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Abstract

Mixture discriminant analysis (MDA) has gained applications in a wide range of engineering and
scientific fields. In this paper, under the paradigm of MDA, wepropose a two-way Gaussian mixture
model for classifying high dimensional data. This model regularizes the mixture component means
by dividing variables into groups and then constraining theparameters for the variables in the same
group to be identical. The grouping of the variables is not pre-determined, but optimized as part of
model estimation. A dimension reduction property for a two-way mixture of distributions from a general
exponential family is proved. Estimation methods for the two-way Gaussian mixture with or without
missing data are derived. Experiments on several real data sets show that the parsimonious two-way
mixture often outperforms a mixture model without variablegrouping; and as a byproduct, significant
dimension reduction is achieved.
Keywords: Two-way mixture model; Mixture of Gaussian distributions;High dimensional classifica-
tion; Variable grouping; Dimension reduction

1 Introduction

Mixture discriminant analysis (MDA) developed by Hastie and Tibshirani [1] has enjoyed wide spread ap-
plications in engineering, for instance, to verify speakers [2], to classify types of limb motion [3], to predict
topics of news articles [4], and to tag online text documents[5]. The prominence in broad applications held
by mixture models speaks for their appeals, which come from several intrinsic strengths of the generative
modeling approach to classification as well as the power of mixture modeling as a density estimation method
for multivariate data [6].

Although discriminative approaches to classification, e.g., support vector machine [7], are often ar-
gued to be more favorable because they optimize the classification boundary directly, generative modeling
methods hold multiple practical advantages including the ease of handling a large number of classes, the
convenience of incorporating domain expertise, and the minimal effort required to treat new classes in an
incremental learning environment. The mixture model, in particular, is inherently related to clustering or
quantization if each mixture component is associated with one cluster [8, 9, 10]. This insight was exploited
by Li and Wang [11] to construct a mixture-type density for sets of weighted and unordered vectors that
form a metric but not vector space, another evidence for the great flexibility of mixture modeling.

As with other approaches to classification, many research efforts on MDA revolve around the issue
of high dimensionality. For the Gaussian mixture, the issueboils down to the robust estimation of the
component-wise covariance matrix and mean vector. Earlierwork focused more on the covariance because
the maximum likelihood estimation often yields singular ornearly singular matrices when the dimension
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is high, causing numerical breakdown of MDA. The same issue arises for linear or quadratic discriminant
analysis (LDA, QDA), less seriously than for MDA though. An easy way to tackle this problem is to use
diagonal covariance matrices. Friedman [12] developed a regularized discriminant analysis in which the
component-wise covariance matrix is shrunk towards a diagonal or a common covariance matrix across
components. Banfield and Raftery [9] decomposed the covariance matrix into parts corresponding to the
volume, orientation, and shape of each component. Parsimonious mixture models were then proposed by
assuming shared properties in those regards for the covariances in different components.

Recently, research efforts have been devoted to constraining the mean vectors as well. It is found that
when the dimension is extremely high, for instance, larger than the sample size, regularizing the mean vector
results in better classification even when the covariance structure is maintained highly parsimoniously or
when covariance is not part of the estimation. For instance,Guo et al. [13] extended the centroid shrinkage
idea of Tibshirani et al. [14] and proposed to regularize theclass means under the LDA model. Some
dimensions of the mean vectors are shrunk to common values sothat they become irrelevant to class labels,
achieving variable selection. Pan and Shen [15] employed theL1 norm penalty to shrink mixture component
means towards the global mean so that some variables in the mean vectors are identical across components,
again resulting in variable selection. Along this line of research, Wang and Zhu [16] proposed theL∞ norm
penalty to regularize the means and select variables.

In this paper, we investigate another approach to regularizing the mixture component means. Specifi-
cally, we divide the variables into groups and assume identical values for the means of variables in the same
group under one component. This idea was first explored by Li and Zha [4] for a mixture of Poisson distri-
butions (more accurately, a product of independent Poissondistributions for multivariate data). They called
such a model a two-way mixture, reflecting the observation that the mixture components induce a partition
of the sample points, each usually corresponding to a row in adata matrix, while the variable groups form
a partition of the columns in the matrix. Another related line of research is the simultaneous clustering
or biclustering approach [17, 18], where sample points and their variables are simultaneously clustered to
improve the clustering effectiveness and cluster interpretability. Lazzeroni and Owen [17] introduced the
notion of plaid model which leads to simultaneous clustering with overlapping. Unlike two-way mixture,
the simultaneous clustering approach focuses on a set of data samples and does not provide a generative
model for an arbitrary sample point, in a strict sense. Here,we study the two-way mixture of Gaussians for
continuous data and derive its estimation method. The issueof missing data that tends to arise when the di-
mension is extremely high is addressed. Experiments are conducted on several real data sets with moderate
to very high dimensions. A dimension reduction property of the two-way mixture of distributions from any
exponential family is proved.

Our motivation for exploring the two-way mixture is multifold. First, in engineering applications, very
differently from science where we seek a simple explanation, black box classifiers are well accepted. In
scientific studies, the features (aka variables) often havenatural meanings, for instance, each feature cor-
responds to a gene; and the purpose is to reveal the relationship between the features and some other
phenomenon. Variable selection is desired because it identifies features relevant to the phenomenon. In
engineering systems, the features are often defined and supplied artificially; and the purpose is to achieve
good prediction performance with as much information as possible. Therefore selecting features may not
be a concern, but how to combine their forces is critical. We thus focus on a parsimonious mixture model
that can be more robustly estimated, but not implying the discard of any features. Moreover, estimating
the two-way mixture model is computationally less intensive than selecting variables usingL1 or L∞ norm
penalty.

Second, from model estimation perspective, assuming identical means for variables in the same group
is essentially to quantize the unconstrained means of the variables and replace those means by a smaller
number of quantized values. Consider the following hypothetical setup. Suppose the means ofk variables
X1, ...,Xk are independently sampled from a normal distributionN (0, s2). Denote the means byµ1, ...,
µk. SupposeXj , j = 1, ..., k, are independently sampledn times fromN (µj, σ

2), the samples denoted
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by x(i)
j , i = 1, ..., n, j = 1, ..., k. Without regularization, the maximum likelihood estimation for µj is

µ̂j =
∑n

i=1 x
(i)
j /n. The total expected squared error isE

[∑k
j=1(µj − µ̂j)

2
]

= kσ2/n. On the other hand,

if the constrained estimator̂µ =
∑k

j=1

∑n
i=1 x

(i)
j /nk is used for all theµj ’s, the total expected squared

error isE
[∑k

j=1(µj − µ̂)2
]

= (k − 1)s2 + σ2/n. We see that ifs2 < σ2/n, the constrained estimator̂µ

yields lower total expected squared error thanµ̂j , j = 1, ...,k. The rationale for the quantization strategy is
that if we substitutêµj ’s as the trueµj ’s and divide them into groups of similar values, theµj ’s in the same
group are considered to be sampled from a distribution with asmall s2, and hence have a good chance of
satisfying the inequality above.

The rest of the paper is organized as follows. The two-way Gaussian mixture model is formulated in
Section 2. We consider two cases for the component covariance matrices: diagonal for very high dimensions
and unconstrained for moderately high dimensions. In Section 3, for the two-way mixture of distributions
from any exponential family, a dimension reduction property is presented, with proof in the Appendix. The
estimation algorithm and the method to treat missing data are described in Section 4. Experimental results
with comparisons are provided in Section 5. Finally, we conclude and discuss future work in Section 6.

2 Two-way Gaussian Mixture Model

Let X = (X1,X2, ...,Xp)
t, wherep is the dimension of the data, and the class label ofX beY ∈ K =

{1, 2, ...,K}. A sample ofX is denoted byx = (x1, x2, ..., xp)
t. We present the notation for a general

Gaussian mixture model assumed for each class before introducing the two-way model. The joint distribu-
tion of X andY under a Gaussian mixture isf(X = x, Y = k) = akfk(x) = ak

∑Rk

r=1 πkrφ(x|µkr,Σkr),
whereak is the prior probability of classk, satisfying0 ≤ ak ≤ 1 and

∑K
k=1 ak = 1, andfk(x) is the

within-class density forX. Rk is the number of mixture components used to model classk, and the total
number of mixture components for all the classes isM =

∑K
k=1Rk. Let πkr be the mixing proportions for

therth component in classk, 0 ≤ πkr ≤ 1,
∑Rk

r=1 πkr = 1. φ(·) denotes the pdf of a Gaussian distribution:
µkr is the mean vector for componentr of classk andΣkr is the corresponding covariance matrix. To avoid
notational complexity, we write the above mixture model equivalently as follows

f(X = x, Y = k) =

M∑

m=1

πmpm(k)φ(x|µm,Σm) , (1)

where1 ≤ m ≤ M is the new component label assigned in a stacked manner to allthe components in all
the classes. The prior probability for themth componentπm = akπkr if m is the new label for therth
component in thekth class. Specifically, letRk =

∑k
k′=1Rk′ andR0 = 0. ThenM = RK . Let the set

Rk = {Rk−1+1, Rk−1+2, ..., Rk} be the set of new labels assigned to theRk mixture components of class
k. The quantitypm(k) = 1 if componentm “belongs to” classk and 0 otherwise. That is,pm(k) = 1 only
form ∈ Rk, which ensures that the density ofX within classk is a weighted sum over only the components
inside classk. Moreover, denote the associated class of componentm by b(m). If pm(k) = 1, b(m) = k.
Then we haveak =

∑
m∈Rk

πm andπkr = πRk−1+r
/ak.

Two-way Mixture with Diagonal Covariance Matrices: If the data dimension is very high, we adopt
diagonal covariance matrixΣm = diag(σ2

m,1, ..., σ
2
m,p), i.e., the variables are independent within each

mixture component. Model (1) becomes

f(X = x, Y = k) =
M∑

m=1

πmpm(k)

p∏

j=1

φ(xj |µm,j, σ
2
m,j) . (2)

In Model (2), the variables are in general not independent within each class as one class may con-
tain multiple mixture components. To approximate the classconditional density, the restriction of diagonal
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covariance matrix on each component can be compensated by having more additive components. With diag-
onal covariance matrices, it is convenient to treat missingvalues, a particularly useful trait for applications
highly prone to missing values, for instance, microarray gene expression data where more than90% of the
genes miss some measurements [19]. We will show that the two-way Gaussian mixture model with diagonal
covariance matrices can handle missing data effectively. On the other hand, for moderately high dimensional
data, we will propose shortly a two-way mixture with full covariance matrices.

For Model (2), we need to estimate parametersµm,j andσ2
m,j for each dimensionj in each mixture

componentm. When the dimensionp is very high, sometimesp ≫ n, we may need a more parsimonious
model. We now introduce the two-way mixture model with a grouping structure imposed on the variables.
In order not to confuse with the clustering structure of samples implied by the mixture components, we
follow the naming convention used by Li and Zha [4]: “cluster” refers to a variable cluster and “component”
means a component in the mixture distribution. For each class k, suppose the variables are grouped intoL
clusters. The cluster identity of variablej in classk is denoted byc(k, j) ∈ {1, 2, ..., L}, k = 1, ...,K,
j = 1, ...,p, referred to as thecluster assignment function. The two-way Gaussian mixture is formulated as
follows:

f(X = x, Y = k) =

M∑

m=1

πmpm(k)

p∏

j=1

φ(xj |µm,c(b(m),j), σ
2
m,c(b(m),j)) . (3)

Within each mixture component, variables belonging to the same cluster have identical parameters since
the second subscripts forµ andσ2 are given by the variable cluster assignment function. Thus, for a fixed
mixture componentm, onlyL, rather thanp, µ’s andσ2’s need to be estimated. Also note thatc(k, j) is not
pre-specified, but optimized as part of model estimation. Inour current study, the cluster assignment function
c(k, j) depends on class labelk, but extension to a component specific assignment is straightforward.

Two-way Mixture with Full Covariance Matrices: When the data dimension is moderately high, one
may suspect that diagonal covariance matrices adopted in Model (2) are not efficient for modeling the data
and full covariance matrices can fit the data better with a substantially fewer number of components in the
mixture. In order to exploit a two-way mixture as entailed in(3), we propose to first model the within-
class density by a Gaussian mixturef(X = x, Y = k) =

∑M
m=1 πmpm(k)φ(x|µm, Σ̃k), whereΣ̃k is an

unconstrained common covariance matrix across all the components in classk. OnceΣ̃k is identified, a
linear transform (a “whitening” operation) can be applied to X so that the transformed data follow a mixture
with component-wise diagonal covariance matrix, more specifically, the identity matrixI. AssumeΣ̃k is

non-singular and hence positive definite, we can writeΣ̃k = (Σ̃
1
2
k )t(Σ̃

1
2
k ), whereΣ̃

1
2
k is full ranked. Let

Wk = ((Σ̃
1
2
k )t)−1 andZ = WkX. The distribution ofZ andY is

g(Z = z, Y = k) =
M∑

m=1

πmpm(k)φ(z|Wkµm, I) . (4)

In the light of the above model forZ, (3) is a plausible parsimonious model to impose onZ by the
idea of forming variable clusters. In fact, the covariance matrix I in (4) is not as general as the diagonal
covariance matrix assumed in Model (3). In our study, we adopt Model (3) directly forZ instead of fixing
the covariance matrix toI, allowing more flexibility in modeling. In initialization,however, it is reasonable
to set the mean ofZ in componentm asνm = Wkµm and the covariance matrixΣm = I.

In summary, let the two-way Gaussian mixture forZ be

g(Z = z, Y = k) =
M∑

m=1

πmpm(k)

p∏

j=1

φ(zj |νm,c(b(m),j), σ
2
m,c(b(m),j)) .
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SinceX = W−1
k Z, we can transformZ back toX and obtain the distribution for the original data:

f(X = x, Y = k) =

M∑

m=1

πmpm(k)φ(x|W−1
k νm, (W

−1
k )Σm(W−1

k )t), (5)

whereνm = (νm,c(b(m),1), ..., νm,c(b(m),p))
t, andΣm = diag

(
σ2
m,c(b(m),1), ..., σ

2
m,c(b(m),p)

)
.

We thus have two options when employing the two-way Gaussianmixture: (a) if the data dimension is
too high for using a full covariance matrix, we assume diagonal covariance matrix as in Model (3); (b) if a
full covariance matrix is desired, we suggest Model (5) which involves essentially whitening all the mixture
components and then assuming Model (3) for the transformed data.

As a final note, to classify a sampleX = x, the Bayes classification rule is used:ŷ = argmaxkf(Y =
k|X = x) = argmaxkf(X = x, Y = k).

3 Dimension Reduction

In this section, we present a dimension reduction property for the two-way mixture of distributions from
a general exponential family. Consider a univariate distribution from an exponential family assumed for

the jth variable inX: φ(xj |θ) = exp
(∑S

s=1 ηs(θ)Ts(xj) −B(θ)
)
h(xj). The parameter vectorθ is

re-parameterized as thecanonical parameter vectorη(θ) and thecumulant generating functionB(θ) .
T(xj) = (T1(xj), ..., TS(xj))

t is the sufficient statistic vector ofxj with sizeS. For a two-way mixture
model, variables in the same cluster within any class share parameters. We thus have the following model:

f(X = x, Y = k) =

M∑

m=1

πmpm(k)

p∏

j=1

φ
(
xj|θm,c(b(m),j)

)
. (6)

Recall thatb(m) is the class which componentm belongs to andc(b(m), j) is the cluster index thejth vari-
able belongs to. Model (6) implies a dimension reduction property for the classification purpose, formally
stated below.

Theorem 3.1 For xj ’s in the lth variable cluster of classk, l = 1,...,L, k = 1, ...,K, defineTl,k(x) =∑
j:c(k,j)=lT(xj), whereT(xj) is the sufficient statistic vector forxj under the distribution from the expo-

nential family. GivenTl,k(x), l = 1,...,L, k = 1, ...,K, the class labelY is conditionally independent of
x = (x1, x2, ..., xp)

t.

This theorem results from the intrinsic fact about the exponential family: the size of the sufficient statistic is
fixed when the sample size increases. Here, to be distinguished from the number of data points, the sample
size refers to the number of variables in one cluster becausewithin a single data point, these variables can
be viewed as i.i.d. samples. Detailed proof for the theorem is provided in Appendix A.

In the above statement of the theorem, for notation simplicity, we assume the number of variable clusters
under each class is alwaysL. It is trivial to extend to the case where different classes may have different
numbers of variable clusters. Since the size of the sufficient statisticT(xj) isS, the total number of statistics
needed to optimally predict class labelY is SKL. In the special case of Gaussian distribution, the size of
T(xj) is S = 2, whereT1(xj) = xj andT2(xj) = x2

j . In the experiment section, we will show that similar
or considerably better classification performance can be achieved withSKL≪ p. If the way the variables
are clustered is identical across different classes, i.e.,c(k, j) is invariant withk, the dimension sufficient for
predicting class labelY is SL sinceTl,k’s are identical for differentk’s.
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4 Model Estimation

To estimate Model (3), the EM algorithms with or without missing data are derived.
Estimation without Missing Data: The parameters to be estimated include prior probabilities of the

mixture componentsπm, the Gaussian parametersµm,l, σ2
m,l, m = 1, ...,M , l = 1, ...,L, and the cluster

assignment functionc(k, j) ∈ {1, 2, ..., L}, k = 1, ...,K, j = 1, ...,p. Denote the collection of all the pa-

rameters and the cluster assignment functionc(k, j) at iterationt byψt : ψt = {π
(t)
m , µ

(t)
m,l, σ

2(t)
m,l, c

(t)(k, j) :

m = 1, ...,M, l = 1, ..., L, k = 1, ...,K, j = 1, ..., p}. Let the training data be{(x(i), y(i)) : i = 1, ..., n}.
The EM algorithm comprises the following two steps:

1. E-step: Compute the posterior probability,qi,m of each samplei belonging to componentm.

qi,m ∝ π(t)
m pm(y(i))

p∏

j=1

φ
(
x

(i)
j |µ

(t)

m,c(t)(b(m),j)
, σ2(t)

m,c(t)(b(m),j)

)
, subject to

M∑

m=1

qi,m = 1 .

2. M-step: Updateψt+1 by ψt+1 = argmax
ψ′

Q(ψ′|ψt), whereQ(ψ′|ψt) is given below. Specifically, the

updated parameters are given by Eqs.(8)∼ (11) to be derived shortly.

Q(ψ′|ψt) =
n∑

i=1

M∑

m=1

qi,m log


π′mpm(y(i))

p∏

j=1

φ
(
x

(i)
j |µ′m,c′(b(m),j), σ

2′
m,c′(b(m),j)

)

 . (7)

Based on (7), it is easy to see that the optimalπ
(t+1)
m , subject to

∑M
m=1 π

(t+1)
m = 1, are given by

π(t+1)
m ∝

n∑

i=1

qi,m , m = 1, ...,M . (8)

The optimization ofµ(t+1)
m,l , σ2(t+1)

m,l , m = 1, ...,M , l = 1, ...,L, andc(t+1)(k, j), k = 1, ...,K, j = 1,
..., p, requires a numerical procedure. Our approach is to optimize the Gaussian parameters and the cluster
assignment function alternately, fixing one in each turn. Let ηk,l be the number ofj’s such thatc(k, j) = l.

In one round,µ(t+1)
m,l , σ2(t+1)

m,l , andc(t+1)(k, j) are updated by the following equations. Each maximizes
Q(ψt+1|ψt) when the others are fixed.

µ
(t+1)
m,l =

∑n
i=1 qi,m

∑
j:c(t)(b(m),j)=l x

(i)
j

ηb(m),l

∑n
i=1 qi,m

(9)

σ2(t+1)
m,l =

∑n
i=1 qi,m

∑
j:c(t)(b(m),j)=l(x

(i)
j − µ

(t+1)
m,l )2

ηb(m),l

∑n
i=1 qi,m

(10)

c(t+1)(k, j) = argmax
l∈{1,...,L}

n∑

i=1

∑

m∈Rk

qi,m


−

(x
(i)
j − µ

(t+1)
m,l )2

2σ2(t+1)
m,l

− log |σ
(t+1)
m,l |


 . (11)

The optimality of Eq.(9) and Eq.(10) can be shown easily as inthe derivation of the EM algorithm for a

usual mixture model. Given fixed Gaussian parametersµ
(t+1)
m,l andσ2(t+1)

m,l , Q(ψt+1|ψt) can be maximized

by optimizing the cluster assignment functionc(t+1)(k, j) separately for each classk and each variablej.
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See [4] for the argument that applies here likewise. The optimality of c(t+1)(k, j) is then obvious because
of the exhaustive search through all the possible values.

Eqs.(9)∼ (11) can be iterated multiple times. However, considering the computational cost of embed-
ding this iterative procedure in the M-step, we adopt the generalized EM (GEM) algorithm [20], which
ensures thatQ(ψt+1|ψt) ≥ Q(ψt|ψt) rather than solvingmaxψt+1 Q(ψt+1|ψt). Thus, Eqs.(9)∼ (11) are

applied only once. To see thatQ(ψt+1|ψt) ≥ Q(ψt|ψt), let ψ̃ = {π
(t+1)
m , µ

(t+1)
m,l , σ2(t+1)

m,l , c(t)(k, j) :
m = 1, ...,M, l = 1, ..., L, k = 1, ...,K, j = 1, ..., p}. It is straightforward to show thatQ(ψt+1|ψt) ≥
Q(ψ̃|ψt) ≥ Q(ψt|ψt) based on the optimality of Eqs.(8)∼ (10) conditioned on other parameters held fixed.
The computational cost for each iteration of GEM is linear innpML.

To initialize the estimation algorithm, we first chooseRk, the number of mixture components for each
classk. If the training sample size of each class is roughly equal, we assign the same number of compo-
nents to each class for simplicity. Otherwise, the number ofcomponents in a class is determined by its
corresponding proportion in the whole training data set. Then we randomly assign each sample to a mixture
componentm in the given class of that sample. The posterior probabilityqi,m is set to 1 if samplei is
assigned to componentm and 0 otherwise. Also, each variable is randomly assigned toa variable clusterl
in that class. With the initial posterior probabilities andthe cluster assignment function given, an M-step is
applied to obtain the initial parameters. If any mixture component or variable cluster happens to be empty
according to the random assignment, we initializeµm,l andσ2

m,l by the global mean and variance. During
the estimation, we bound the variancesσ2

m,l away from zero using a small fraction of the global variance
in order to avoid the singularity of the covariance matrix .

Estimation with Missing Data: When missing data exist, due to the diagonal covariance matrices
assumed in Model (3), the EM algorithm requires little extracomputation. The formulas for updating the
parameters in the M-step bear much similarity to Eqs. (8)∼ (11). The key for deriving the EM algorithm
when missing data exist is to computeQ(ψt+1|ψt) = E[log f(v|ψt+1) | w, ψt], wherev is the complete
data,w the incomplete, andf(·) the density function.

When there is no real missing data, EM takes the latent component identities of the sample points as the
“conceptual” missing data. When some variables actually lack measurements, the missing data as viewed by
EM contain not only the conceptually missing component identities but also the physically missing values
of the variables. The derivation ofQ(ψt+1|ψt) when real missing data exist is provided in Appendix B. We

present the EM algorithm below. IntroduceΛ(·) as themissing indicator function, that is,Λ(x
(i)
j ) = 1 if the

value ofx(i)
j is not missing and 0 otherwise.

1. E-step: Compute the posterior probability,qi,m, i = 1, ...,n,m = 1, ...,M . Subject to
∑M

m=1 qi,m = 1,

qi,m ∝ π(t)
m pm(y(i))

p∏

j=1

[
Λ(x

(i)
j )φ

(
x

(i)
j |µ

(t)

m,c(t)(b(m),j)
, σ2(t)

m,c(t)(b(m),j)

)
+
(
1 − Λ(x

(i)
j )
)]

. (12)

2. M-step: Update the parameters inψt+1 by the following equations.

π(t+1)
m ∝

n∑

i=1

qi,m, subject to
M∑

m=1

π(t+1)
m = 1 , m = 1, ...,M . (13)

For eachm = 1, ...,M , l = 1, ...,L, let x̃(i)
j,m,l = Λ(x

(i)
j )x

(i)
j + (1 − Λ(x

(i)
j ))µ

(t)
m,l.

µ
(t+1)
m,l =

∑n
i=1 qi,m

∑
j:c(t)(b(m),j)=l x̃

(i)
j,m,l

ηb(m),l

∑n
i=1 qi,m

(14)

σ2(t+1)
m,l =

∑n
i=1 qi,m

∑
j:c(t)(b(m),j)=l(x̃

(i)
j,m,l − µ

(t+1)
m,l )2 + (1 − Λ(x

(i)
j ))σ2(t)

m,l

ηb(m),l

∑n
i=1 qi,m

. (15)
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Let Ω1 = −
(x

(i)
j −µ

(t+1)
m,l

)2

2σ2(t+1)
m,l

− log |σ
(t+1)
m,l |, Ω2 = −

„

µ
(t)

m,c(t)(k,j)
−µ

(t+1)
m,l

«2

+σ2(t)

m,c(t)(k,j)

2σ2(t+1)
m,l

− log |σ
(t+1)
m,l |.

c(t+1)(k, j) = argmax
l∈{1,...,L}

n∑

i=1

∑

m∈Rk

qi,m[Λ(x
(i)
j )Ω1 + (1 − Λ(x

(i)
j ))Ω2] . (16)

5 Experiments

In this section, we present experimental results based on three data sets with moderate to very high di-
mensions: (1) Microarray gene expression data; (2) Text document data; (3) Imagery data. The two-way
Gaussian mixture model (two-way GMM), MDA without variableclustering (MDA-n.v.c.) and Support
Vector Machine (SVM) are compared for all the three data sets. Unless otherwise noted, the covariance
matrices in the mixture models are diagonal because most of the data sets are of very high dimensions, e.g.,
p ≫ n. To make our presentation concise, we also recall that the total number of mixture components for
all the classes is always denoted byM , and the number of variable clusters in each class is denotedbyL.

Microarray Gene Expression Data: We apply the two-way Gaussian mixture model to the microarray
data used by Alizadeh et al. [21]. Every sample in this data set contains the expression levels of 4026
genes. There are 96 samples divided into 9 classes. Four classes of 78 samples in total are chosen for
our experiment, in particular, 42 diffuse large B-cell lymphoma (DLBCL), 16 activated blood B (ABB),
9 follicular lymphoma (FL), and 11 chronic lymphocytic leukemia (CLL). The other classes are excluded
because they contain too few points. Because the sample sizes of these 4 classes are quite different, the
number of mixture components used in each class is chosen according to its proportion in the training data
set. We experiment with a range of values for the total numberof componentsM . The percentage of missing
values in this data set is around5.16%. The estimation method in the case of missing data is used. Weuse
five-fold cross validation to compute the classification accuracy.

Fig.1 shows the classification error rates obtained by MDA-n.v.c.. The minimum error rate10.90% is
achieved whenM = 6. Due to the small sample size, the classification accuracy ofMDA degrades rapidly
whenM increases. For comparison, Fig.1 also shows the classification error rates obtained by the two-way
GMM with L = 20. As we can see, the two-way GMM always yields a smaller error rate than MDA-n.v.c.
at anyM . With L = 20, the two-way GMM achieves the minimum error rate7.26% whenM = 12. In
Fig.1, whenM = 4, i.e., one Gaussian component is used to model each class, MDA is essentially QDA and
the two-way GMM is essentially QDA with variable clustering. The error rate achieved by QDA without
variable clustering is13.26%, while that by QDA with variable clustering is a smaller value of9.48%.

Table 1: The classification error rates in percent achieved by the two-way GMM for the microarray data

Error rate (%) L = 5 L = 10 L = 30 L = 50 L = 70 L = 90 L = 110 n.v.c.
M = 4 8.69 7.12 9.48 10.82 10.82 11.93 11.93 13.26
M = 18 7.26 10.02 8.60 10.82 8.46 9.48 8.46 35.30
M = 36 7.35 5.83 7.17 6.15 7.34 7.48 6.23 44.65

Table 1 provides the classification accuracy of two-way GMM with different values ofM andL. The
minimum error rate in each row is in bold font. As Table 1 shows, for each row, when the number of
mixture components is fixed, the lowest error rate is always achieved by the two-way GMM. According
to Theorem 3.1, this data set can be classified with accuracy7.26% by the two-way GMM atM = 18
andL = 5 using only 40(2KL = 40) dimensions, significantly smaller than the original dimension of
4026. If homogeneous variable clustering is enforced across different classes, that is, the cluster assignment
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Figure 1: The classification error rates obtained for the microarray data using both MDA-n.v.c. and two-way
GMM with L = 20 variable clusters. The total number of componentsM ranges from 4 to 36.

functionc(k, j) is invariant with classk, the classification accuracy is usually worse than the inhomogeneous
clustering. Due to space limitations, we will not show the numerical results. All the results given in this
section are based on inhomogeneous variable clustering.

We may use a data driven method, such as grid search and cross validation, to find the pair ofM and
L that gives the smallest error rate. Under some situations, the physical nature of the data may dominate
the choices forM andL. For many other problems, the density of the data may be well approximated by
mixture models with different values ofM andL. For the purpose of classification, the mixture structure
underlying the density function has no effect. It is known that discovering the true number of components
assuming the distribution is precisely a mixture of Gaussian is a difficult problem and is out of the scope of
this paper. Effort in this direction has been made by Tibshirani and Walther [22].

For comparison, we also apply SVM to this data set and obtain its classification accuracy with five-fold
cross validation. We use the LIBSVM package [23] and the linear kernel with the default selection of the
penalty parameterC. Missing values in the microarray data are replaced by the corresponding value from
the nearest-neighbor sample in Euclidean distance. If the corresponding value from the nearest-neighbor
sample is also missing, the next nearest sample is used. The classification error rate obtained by SVM is
0.00%. Although the minimum error rate of two-way GMM listed in Table 1, i.e.,5.83% atM = 36 and
L = 10, is larger than that of SVM, it uses only 80(2KL = 80) dimensions comparing with the original
dimension of 4026 used by SVM. Additionally, our focus here is not to compete with SVM, but to show that
the parsimonious two-way mixture can outperform a mixture model without variable grouping.

Text Document Data: We perform experiments on the newsgroup data [24]. In this data set, there are
twenty topics, each containing about 1000 documents (emailmessages). We use the bow toolkit to process
this data set. Specifically, the UseNet headers are strippedand stemming is applied [25]. A documentx

(i)

is represented by a word count vector(x
(i)
1 , x

(i)
2 , ..., x

(i)
p ), wherep is the vocabulary size. The number of

words occurred in the whole newsgroup data is about78, 000. In our experiment, to classify a set of topics,
we pre-select words to include in the word count vectors since many words are only related to certain topics
and are barely useful for the topics chosen in the data set. Weuse the feature selection approach described
in [4] to select the words that are of high potential for distinguishing the classes based on the variances of
word counts over different classes. The feature selection in the preprocessing step is not aggressive because
we still retain thousands of words. After selecting the words, we convert the word count vectors to word
relative frequency vectors by normalization. Roughly halfof the documents in each topic are randomly
selected as training samples and the rest test samples.

We apply the two-way GMM to three different data sets, all with more than two classes. Five topics
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Table 2: The classification error rates in percent achieved by the two-way GMM for the three text document
data sets

(a) Data Set 1 with five classes and dimension= 1000

Error rate (%) L = 10 L = 30 L = 50 L = 70 L = 90 L = 110 n.v.c. diff
M = 5 9.19 8.95 9.07 9.27 9.15 9.15 8.95 0.00
M = 20 12.79 9.72 9.80 8.58 9.15 9.39 8.99 -0.41
M = 60 12.06 10.04 9.27 9.80 9.39 9.27 8.54 0.73

(b) Data Set 2 with five classes and dimension= 3455

Error rate (%) L = 10 L = 30 L = 50 L = 70 L = 90 L = 110 n.v.c. diff
M = 5 7.19 6.91 7.07 7.07 7.11 7.15 7.15 -0.24
M = 20 7.88 6.99 6.79 7.88 7.84 7.11 6.06 0.73
M = 60 10.91 7.03 7.43 7.72 7.43 7.35 6.42 0.61

(c) Data Set 3 with eight classes and dimension= 5000

Error rate (%) L = 5 L = 10 L = 20 L = 30 L = 40 L = 50 n.v.c. diff
M = 8 11.41 11.06 10.96 10.79 10.86 10.86 10.79 0.00
M = 32 15.58 11.71 11.11 11.66 11.24 11.9110.24 0.87
M = 96 12.79 14.26 18.23 12.29 11.79 11.0911.01 0.08

from the newsgroup data, referred to in short as,comp.graphics, rec.sport.baseball, sci.med, sci.space,
talk.politics.guns, are used to form our first data set. Each document is represented by a vector containing
the frequencies of 1000 words obtained by the feature selection approach aforementioned. In the second
data set, we use the same topics as in the first one but increasethe dimension of the word frequency vector
to 3455. Our third data set is of dimension 5000 and contains eight topics: comp.os.ms-windows.misc,
comp.windows.x, alt.atheism, soc.religion.christian, sci.med, sci.space, sci.space, talk.politics.mideast. In
all the three data sets, the sample size of each topic in the training data set is around 500, roughly equal to
that of the test data set. We assign the same number of mixturecomponents to each class for simplicity.
Only the total number of componentsM is specified in the discussion.

Table 2 provides the classification error rates of the two-way GMM on the three data sets with different
values ofM andL. WhenM is fixed in each row, the difference between the lowest error rate achieved by
the two-way GMM and the error rate of MDA-n.v.c. is also calculated. These differences are under “diff ” in
the last column of each subtable. In Table 2(a), whenM = 5 and20, the lowest error rates obtained by the
two-way GMM are equal to or smaller than the error rates of MDA-n.v.c.. WhenM = 60, MDA-n.v.c. gives
the overall lowest error rate8.54%, while the lowest error rate obtained by the two-way GMM is9.27% at
L = 50 or 110. When we increase the dimension of the word frequency vectorand the number of topics to
be classified, as in the second and third data sets, Table 2(b)and Table 2(c) show that the lowest error rate
in each row is most of the time achieved by MDA-n.v.c.. However, the differences shown under the column
of “diff ” are always less than 1%. The performance of the two-way GMM is thus comparable to that of
MDA-n.v.c., but is achieved at significantly lower dimensions. For instance, in Table 2(c), whenM = 32,
the value under “diff ” is 0.87% and the lowest error rate of the two-way GMM is obtained atL = 20.
According to Theorem 3.1, atL = 20, this data set is classified using 320(2KL = 320) dimensions versus
the original dimension of5000. Of particular interest is whenM = 5 for the first and second data sets and
M = 8 for the third data set. In those cases, a single component is assigned to each class, and hence MDA
and the two-way GMM are essentially QDA with or without mean regularization. We find that for QDA,
variable clustering results in lower error rates for the second data set and equal error rates for the other two.

Let us examine the two-way mixture models obtained for the two classes,comp.os.ms-windows.miscand
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Figure 2: The sizes of the word clusters forcomp.os.ms-windows.misc(left) andcomp.windows.x(right).

comp.windows.x, in the third data set. Consider for example the models withM = 32 andL = 30. Fig.2
shows the number of words in each of the 30 word (aka variable)clusters for the two classes. These word
clusters are indexed in an order of descending sizes. The sizes of these word clusters are highly uneven. In
each case, the largest cluster accounts for more than half ofthe words. Moreover, the largest cluster contains
words with nearly zero frequencies, which is consistent with the fact that for any particular topic class, a
majority of the words almost never occur. They are thus treated indifferently by the model.

Classification error rates obtained by SVM for these three data sets are also reported. We use the linear
kernel with different values of the penalty parameterC to do the classification. The value ofC with the
minimum cross validation error rate on the training data setis then selected and used for the final classifica-
tion on the test data set. The SVM classification error rates on these three data sets are7.98% (Data Set 1),
5.98% (Data Set 2) and9.67% (Data Set 3), respectively. Comparing with the results listed in Table 2, SVM
is only slightly better than MDA-n.v.c. and two-way GMM. However, two-way GMM achieves these error
rates with a significantly smaller number of dimensions. Also, SVM is computationally more expensive and
not scalable when the number of classes is large. Unlike two-way GMM, SVM does not provide a model
for each class, which in some applications may be needed for descriptive purpose.

Imagery Data: The data set we used contains 1400 images each represented bya 64 dimensional feature
vector. The original images contain256 × 384 or 384 × 256 pixels. The feature vectors are generated as
follows. We first divide each image into 16 even sized blocks (4×4 division). For each of the 16 blocks, the
averageL,U, V color components are computed. We also add the percentage ofedge points in each block
as a feature. The edges are detected by thresholding the intensity gradient at every pixel. In summary, every
block has 4 features, 64 features in total for the entire image. These 1400 images come from 5 classes of
different semantics:mountain scenery(300),women(300),flower (300),city scene(300), andbeach scene
(200), where the numbers in the parenthesis indicate the sample size of each class. Five-fold cross-validation
is used to compute the classification accuracy. We use the same number of mixture components to model
each class.

Table 3 lists the classification error rates obtained by the two-way GMM with a range of values forM
andL. WhenM is fixed, asL increases, the error rates of the two-way GMM tend to decrease. In Table 3,
the lowest error rate in each row is achieved by the two-way GMM. For this data set, because2KL > 64,
dimension reduction is not obtained according to Theorem 3.1. However, the total number of parameters in
the model is much reduced due to variable clustering, especially whenM is large.

Since the dimension of the imagery data is moderate, at leastcomparing with the previous two data
collections, we also experiment with the two-way GMM with full covariance matrices, that is, Model (5)
in Section 2. Table 4 provides the classification error ratesobtained by this model. WhenM is fixed, the
lowest error rates are achieved by two-way GMM except atM = 10 andM = 20. Comparing Table 3
with Table 4, the performance of the two-way GMM with full covariance matrices is slightly worse than the
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two-way GMM with diagonal covariance matrices. In other applications, it has also been noted that using
diagonal covariance matrices often is not inferior to full covariance matrices even at moderate dimensions.
One reason is that the restriction on covariance can be compensated by having more components. It is thus
difficult to observe obvious improvement by relaxing the covariance.

We apply SVM with aradial basis function(RBF) kernel to the imagery classification problem. The
penalty parameterC and the kernel parameterγ are identified by a grid search using cross validation. The
final SVM error rate with five-fold cross validation is31.00%. In Table 3, the minimum error rate of
two-way GMM is32.43% atM = 40 andL = 36. Similar to the previous examples, the classification
accuracies of SVM and two-way GMM for the imagery data are very close. We also apply a variable
selection based SVM to this classification problem since thedimension of the imagery data is moderately
high. The wrapper subset evaluation method [26] and forwardbest-first search in WEKA [27] are employed
to select the optimal subset of variables. In the wrapper subset evaluation method, the classification accuracy
of SVM is used to measure the goodness of a particular variable subset. The final classification is obtained by
applying SVM to the data with selected variables. For the SVMs involved in the variable selection scheme,
the kernel function and the parameters are the same as those for the SVM without variable selection. The
best subset of variables is of size21, yielding a five-fold cross validation error rate of34.93%. Comparing
with the minimum error rates listed in Table 3 and Table 4, i.e., 32.43% (M = 40 andL = 36) and33.21%
(M = 40 andL = 56), the performance of SVM with variable selection is slightly worse than that of
two-way GMM.

Table 3: The classification error rates in percent achieved by the two-way GMM for the imagery data

Error rate (%) L = 8 L = 12 L = 16 L = 24 L = 36 L = 48 L = 52 L = 56 n.v.c.
M = 5 45.50 44.00 44.57 44.21 44.64 43.50 43.93 43.64 43.79
M = 10 40.29 37.86 36.93 35.57 35.43 35.07 35.5035.00 35.57
M = 20 35.21 36.29 35.64 34.93 34.79 35.07 36.0033.93 37.36
M = 30 35.43 36.07 34.86 34.64 33.00 34.57 34.36 34.93 34.64
M = 40 38.79 37.07 36.36 34.79 32.43 35.64 36.00 35.36 36.21
M = 50 37.50 35.50 33.93 34.07 33.21 34.14 34.93 34.93 36.50

Table 4: The classification error rates in percent achieved by the two-way GMM with full covariance matri-
ces for the imagery data

Error rate (%) L = 8 L = 12 L = 16 L = 24 L = 36 L = 48 L = 52 L = 56 n.v.c.
M = 5 46.57 45.86 44.21 44.57 44.57 43.93 43.9343.57 43.79
M = 10 42.86 42.71 41.86 40.43 40.00 37.79 37.14 37.5035.71
M = 20 42.21 43.14 39.50 38.21 36.86 37.07 36.07 35.5734.14
M = 30 43.43 42.14 41.21 39.00 38.50 36.29 35.79 36.79 35.86
M = 40 43.64 42.00 41.50 38.43 36.29 36.07 33.6433.21 33.29
M = 50 42.79 41.07 39.07 37.71 35.93 33.86 34.14 35.29 34.57

Computational Efficiency: We hereby report the running time of two-way GMM on a laptop with 2.66
GHz Intel CPU and 4.00 GB RAM. For the microarray data, whenM = 18 andL = 70, it takes about 30
minutes to train the classifier on four fifths of the data and test the classifier on one fifth of the data (that is,
to finish computation for one fold in a five-fold cross validation setup). For the text document data (2514
training samples, 2475 test samples, 5 classes, 3455 dimensions), whenM = 20 andL = 50, it takes about
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40 minutes to train and test the classifier. For the imagery data, atM = 30 andL = 24, two-way GMM
with diagonal covariance matrices takes only 14 seconds to finish computation for one fold of the five-fold
cross validation. The EM algorithm converges fast and the computational cost for each iteration is linear in
npML. The longer running time required by the microarray as well as the text document data is because
of the high dimensions and coding in Matlab. We expect much shorter running time if the experiments are
conducted using C/C++. Although the grid search of M and L further increases the computation time, the
search can be readily parallelized in a cluster computing environment.

6 Conclusions and Future Work

In this paper, we proposed the two-way Gaussian mixture model for classifying high dimensional data. A
dimension reduction property is proved for a two-way mixture of distributions from any exponential family.
Experiments conducted on multiple real data sets show that the two-way mixture model often outperforms
the mixture without variable clustering. Comparing with SVM with and without variable selection, two-
way mixture model achieves close or better performance. Given the importance of QDA as a fundamental
classification method, we also investigated QDA with mean regularization by variable grouping, and found
that the regularization results in better classification for all the data sets we experimented with.

For data sets arising out of engineering systems, variables, or features, often form natural groups ac-
cording to their physical meanings. Such prior knowledge may be exploited in the future when we create
variable groups in the two-way mixture. Another issue that can be explored is the component-wise whitening
strategy we proposed for moderately high dimensional data when diagonal covariance matrices are consid-
ered too restrictive. In the current experiments, we did notobserve gain from this strategy. It is worthy
to study whether the approach can be improved by more robust estimation of covariance and whether new
applications may benefit from the approach.
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Appendix A

We now prove Theorem 3.1. Denote the number of variables in the lth cluster in classk by ηk,l,
∑L

l=1 ηk,l =

p for all k. Suppose variables in clusterl under classk are{j(k,l)1 , j
(k,l)
2 , ..., j

(k,l)
ηk,l

}. The general two-way
mixture model in (6) can also be written as

f(X = x, Y = k) =

M∑

m=1

πmpm(k)

p∏

j=1

φ
(
xj|θm,c(b(m),j)

)

=
∑

m∈Rk

πm

L∏

l=1

ηk,l∏

i=1

φ
(
x
j
(k,l)
i

|θm,l
)
. (17)
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Since the distribution ofx
j
(k,l)
i

is from the exponential family, we have

ηk,l∏

i=1

φ
(
x
j
(k,l)
i

|θm,l
)

=

ηk,l∏

i=1

exp

(
S∑

s=1

ηs(θm,l)Ts(xj(k,l)
i

) − B(θm,l)

)
h
(
x
j
(k,l)
i

)

= exp

(
S∑

s=1

ηs(θm,l)

ηk,l∑

i=1

Ts(xj(k,l)
i

) − ηk,lB(θm,l)

) ηk,l∏

i=1

h
(
x
j
(k,l)
i

)
(18)

We have definedTl,k(x) =
∑ηk,l

i=1 T(x
j
(k,l)
i

). More specifically,Tl,k(x) = (T l,k,1(x), ..., T l,k,S(x))t,

whereT l,k,s(x) =
∑ηk,l

i=1 Ts(xj(k,l)
i

), s = 1, ...,S. Substitute (18) into (17),

f(X = x, Y = k)

=
∑

m∈Rk

πm

[
L∏

l=1

exp

(
S∑

s=1

ηs(θm,l)

ηk,l∑

i=1

Ts(xj(k,l)
i

) − ηk,lB(θm,l)

)][
L∏

l=1

ηk,l∏

i=1

h(x
j
(k,l)
i

)

]

=



∑

m∈Rk

πm

L∏

l=1

exp

(
S∑

s=1

ηs(θm,l)T l,k,s(x) − ηk,lB(θm,l)

)




p∏

j=1

h(xj)


 .

Becausef(Y = k|X = x) ∝ f(X = x, Y = k),

f(Y = k|X = x) ∝
∑

m∈Rk

πm

L∏

l=1

exp

(
S∑

s=1

ηs(θm,l)T l,k,s(x) − ηk,lB(θm,l)

)

subject to
∑K

k=1 f(Y = k | X = x) = 1. As the posterior probability ofY givenX = x only depends on
T l,k,s(x), X andY are conditionally independent givenT l,k,s(x), l = 1, ...,L, k = 1, ...,K, s = 1, ...,S,
or equivalently,Tl,k(x), l = 1, ...,L, k = 1, ...,K.

Appendix B

The E-step of EM computesQ(ψt+1|ψt) and the M-step maximizes it.Q(ψt+1|ψt) = E[log f(v|ψt+1) |
w, ψt], wherev is the complete data,w the incomplete, andf(·) the density function. Letτ (i) be the latent
component identity ofx(i). We abuse the notationΛ(x(i)) slightly to mean the non-missing variables in
x

(i). Herev = {x(i), y(i), τ (i) : i = 1, ..., n}, andw = {Λ(x(i)), y(i) : i = 1, ..., n}. Q(ψt+1|ψt) =∑n
i=1E

[
log f(x(i), τ (i), y(i)|ψt+1) | Λ(x(i)), y(i), ψt

]
, where

E
[
log f(x(i), τ (i), y(i)|ψt+1) | Λ(x(i)), y(i), ψt

]

= E
[
log π

(t+1)

τ (i) | Λ(x(i)), y(i), ψt

]
+ E

[
log pτ (i)(y(i)) | Λ(x(i)), y(i), ψt

]
+

p∑

j=1

E
[
log φ(x

(i)
j | µ

(t+1)

τ (i),c(t+1)(b(τ (i)),j)
, σ2(t+1)

τ (i),c(t+1)(b(τ (i)),j)
) | Λ(x(i)), y(i), ψt

]
(19)

Let qi,m be the posterior probability forΛ(x(i)) being in componentm underψt, as given in Eq.(12).

The first term in (19),E[log π
(t+1)

τ (i) | Λ(x(i)), y(i), ψt] =
∑M

m=1 qi,m log π
(t+1)
m . The second term in

(19) is zero. For the third term, consider eachj separately. Ifx(i)
j is not missing, that is,Λ(x

(i)
j ) = 1,
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the distribution of the complete data{x(i)
j , τ

(i), y(i)} conditioned on the incomplete data is random only in

terms ofτ (i) ∈ {1, ...,M}, which is the pmf given by the posterior probabilitiesqi,m. Thus,

E
[
log φ(x

(i)
j | µ

(t+1)

τ (i),c(t+1)(b(τ (i)),j)
, σ2(t+1)

τ (i),c(t+1)(b(τ (i)),j)
) | Λ(x(i)), y(i), ψt

]

=
M∑

m=1

qi,m ·


log

1√
2πσ2(t+1)

m,c(t+1)(b(m),j)

−

(
x

(i)
j − µ

(t+1)

m,c(t+1)(b(m),j)

)2

2σ2(t+1)

m,c(t+1)(b(m),j)


 .

If x(i)
j is missing, that is,Λ(x

(i)
j ) = 0, the distribution of the complete data{x(i)

j , τ
(i), y(i)} conditioned on

the incomplete data is random in terms of bothτ (i) ∈ {1, ...,M} and the variablex(i)
j . The conditional dis-

tribution of τ (i) is still given by the posterior probabilitiesqi,m,m = 1, ...,M . The conditional distribution

of x(i)
j given{Λ(x(i)), y(i), τ (i) = m} underψt is N (µ

(t)

m,c(t)(b(m),j)
, σ2(t)

m,c(t)(b(m),j)
). Thus

E[log φ(x
(i)
j | µ

(t+1)

τ (i),c(t+1)(b(τ (i)),j)
, σ2(t+1)

τ (i),c(t+1)(b(τ (i)),j)
| Λ(x(i)), y(i), ψt]

=
M∑

m=1

qi,m ·


log

1√
2πσ2(t+1)

m,c(t+1)(b(m),j)

−

(
µ

(t)

m,c(t)(b(m),j)
− µ

(t+1)

m,c(t+1)(b(m),j)

)2
+ σ2(t)

m,c(t)(b(m),j)

2σ2(t+1)

m,c(t+1)(b(m),j)


 .

In summary,Q(ψt+1 | ψt) is given by the formula below. Let

∆1 =
(x

(i)
j − µ

(t+1)

m,c(t+1)(b(m),j)
)2

2σ2(t+1)

m,c(t+1)(b(m),j)

, ∆2 =

(
µ

(t)

m,c(t)(b(m),j)
− µ

(t+1)

m,c(t+1)(b(m),j)

)2
+ σ2(t)

m,c(t)(b(m),j)

2σ2(t+1)

m,c(t+1)(b(m),j)

.

Then

Q(ψt+1 | ψt) =

n∑

i=1

M∑

m=1

qi,m log π(t+1)
m +

n∑

i=1

M∑

m=1

p∑

j=1

qi,m ·


log

1√
2πσ2(t+1)

m,c(t+1)(b(m),j)

−
(
Λ(x

(i)
j )∆1 + (1 − Λ(x

(i)
j ))∆2

)



Based on the obtainedQ(ψt+1 | ψt), the formulas for updating the parameters in Eqs.(13)∼ (16) can
be easily derived.
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