13.75 (6.87) 30.13 (0.42) 31.13 (3.01)
KRR k-NN (pinv) 16.10 (4.90) 15.50 (6.69) 29.90 (0.44) 31.79 (3.36)

SVM-KNN (clip) 17.56 (4.60) 13.75 (7.40) 36.82 (0.60) 31.25 (3.45)

SVM-similarities as kernel (clip) 76.83 (7.85) 13.00 (5.34) 33.49 (0.78) 34.96 (3.91)

SVM-similarities as features (linear) 74.76 (9.10) 14.25 (6.94) 38.18 (0.78) 36.71 (3.59)

P-SVM 70.12 (8.82) 14.25 (5.97) 34.23 (0.95) 33.54 (4.06)

HLM (gknn) NA 14.50 (5.22) 52.01 (1.13) 39.79 (4.82)

HLM (agg) NA 13.75 (6.30) 48.03 (1.29) 38.42 (4.04)

Classifier Face Rec Imagery Mirex Patrol

affinity k-NN 4.21 (1.40) 35.98 (3.63) 61.15 (1.90) 11.56 (4.03)
KRI k-NN (clip) 4.18 (1.38) 35.43 (3.32) 61.20 (2.03) 11.56 (4.54)

KRR k-NN (pinv) 4.10 (1.40) 35.91 (3.54) 61.18 (1.96) 12.81 (4.62)

SVM-KNN (clip) 4.23 (1.25) 36.13 (3.60) 61.25 (1.95) 11.98 (4.36)
SVM-similarities as kernel (clip) 4.18 (1.25) 44.23 (2.87) 57.83 (2.05) 25.63 (6.01)

SVM-similarities as features (linear) 4.39 (1.31) 48.86 (2.59) 55.54 (2.52) 23.44 (5.78)

P-SVM 4.05 (1.44) 40.93 (2.33) 63.81 (2.70) 40.42 (5.94)

HLM (gknn) NA 39.79 (4.82) 81.10 (1.66) NA

HLM (agg) NA 46.27 (2.98) 61.54 (1.74) NA

Classifier Protein Photo Composition Sonar Voting

affinity k-NN 30.81 (6.61) 25.33 (7.56) 20.36 (6.00) 5.86 (1.78)

KRI k-NN (clip) 30.35 (9.71) 22.83 (8.18) 20.00 (4.90) 5.29 (1.80)
KRR k-NN (pinv) 9.65 (4.95) 22.67 (8.79) 20.71 (5.22) 5.52 (1.69)
SVM-KNN (clip) 11.86 (5.50) 21.50 (9.57) 20.00 (5.29) 5.17 (2.20)

SVM-similarities as kernel (clip) 5.35 (4.60) 19.33 (7.64) 19.29 (6.25) 4.89 (2.05)
SVM-similarities as features (linear) 3.02 (2.76) 19.33 (7.42) 20.60 (5.60) 5.34 (1.86)

P-SVM 1.86 (1.89) NA 19.29 (4.64) 5.34 (1.72)
HLM (gknn) 14.53 (12.59) 23.67 (8.02) 31.43 (5.81) 6.95 (2.67)

HLM (agg) 15.00 (13.00) 24.00 (8.86) 24.88 (6.18) 5.17 (2.37)

in this table, Kernel HLM performs best on 6 data sets, while SVM (rbf) performs best on 4 data sets and

k-NN on 1 data set (tied best with Kernel HLM on Imagery). If we restrict the comparison to the three

generative modeling approaches, local SDA, HLM (vsh), and Kernel HLM, Kernel HLM performs best on

7 data sets, while local SDA performs best on 4 data sets and HLM (vsh) on 1 data set. Among all the

classification results in both Table 2 and Table 3, Kernel HLM achieves the lowest error rate or an error rate

not significantly worse than the lowest on 5 data sets, tied with SVM (rbf).

Which of the two, Kernel HLM or HLM (vsh), yields a higher accuracy on a particular data set can

only be known after testing, while HLM (kernel-vsh) makes the choice beforehand in training. Among

the 9 data sets to which HLM (kernel-vsh) is applied, HLM (kernel-vsh) chooses consistently across all the

random partitions the stronger one out of Kernel HLM and HLM (vsh) for 4 data sets: Caltech-101, Imagery,

Mirex, Voting. Consequently, HLM (kernel-vsh) yields the same result as either Kernel HLM or HLM

(vsh), whichever is better, on these data sets. On Photo Composition data, HLM (kernel-vsh) consistently
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chooses HLM (vsh) although HLM (vsh) performs slightly worse on average than Kernel HLM. However,

on this data set, the difference in the results of HLM (vsh) and Kernel HLM is quite small, 23.50% versus

23.17%. On Sonar, HLM (kernel-vsh) performs slightly better than both Kernel HLM and HLM (vsh). On

Aural Sonar, Color-signature, and Protein, the accuracy of HLM (kernel-vsh) is between Kernel HLM and

HLM (vsh), and most frequently, closer to the better of the two. To summarize, the results show that cross

validation is a reliable way to choose between Kernel HLM and HLM (vsh); and the meta-algorithm HLM

(kernel-vsh) performs nearly as well as the better one of Kernel HLM and HLM (vsh) chosen in hindsight

on any particular data set.

The performance of SVM (rbf) deviates remarkably from the other algorithms on several data sets. For

Protein data, it yields a significantly lower error rate than the others, 1.05% versus other values ranging from

17.44% to 29.88%. On the other hand, it performs much worse than the others on Amazon-47 and Patrol.

For Amazon-47, SVM (rbf) has an error rate of 82.68% while the others range from 15.61% to 16.95%; for

Patrol, its error rate is 21.98% while the others are tightly around 11.50%. Similar performance on these

three data sets, either very good or very poor, is also observed for SVM (clip), SVM (linear), and P-SVM,

as shown in Table 3. In a sense, the SVM-based algorithms are more volatile.

When the input data are vectors, it is interesting to investigate the effect on classification by using

the distance/similarity alone and ignoring the algebraic aspect of the data. For the vector-type Sonar and

Imagery data, we apply the standard SVM with linear and Gaussian RBF kernels to the original vectors.

The penalty parameter C and RBF kernel parameter γ are selected by cross validation using a smaller

set of candidate values than those in [12] due to the excessive running time to tune the parameters. The

experiments are conducted under the aforementioned experimental setup. For Sonar, the mean error rates

(standard deviations) of SVM (standard linear) and SVM (standard rbf) are 16.90% (5.05%) and 20.00%

(5.40%) respectively; for Imagery, the corresponding error rates are 37.88% (3.29%) and 32.13% (2.27%).

Compared with the classification methods listed in Table 2 and Table 3, we see that SVM (standard linear)

achieves the lowest error rate for Sonar while SVM (standard rbf) achieves the lowest error rate for Imagery.

These two lowest error rates are also statistically significant among all the classification results. On the

other hand, the worse result of the two methods on either data set is outperformed by a distance-based

classification method. In addition, there is statistically significant difference between the classification

results of SVM (standard linear) and SVM (standard rbf) on both data sets, while no such significance

is observed between SVM (linear) and SVM (rbf) using similarities as features. This indicates that the

particular geometry of the data in the vector space has played an important role. Even when SVM is applied

in the original space, a specific kernel has to be used to leverage the geometry.

5.4 Computational Complexity and Running Time

Recall that the total number of data is N =
∑

k nk, where nk is the number of data in class k, and the

total number of clusters for all the classes is M̄ =
∑

kMk, where Mk is the number of cluster components

in class k. The worst scenario complexity of the three distance-based clustering algorithms (vsh, gknn,
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agg) is
∑

k n
2
k. After distances between all the data points and their corresponding centroids are obtained,

quantities required to set up Equation (3) can be computed in O(N ) time. We solve Equation (3) numerically

by binary search over a fixed range, which is of complexity O(cM̄ ), where c is a constant time to solve a

single equation. Therefore, provided with the clustering result, the complexity of estimating mixture models

for all the classes is O(N + cM̄). Since N > M̄ , the complexity of model estimation is linear in the total

number of data N . The main computational cost is thus on clustering.

In practice, we find that VSH runs fast and returns good clustering results. Compared with local SDA

and SVM-based classifiers, HLM (vsh) has significantly shorter running time, making it attractive for large

scale computation. The two parameters of SVM (rbf), the penalty parameter C and the RBF parameter

γ, are selected by grid search using cross validation, an extremely computationally intensive process. In

contrast, HLM (vsh) only has one tuning parameter, the number of components in a class, to choose by

cross validation. For SVM (rbf), we use the “one-versus-one” scheme for multi-classification. Crammer and

Singer [31] proposed a structural multiclass SVM which reduces running time significantly by separating all

K classes together. When similarities are treated as features, such structural SVM can be applied directly

to cut running time. However, for other distance schemes in distance-based classification using SVM, for

instance, in the case of modifying the pairwise distance matrix into a special kernel, how to apply structural

multiclass SVM needs future investigation, which is beyond the scope of this paper.

Kernel HLM has achieved highly competitive classification performance on most data sets. It is similar

to k-NN in that the computation during classification is mostly on computing the distances between a test

point and every training point. During training, k-NN is not totally free in computation because cross

validation is used to choose k, while Kernel HLM only estimates two parameters by an extremely fast

algorithm after one round of 1-NN is performed. However, compared with HLM (vsh) exploiting a possibly

much smaller set of cluster centroids than the original data, Kernel HLM is expensive during classification.

For large data sets, a subset of data points may be sampled from each class and used as training data in

Kernel HLM. This approach is interesting to investigate in the future.

Table 4: Running time of distance-based classifiers

Classifier Amazon-47 Color-signature Imagery Mirex

k-NN 50 ms 50 ms 400 ms 950 ms

Local SDA 4.7 s 2 min 2.9 s 4 min 33.6 s 23 min 26.9 s

SVM-similarities as features (rbf) 10.5 s 2 min 21.3 s 20 min 4.8 s 220 min 16.8 s

HLM (vsh) NA 40.2 s 4 min 47.8 s 11 min 1.3 s

Kernel HLM 30 ms 280 ms 1.7 s 4.4 s

In Table 4, comparison of the running time is provided for k-NN, local SDA, SVM (rbf), HLM (vsh),

and Kernel HLM on several example data sets. The experiments run on a 2.66 GHz Intel CPU. HLM-based

algorithms are implemented in C, local SDA is in Matlab and C/MEX 2, and the remaining algorithms are
2http://staff.washington.edu/lucagc/software.html. We use the Matlab Executable (MEX) files.
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in C++ 3. Table 4 reports the average running time to finish one round of training and testing, the average

taking over 20 random partitions into training and test data. As Table 4 shows, HLM (vsh) and Kernel HLM

are significantly faster than local SDA and SVM (rbf) on all the data sets except Imagery for which HLM

(vsh) and local SDA are close in speed. For all the data sets, SVM (rbf) has the longest running time while

k-NN has the shortest. On some data sets, the running time of SVM (rbf) is larger than that of Kernel HLM

or k-NN by more than three orders of magnitude. Compared with k-NN, Kernel HLM is within one order of

magnitude slower, caused mainly by the cost of estimating the scale and shape parameters. For local SDA,

SVM (rbf), and HLM (vsh), the main computational cost is on training, while the classification of test data

is fast. Both Kernel HLM and k-NN are computationally intensive for classifying test data if the training

data set is large. For example, on Mirex data, the average testing time of Kernel HLM across 20 random

partitions is 295 ms while HLM (vsh) takes only 29 ms.

5.5 Incremental Learning Results

Given a data set, we randomly select 20% of the data as the held-out test and the remaining 80% as training

data in incremental learning. Among the training data, 20% are randomly selected as the initial training

batch, and the rest are divided into eight batches of equal size (10% each). One round of incremental

learning is performed on every newly arrived batch. We experiment with the two schemes of HLM-based

incremental learning introduced in Section 4. As a baseline comparison, the performance of the trivial batch

learning method, which retrains all the data that have arrived so far are also reported. VSH is used to perform

clustering for all the methods. Specifically, in HLM incremental learning scheme (II), VSH performs the

weighted clustering by taking weighted distance matrix defined in Section 4.2.

For both of the HLM incremental learning schemes, the number of components in each class in the

initial training batch is set to 4. Because the size of every new batch is comparable with the initial data, in

HLM incremental learning Scheme (I), we set the number of components in each class for every new batch

to 4 as well. In HLM incremental learning Scheme (II), to prevent old cluster centroids from staying as the

only centroids, we gradually increase the number of components in each class by 2 at every learning round.

To establish a common ground for comparing this scheme and the baseline retraining scheme, we use the

same number of components in each class at every learning round for the two approaches.

Table 5: Running time of HLM-based incremental learning methods in seconds

Classifier Color signature Imagery Mirex Voting

HLM-Incremental (I) 0.22 0.40 0.84 0.14

HLM-Incremental (II) 1.06 2.48 2.87 0.59

HLM-Retrain 1.72 12.54 22.89 2.04

When the available training data increase, the corresponding classification error rates achieved by the
3http://ee.washington.edu/research/guptalab/similaritylearning/simMLL-linux.tgz.
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Figure 1: Compare the two HLM incremental learning methods versus the baseline of retraining on all the
available data using four data sets. The classification error rates are shown at every learning round when the
available training data increase.

methods are shown in Figure 1. We denote the two incremental learning methods by HLM-Incremental

(I) and (II), and the baseline scheme by HLM-Retrain. In HLM-Incremental (II), the threshold v for down

sampling in any cluster is 4. Again, clusters containing fewer than three data points are not used in the

parameter estimation of HLM. All the experiments are conducted on a 2.66 GHz Intel CPU. Table 5 presents

the total running time across all the learning rounds for the three methods. HLM-Incremental (I) has the

shortest running time on all the data sets, while HLM-Incremental (II) is the second fastest, and HLM-

Retrain is the slowest. The reduction in computation time achieved by HLM-Incremental (I)/(II) with respect

to HLM-Retrain is proportionally most prominent on the largest data set, Mirex.

As shown in Figure 1, for Mirex data and Color signature data, except for the last two learning rounds,

the classification error rates follow a clear decreasing trend at the increase of available training data. For

these two data sets, HLM-Retrain stays as the winner for most of the learning rounds. However, it is

interesting to note that for Voting data, the fastest scheme HLM-Incremental (I) is the winner among the three

algorithms across all the rounds; and HLM-Incremental (II) outperforms HLM-Retrain at several rounds.

For Mirex and Color signature, HLM-Incremental (II), the second fastest scheme, performs slightly worse
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than HLM-Retrain at most of the learning rounds; and the fastest scheme HLM-Incremental (I) performs

worst at almost all the learning rounds. This observation demonstrates a trade-off between computational

intensity and performance. For all the data sets except Color signature, less than 5% difference is observed

between the classification error rates obtained by HLM-Incremental (II) and HLM-Retrain at the last

learning round. HLM-Incremental (II) even performs slightly better than HLM-Retrain on Mirex and Voting

data at the last learning round. For Imagery and Voting data, the error rate curves for all the methods

fluctuate, and at the last learning round, the error rates are only slightly better or even worse than where

they start off after the first round. The fluctuations of the error rate curves are also observed at the last two

learning rounds for Color signature. We believe that such counter intuitive outcomes have resulted from the

inherent randomness of the data.

6 Conclusions

A distance-based mixture modeling approach based on hypothetical local mapping (HLM) is proposed.

Because only pairwise distances are needed, HLM is particularly useful for data that cannot be easily

described by a mathematical entity. The application of the proposed mixture model to classification is

explored. We have compared this approach with several other state-of-the-art distance-based classification

methods on various data sets. Experimental results show that HLM-based algorithms perform competitively

at low computational cost during both training and testing. Because a mixture model is estimated for each

class separately, scalability in the number of classes is achieved. HLM adapts readily to learning a classifier

in an incremental manner. We have proposed two incremental learning schemes for HLM and found that

at a much faster speed, they achieve similar classification accuracy as the baseline of retraining over all the

available data.
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A Proof of Equation (4)

Recall N is the data size, M is the number of clusters, Ij is the data index set for the jth cluster. Suppose

the squared distances between the data points and their centroids are ui with weights wi, i = 1, ..., N . We

have
∑N

i=1wi = 1. Denote u = (u1, u2, ..., uN ) and w = (w1, w2, ..., wN ). The maximum likelihood
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estimator maximizes the following weighted log likelihood:

L(u|s, b1, b2, ..., bM ) =
M∑
j=1

∑
i∈Ij

wi log f(ui)

=

M∑
j=1

∑
i∈Ij

wi

[
(s− 1) log ui − s log bj −

ui
bj
− log Γ(s)

]
. (7)

With a fixed s, L(u|s, b1, b2, ..., bM ) can be maximized individually on every bj :

max
b1,...,bM

L(u|s, b1, b2, ..., bM ) =

M∑
j=1

max
bj

∑
i∈Ij

wi

[
(s− 1) log ui − s log bj −

ui
bj
− log Γ(s)

]
. (8)

Because
∑

i∈Ij wi

[
(s− 1) log ui − s log bj − ui

bj
− log Γ(s)

]
is a concave function of bj , we can obtain its

maximum by setting the first derivative to zero:
∑
i∈Ij

wi(−
s

bj
+
ui
b2j

) = 0. Let ˇ̄uj =

∑
i∈Ij wiui∑
i∈Ij wi

be the

weighted average squared distance for centroid j. Then bj is solved by bj =
ˇ̄uj
s

. Now substitute bj into (8):

max
s
L(u|s) = max

s

M∑
j=1

∑
i∈Ij

wi

[
s log s+ s · (log

ui
ˇ̄uj
− ui

ˇ̄uj
)− log Γ(s)− log ui

]
.

Since log Γ(s) is a convex function of s, it is easy to show that L(u|s) is a concave function of s. The

maximum of L(u|s) is thus determined by setting its first derivative to zero:

M∑
j=1

∑
i∈Ij

wi log s+

M∑
j=1

∑
i∈Ij

wi log
ui
ˇ̄uj
−

M∑
j=1

∑
i∈Ij

wiψ(s) = 0 ,

which is equivalent to:

log ŝ− ψ(ŝ) = log

∏M
j=1

ˇ̄u

∑
i∈Ij

wi

j∏N
i=1 u

wi
i

 . (9)
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