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Abstract

Mixture discriminant analysis (MDA) has gained applicagdn a wide range of engineering and
scientific fields. In this paper, under the paradigm of MDA, pvepose a two-way Gaussian mixture
model for classifying high dimensional data. This modelutagzes the mixture component means
by dividing variables into groups and then constraining plagameters for the variables in the same
group to be identical. The grouping of the variables is na-@etermined, but optimized as part of
model estimation. A dimension reduction property for a tway mixture of distributions from a general
exponential family is proved. Estimation methods for thetway Gaussian mixture with or without
missing data are derived. Experiments on several real dasaskow that the parsimonious two-way
mixture often outperforms a mixture model without variagleuping; and as a byproduct, significant
dimension reduction is achieved.

Keywords: Two-way mixture model; Mixture of Gaussian distributiom$igh dimensional classifica-
tion; Variable grouping; Dimension reduction

1 Introduction

Mixture discriminant analysis (MDA) developed by Hastialdribshirani [1] has enjoyed wide spread ap-
plications in engineering, for instance, to verify speakei, to classify types of limb motion [3], to predict
topics of news articles [4], and to tag online text docum¢gsitsThe prominence in broad applications held
by mixture models speaks for their appeals, which come frewel intrinsic strengths of the generative
modeling approach to classification as well as the power gfureé modeling as a density estimation method
for multivariate data [6].

Although discriminative approaches to classification,.,esgpport vector machine [7], are often ar-
gued to be more favorable because they optimize the clagsificboundary directly, generative modeling
methods hold multiple practical advantages including thgeeof handling a large number of classes, the
convenience of incorporating domain expertise, and themaheffort required to treat new classes in an
incremental learning environment. The mixture model, irtipalar, is inherently related to clustering or
guantization if each mixture component is associated with@uster [8, 9, 10]. This insight was exploited
by Li and Wang [11] to construct a mixture-type density fotssef weighted and unordered vectors that
form a metric but not vector space, another evidence for thatdlexibility of mixture modeling.

As with other approaches to classification, many researfdrtefon MDA revolve around the issue
of high dimensionality. For the Gaussian mixture, the isbo#s down to the robust estimation of the
component-wise covariance matrix and mean vector. Eavieek focused more on the covariance because
the maximum likelihood estimation often yields singularngarly singular matrices when the dimension

*Mu Qiao is a Ph.D student in Computer Science and Engineariicigan MS student in Statistics at Penn State University.
Email: muql03@cse.psu.edu

fJia Li is an Associate Professor of Statistics and (by ceyjt€omputer Science and Engineering at Penn State Urtigersi
Email: jiali@stat.psu.edu



is high, causing numerical breakdown of MDA. The same issises for linear or quadratic discriminant

analysis (LDA, QDA), less seriously than for MDA though. Aasy way to tackle this problem is to use
diagonal covariance matrices. Friedman [12] developedyalagzed discriminant analysis in which the

component-wise covariance matrix is shrunk towards a diabor a common covariance matrix across
components. Banfield and Raftery [9] decomposed the cavaianatrix into parts corresponding to the
volume, orientation, and shape of each component. Pargm®mixture models were then proposed by
assuming shared properties in those regards for the coeasan different components.

Recently, research efforts have been devoted to constgathe mean vectors as well. It is found that
when the dimension is extremely high, for instance, largantthe sample size, regularizing the mean vector
results in better classification even when the covarianeetsire is maintained highly parsimoniously or
when covariance is not part of the estimation. For instaGae et al. [13] extended the centroid shrinkage
idea of Tibshirani et al. [14] and proposed to regularize ¢tess means under the LDA model. Some
dimensions of the mean vectors are shrunk to common valusasthey become irrelevant to class labels,
achieving variable selection. Pan and Shen [15] employed tlnorm penalty to shrink mixture component
means towards the global mean so that some variables in the weetors are identical across components,
again resulting in variable selection. Along this line adearch, Wang and Zhu [16] proposed fhg norm
penalty to regularize the means and select variables.

In this paper, we investigate another approach to regutgrithe mixture component means. Specifi-
cally, we divide the variables into groups and assume idahtialues for the means of variables in the same
group under one component. This idea was first explored bydlizha [4] for a mixture of Poisson distri-
butions (more accurately, a product of independent Poid&tnbutions for multivariate data). They called
such a model a two-way mixture, reflecting the observatian the mixture components induce a partition
of the sample points, each usually corresponding to a rondata matrix, while the variable groups form
a partition of the columns in the matrix. Another relateckliof research is the simultaneous clustering
or biclustering approach [17, 18], where sample points &ed variables are simultaneously clustered to
improve the clustering effectiveness and cluster integlyiity. Lazzeroni and Owen [17] introduced the
notion of plaid model which leads to simultaneous clustesivith overlapping. Unlike two-way mixture,
the simultaneous clustering approach focuses on a set afsdatples and does not provide a generative
model for an arbitrary sample point, in a strict sense. Herestudy the two-way mixture of Gaussians for
continuous data and derive its estimation method. The igbmessing data that tends to arise when the di-
mension is extremely high is addressed. Experiments arduoted on several real data sets with moderate
to very high dimensions. A dimension reduction propertyhaf two-way mixture of distributions from any
exponential family is proved.

Our motivation for exploring the two-way mixture is multiéb First, in engineering applications, very
differently from science where we seek a simple explanatiack box classifiers are well accepted. In
scientific studies, the features (aka variables) often mataral meanings, for instance, each feature cor-
responds to a gene; and the purpose is to reveal the relafiobstween the features and some other
phenomenon. Variable selection is desired because itifdsnfeatures relevant to the phenomenon. In
engineering systems, the features are often defined andieditificially; and the purpose is to achieve
good prediction performance with as much information asids. Therefore selecting features may not
be a concern, but how to combine their forces is critical. Westfocus on a parsimonious mixture model
that can be more robustly estimated, but not implying thealid of any features. Moreover, estimating
the two-way mixture model is computationally less inteadivan selecting variables usiig or L., horm
penalty.

Second, from model estimation perspective, assumingig@mheans for variables in the same group
is essentially to quantize the unconstrained means of thables and replace those means by a smaller
number of quantized values. Consider the following hyptithésetup. Suppose the meanskofariables
X1, ..., X, are independently sampled from a normal distributigit0, s?). Denote the means by, ...,
pk. SupposeX;, j = 1, ..., k, are independently sampledtimes from N (i, o?), the samples denoted
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by :z:gl) i=1,..,n,j =1, ..k Without regularization, the maximum likelihood estineatifor v; is
fj =1, 2 /n. The total expected squared erroﬂs{ZéC (15 — f1)?| = ko?/n. On the other hand,

if the constrained estimatgr = Zj D /nk is used for all they;’s, the total expected squared

=1 ]
error isE [Ejzl(uj - H)Q] = (k —1)s®> + 0 /n. We see that it*> < o2 /n, the constrained estimatgr

yields lower total expected squared error thignj = 1, ..., k. The rationale for the quantization strategy is
that if we substitutgi;’s as the trug:;’s and divide them into groups of similar values, fiags in the same
group are considered to be sampled from a distribution wismall s2, and hence have a good chance of
satisfying the inequality above.

The rest of the paper is organized as follows. The two-waysSian mixture model is formulated in
Section 2. We consider two cases for the component covariaradrices: diagonal for very high dimensions
and unconstrained for moderately high dimensions. In 8e@i for the two-way mixture of distributions
from any exponential family, a dimension reduction propéstpresented, with proof in the Appendix. The
estimation algorithm and the method to treat missing dagalascribed in Section 4. Experimental results
with comparisons are provided in Section 5. Finally, we ¢otie and discuss future work in Section 6.

2 Two-way Gaussian Mixture Model

Let X = (X1, Xs, ..., X;,)!, wherep is the dimension of the data, and the class labeXdfeY € ¥ =
{1,2,...,K}. A sample ofX is denoted byx = (z1,2,...,2,)". We present the notation for a general
Gaussian mixture model assumed for each class before udirggl the two-way model. The joint distribu-
tion of X andY under a Gaussian mixture X = x,Y = k) = ax fr(x) = ax Ef:kl Ter O(X| gy s Bk ),s
whereay, is the prior probability of clas#, satisfying0 < a; < 1 and Zleak = 1, and fi(x) is the
within-class density foX. Ry is the number of mixture components used to model dlasnd the total
number of mixture components for all the classesfis= Zle Ry. Let g, be the mixing proportions for
therth component in clask, 0 < 7, <1, Zfﬁl Tk = 1. ¢(+) denotes the pdf of a Gaussian distribution:
W, 1S the mean vector for componenof classk andXy,. is the corresponding covariance matrix. To avoid
notational complexity, we write the above mixture modelieglently as follows

f(X Z mem X‘“mv D) ) ) (1)

wherel < m < M is the new component label assigned in a stacked mannertteeatomponents in all
the classes. The prior probability for theth componentr,,, = apm,. if m is the new label for theth
component in thetth class. Specifically, IeR, = S°F_, Ry andRy = 0. ThenM = Ry. Let the set
Ry = {Rp_1+1, Rp_1+2, ..., R} be the set of new labels assigned to f)emixture components of class
k. The quantityp,, (k) = 1 if componentm “belongs to” class: and 0 otherwise. That ig,, (k) = 1 only
for m € %, which ensures that the densityXfwithin classk is a weighted sum over only the components
inside clasg:. Moreover, denote the associated class of compomely b(m). If p,,,(k) = 1, b(m) = k.
Then we havey, = Zme%k T aANdmy, = ”T%kfur/“k'

Two-way Mixture with Diagonal Covariance Matrices: If the data dimension is very high, we adopt
diagonal covariance matrix,, = diag(c? Opnds .,ag%p), i.e., the variables are independent within each
mixture component. Model (1) becomes

iS]

M
fX=x,Y =k)= Zﬂ'mpm H ‘T]‘:umdﬂ mj) (2)
m=1

In Model (2), the variables are in general not independetthivieach class as one class may con-
tain multiple mixture components. To approximate the ctasglitional density, the restriction of diagonal
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covariance matrix on each component can be compensatedingmaore additive components. With diag-
onal covariance matrices, it is convenient to treat missalges, a particularly useful trait for applications
highly prone to missing values, for instance, microarragegexpression data where more thad; of the
genes miss some measurements [19]. We will show that thevayoSaussian mixture model with diagonal
covariance matrices can handle missing data effectiveith® other hand, for moderately high dimensional
data, we will propose shortly a two-way mixture with full @iance matrices.

For Model (2), we need to estimate parameters; and a,%w- for each dimensiorj in each mixture
componentn. When the dimensiop is very high, sometimes > n, we may need a more parsimonious
model. We now introduce the two-way mixture model with a griog structure imposed on the variables.
In order not to confuse with the clustering structure of sempmplied by the mixture components, we
follow the naming convention used by Li and Zha [4]: “clustexfers to a variable cluster and “component”
means a component in the mixture distribution. For eacts@asuppose the variables are grouped ihto
clusters. The cluster identity of variabjein classk is denoted by:(k, j) € {1,2,...,.L}, k =1, ..., K,

j =1, ..,p, referred to as theluster assignment functioffhe two-way Gaussian mixture is formulated as
follows:

=

fX=xY=k)= Z TmPm (k H O(T | tm, c(b(m). ) Ufnyc(b(m)J)) . 3

Within each mixture component, variables belonging to #me cluster have identical parameters since
the second subscripts farando? are given by the variable cluster assignment function. Tforsa fixed
mixture componentn, only L, rather tharp, u's ando?’s need to be estimated. Also note thét, ;) is not
pre-specified, but optimized as part of model estimatiorulncurrent study, the cluster assignment function
c(k, j) depends on class labk) but extension to a component specific assignment is stfaiglard.
Two-way Mixture with Full Covariance Matrices: When the data dimension is moderately high, one
may suspect that diagonal covariance matrices adopted deMa) are not efficient for modeling the data
and full covariance matrices can fit the data better with atsuttially fewer number of components in the
mixture. In order to exploit a two-way mixture as entailed(8), we propose to first model the within-
class density by a Gaussian mixtufeX = x,Y = k) = 30, Tmpm (k) ¢(X| . Ti), whereXy is an
unconstrained common covariance matrix across all the coemts in clasg. Oncey;, is identified, a
linear transform (a “whitening” operation) can be appliedt so that the transformed data follow a mixture
with component-wise diagonal covariance matrix, more Eﬁpady, the identity matrlxI AssumeX;, is

non-singular and hence positive definite, we can wWiite = (% 2) (Ek) wherezk is full ranked. Let
~1
Wi = (Z2)H)~! andZ = W, X. The distribution ofZ andY is

g(z = Z mem |Wkum71) . (4)

In the light of the above model fdZ, (3) is a plausible parsimonious model to imposeZiy the
idea of forming variable clusters. In fact, the covariancatn® I in (4) is not as general as the diagonal
covariance matrix assumed in Model (3). In our study, we adbpdel (3) directly forZ instead of fixing
the covariance matrix tb, allowing more flexibility in modeling. In initializationhowever, it is reasonable
to set the mean d& in componentn asv,,, = Wy u,,, and the covariance matrX,,, = IL.

In summary, let the two-way Gaussian mixture ¥bbe

=

g(Z = Z,Y = kf) = Z mem H ZJ|Vm C(b 7]),0—,’27176(11(”1)’]-)) .

Jj=1



SinceX = W, 17, we can transfornZ back toX and obtain the distribution for the original data:
fX = Z TP () SX|W W, (W ) E (W), 5)

wherev,, = (Vp, c(b(m), 1) -+ I/m7c(b(m)7p)) andX,, = diag ( mac(b(m), 1) Ugl,c(b(m),p))'

We thus have two options when employing the two-way Gaugssiature: (a) if the data dimension is
too high for using a full covariance matrix, we assume diaj@ovariance matrix as in Model (3); (b) if a
full covariance matrix is desired, we suggest Model (5) whiw/olves essentially whitening all the mixture
components and then assuming Model (3) for the transforraéal d

As a final note, to classify a sampke = x, the Bayes classification rule is usefl= argmax, f (Y =
kX = x) = argmax, f(X =x,Y = k).

3 Dimension Reduction

In this section, we present a dimension reduction propenttfe two-way mixture of distributions from
a general exponential family. Consider a univariate distion from an exponential family assumed for
the jth variable inX: ¢(z;|6) = exp (Z 1 1s(0)Ts(xj) — B(G)) h(zj). The parameter vectd is
re-parameterized as ttenonical parameter vecton(6) and thecumulant generating functioB(0) .
T(z;) = (Ti(zj),...,Ts(x;))" is the sufficient statistic vector af; with size S. For a two-way mixture
model, variables in the same cluster within any class shar@npeters. We thus have the following model:

hS]

M
f(XZXvYZk) = Zﬂ'mpm H x]‘omc(b ))) . (6)

Recall thath(m) is the class which component belongs to and(b(m), j) is the cluster index thgth vari-
able belongs to. Model (6) implies a dimension reductiorpprty for the classification purpose, formally
stated below.

Theorem 3.1 For z;’s in the [th variable cluster of clasg, ! = 1,...,L, k = 1, ..., K, defineTlvk.(x) =
> jweh)=t T (), whereT(z;) is the sufficient statistic vector far; under the distribution from the expo-

nential family. GiverTlvk.(x), l=1,..L, k=1, .., K, the class label” is conditionally independent of
x = (z1, 22, ..., 1p)".

This theorem results from the intrinsic fact about the exgmtial family: the size of the sufficient statistic is
fixed when the sample size increases. Here, to be distingiisbm the number of data points, the sample
size refers to the number of variables in one cluster becaitbén a single data point, these variables can
be viewed as i.i.d. samples. Detailed proof for the theorepravided in Appendix A.

In the above statement of the theorem, for notation simplisie assume the number of variable clusters
under each class is always It is trivial to extend to the case where different classesy inave different
numbers of variable clusters. Since the size of the suffisitatisticT () is S, the total number of statistics
needed to optimally predict class lalélis SK L. In the special case of Gaussian distribution, the size of
T(z;)is S = 2, whereT' (z;) = z; andT(z;) = 3:]2 In the experiment section, we will show that similar
or considerably better classification performance can beesed withS K L < p. If the way the variables
are clustered is identical across different classescik, ) is invariant withk, the dimension sufficient for
predicting class labél is SL sinceT ;s are identical for different’s.



4 Model Estimation

To estimate Model (3), the EM algorithms with or without niigsdata are derived.

Estimation without Missing Data: The parameters to be estimated include prior probalslitiethe
mixture components.,,,, the Gaussian parameteis, ;, o ml, m=1,..,M,l =1, .., L, and the cluster
assignment function(k, j) € {1,2,....,L}, k=1, .., K,j =1, ...,p. Denote the collection of all the pa-
rameters and the cluster assignment functi@nj) at iterationt by ¢ : 1y = {7r ,uml o? () c(t)(k: NE
m=1,..M,1=1,.,Lk=1,..,K,j=1,..,p} Letthe training data b&x®,y®) :i =1,...,n}.
The EM algorithm comprises the following two steps:

1. E-step Compute the posterior probability; ,,, of each sampleé belonging to component..

p M
2(t) ; _
qi;m X 7T U ( m C(t) (b(m),5)’ g m,c(t)(b(m),j)> 5 SUbJeCt toz_l qiom = 1.

2. M-step Updatey; 1 by ¥111 = argmaxQ (¢’ |¢), whereQ(v'|1;) is given below. Specifically, the
,l’bl
updated parameters are given by Eqs~§)L1) to be derived shortly.

p
QI = quzmlog (”mpm H & (235, )7"2%,c/(b<m>,j>))- (7)

i=1 m=1

Based on (7), it is easy to see that the optimfal"), subject toy~"_ (e = 1, are given by
7T7(7t1+1) x Zqim, m=1,...M. (8)

The optimization ofu;iﬁl), 0257?31), m=1,.,M,1=1,..,Landc™ ) (k,j), k=1, .,K,j=1,

..., p, requires a numerical procedure. Our approach is to optintliz Gaussian parameters and the cluster
assignment function alternately, fixing one in each turrt.7},g be the number of’s such that(k, j) = .

In one round,u(t“) o? (t“) andc(t“)(kz j) are updated by the following equations. Each maximizes
Q(1br11]tp) when the others are fixed.

n (@)
(t+1) _ D i1 Gim D (b(m),j)=1 L

Py = 7 )

. Mb(m),1 Zizl qi,m

n 7 t+1
o(t+1) > i1 Gim Zj:at)(b(m),j):z(fvg') - ﬂin,z ))2

m,l n (10)

Mb(m),1 Zizl di,m

(i) _ M(Hll)) )
A (1 5y — _ mil T, + 11
] = argmax di,m og |0, . ( )
(k. ) = arg ,L}Z > S |

i=1 meXy m,l

The optimality of Eq.(9) and Eqg.(10) can be shown easily aberderivation of the EM algorithm for a
usual mixture model. Given fixed Gaussian parameﬁ%ﬁl) ando{(f;l), Q(Yi4+1]1¢) can be maximized

by optimizing the cluster assignment functioft!) (k, j) separately for each clagsand each variablg.
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See [4] for the argument that applies here likewise. Thenugitty of c(t"'l)(k:,j) is then obvious because
of the exhaustive search through all the possible values.

Egs.(9)> (11) can be iterated multiple times. However, considerimg domputational cost of embed-
ding this iterative procedure in the M-step, we adopt theegaized EM (GEM) algorithm [20], which
ensures tha€) (1)) > Q(vy|1y) rather than solvingnaxwHl Q(y1|¢y). Thus, Egs.(9) (11) are
applied only once. To see tha(vr1lvy) > Q(uxler), let = {mh™ WD 52050 Ok 5y -
m=1,.,Ml=1,.,Lk=1,,Kj=1,..,p}. Itisstraightforward to show the(@(¢t+1|wt) >
Q) > Q¢ |yy) based on the optimality of Egs.(8)(10) conditioned on other parameters held fixed.
The computational cost for each iteration of GEM is lineanjn\/ L.

To initialize the estimation algorithm, we first chooBg, the number of mixture components for each
classk. If the training sample size of each class is roughly equalassign the same number of compo-
nents to each class for simplicity. Otherwise, the humberashponents in a class is determined by its
corresponding proportion in the whole training data seermtve randomly assign each sample to a mixture
componentn in the given class of that sample. The posterior probabiljty, is set to 1 if sample is
assigned to component and 0 otherwise. Also, each variable is randomly assignedviariable clustet
in that class. With the initial posterior probabilities atmeé cluster assignment function given, an M-step is
applied to obtain the initial parameters. If any mixture gmment or variable cluster happens to be empty
according to the random assignment, we initializg; ando?,,; by the global mean and variance. During
the estimation, we bound the varianeg,, ; away from zero using a small fraction of the global variance
in order to avoid the singularity of the covariance matrix .

Estimation with Missing Data: When missing data exist, due to the diagonal covarianceicaat
assumed in Model (3), the EM algorithm requires little extaanputation. The formulas for updating the
parameters in the M-step bear much similarity to Egs.~&)L1). The key for deriving the EM algorithm
when missing data exist is to compuig i, 1|¢:) = E[log f(v|Yi+1) | w,vy], wherev is the complete
data,w the incomplete, and(-) the density function.

When there is no real missing data, EM takes the latent coemiadentities of the sample points as the
“conceptual” missing data. When some variables actuatly taeasurements, the missing data as viewed by
EM contain not only the conceptually missing component tidies but also the physically missing values
of the variables. The derivation 6J(v+11|v¢+) when real missing data exist is provided in Appendix B. We

present the EM algorithm below. Introdud€-) as themissing indicator functionthat iS,A(xg-i)) = lifthe
value of:cgi) is not missing and O otherwise.

1. E-step Compute the posterior probability; ,,,, i = 1, ...,n,m = 1, ..., M. Subject tozﬂ]‘le qim = 1,

Qi,m X 7T ﬁ [ P ( "LLm c® (b(m),j )’0252),0(t)(b(m),j)> + (1 - A(:c?))} - (12)

2. M-step Update the parameters i), by the following equations.
n M
W%H) x Zinm’ subject toz 71'7(,2“) =1, m=1,...,.M. (13)
=1 m=1

Foreachm =1, ... M,l =1, ..., L, Iet:c()

jml_

Az 1+ (1 - A ).

(t+1) _ D1 Bim 22 jie®) (b(m) )= 9?“?37”

! Mo(m) d D i1 Givm
n ~(2 t+1 7 t
a(t+1) _ izt dim Zj;c<t>(b(m),j):z($§,3nl “v(nl )2+ (- A(x§ )))"27(71)71 (15)
m,. .

Mb(m),1 Zi:l Qi,m
7



® () 2(t)
(“m,c“)(k,j) Hm.t ) 7 e® (k)

(x(_i) 5:;"1))
LetQ = — gl — log o'V}, Qp = o ~log|o\"tV].
m,l m,l
D (k, j) = argmaxz 3 @A)+ (1 - AEY))0,) . (16)

l€{17 7L}Z 1 me%’k

5 Experiments

In this section, we present experimental results based e tliata sets with moderate to very high di-
mensions: (1) Microarray gene expression data; (2) Textihant data; (3) Imagery data. The two-way
Gaussian mixture model (two-way GMM), MDA without variabtiustering (MDA-n.v.c.) and Support
Vector Machine (SVM) are compared for all the three data. selsless otherwise noted, the covariance
matrices in the mixture models are diagonal because mobkealdta sets are of very high dimensions, e.g.,
p > n. To make our presentation concise, we also recall that tia tamber of mixture components for
all the classes is always denoted d; and the number of variable clusters in each class is dernytéd

Microarray Gene Expression Data: We apply the two-way Gaussian mixture model to the micrgarra
data used by Alizadeh et al. [21]. Every sample in this datacertains the expression levels of 4026
genes. There are 96 samples divided into 9 classes. Foweslad 78 samples in total are chosen for
our experiment, in particular, 42 diffuse large B-cell lyngma (DLBCL), 16 activated blood B (ABB),
9 follicular lymphoma (FL), and 11 chronic lymphocytic learkia (CLL). The other classes are excluded
because they contain too few points. Because the samplke dizbese 4 classes are quite different, the
number of mixture components used in each class is chosendig to its proportion in the training data
set. We experiment with a range of values for the total nurobeomponents\/. The percentage of missing
values in this data set is arouAd 6%. The estimation method in the case of missing data is usedisé/e
five-fold cross validation to compute the classificationuaacy.

Fig.1 shows the classification error rates obtained by MDen The minimum error rat&0.90% is
achieved wherl/ = 6. Due to the small sample size, the classification accurad§@i degrades rapidly
when M increases. For comparison, Fig.1 also shows the classificatror rates obtained by the two-way
GMM with L = 20. As we can see, the two-way GMM always yields a smaller eats than MDA-n.v.c.
at any M. With L = 20, the two-way GMM achieves the minimum error rat€6% whenM = 12. In
Fig.1, whenM = 4, i.e., one Gaussian component is used to model each class j$M3sentially QDA and
the two-way GMM is essentially QDA with variable clusteringihe error rate achieved by QDA without
variable clustering i43.26%, while that by QDA with variable clustering is a smaller valof 9.48%.

Table 1: The classification error rates in percent achieyeth® two-way GMM for the microarray data

Errorrate (%) L=5 L=10 L=30 L=50 L=70 L=90 L=110 n.v.c.
M =4 8.69 7.12 9.48 10.82 10.82 11.93 1193 13.26
M =18 7.26  10.02 8.60 10.82 8.46 9.48 8.46 35.30
M = 36 7.35 5.83 7.17 6.15 7.34 7.48 6.23 44.65

Table 1 provides the classification accuracy of two-way GMihwlifferent values ofdf and L. The
minimum error rate in each row is in bold font. As Table 1 shp¥es each row, when the number of
mixture components is fixed, the lowest error rate is alwagfseved by the two-way GMM. According
to Theorem 3.1, this data set can be classified with accurag; by the two-way GMM atM = 18
and L = 5 using only 40(2K L = 40) dimensions, significantly smaller than the original dimensof
4026. If homogeneous variable clustering is enforced aaldferent classes, that is, the cluster assignment
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Figure 1: The classification error rates obtained for therogiray data using both MDA-n.v.c. and two-way
GMM with I = 20 variable clusters. The total number of componehtsanges from 4 to 36.

functionc(k, ) is invariant with clasg;, the classification accuracy is usually worse than the irdgeneous
clustering. Due to space limitations, we will not show thenmuical results. All the results given in this
section are based on inhomogeneous variable clustering.

We may use a data driven method, such as grid search and eladstion, to find the pair ofi/ and
L that gives the smallest error rate. Under some situatidvesphysical nature of the data may dominate
the choices forlM/ and L. For many other problems, the density of the data may be wellaximated by
mixture models with different values d@ff and L. For the purpose of classification, the mixture structure
underlying the density function has no effect. It is knowatttiscovering the true number of components
assuming the distribution is precisely a mixture of Gausgaa difficult problem and is out of the scope of
this paper. Effort in this direction has been made by Tilzstiand Walther [22].

For comparison, we also apply SVM to this data set and obtsiciassification accuracy with five-fold
cross validation. We use the LIBSVM package [23] and thealinesrnel with the default selection of the
penalty parametef’. Missing values in the microarray data are replaced by theesponding value from
the nearest-neighbor sample in Euclidean distance. If theegponding value from the nearest-neighbor
sample is also missing, the next nearest sample is used. |a$sfication error rate obtained by SVM is
0.00%. Although the minimum error rate of two-way GMM listed in Tatl, i.e.,5.83% at M = 36 and
L = 10, is larger than that of SVM, it uses only 80K L. = 80) dimensions comparing with the original
dimension of 4026 used by SVM. Additionally, our focus heradt to compete with SVM, but to show that
the parsimonious two-way mixture can outperform a mixtuael without variable grouping.

Text Document Data: We perform experiments on the newsgroup data [24]. In thia dat, there are
twenty topics, each containing about 1000 documents (emeskages). We use the bow toolkit to process
this data set. Specifically, the UseNet headers are strippddstemming is applied [25]. A documetif’
is represented by a word count vec(m(f),:z:g’), ...,:cg)), wherep is the vocabulary size. The number of
words occurred in the whole newsgroup data is ali8u000. In our experiment, to classify a set of topics,
we pre-select words to include in the word count vectorsesmany words are only related to certain topics
and are barely useful for the topics chosen in the data setud#/¢he feature selection approach described
in [4] to select the words that are of high potential for digtiishing the classes based on the variances of
word counts over different classes. The feature selectidhd preprocessing step is not aggressive because
we still retain thousands of words. After selecting the vgpndte convert the word count vectors to word
relative frequency vectors by normalization. Roughly hadlthe documents in each topic are randomly
selected as training samples and the rest test samples.

We apply the two-way GMM to three different data sets, allwitore than two classes. Five topics
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Table 2: The classification error rates in percent achieyetthd two-way GMM for the three text document
data sets

(a) Data Set 1 with five classes and dimension000

Errorrate (%) L=10 L=30 L=50 L=70 L=90 L=110 n.vc. diff
M=5 9.19 8.95 9.07 9.27 9.15 9.15 8.95 0.00
M =20 12.79 9.72 9.80 8.58 9.15 9.39 8.99 -041
M =60 12.06 10.04 9.27 9.80 9.39 9.27 854 0.73

(b) Data Set 2 with five classes and dimensioB455

Errorrate (%) L=10 L=30 L=50 L=70 L=90 L=110 n.w.c. diff
M=5 7.19 6.91 7.07 7.07 7.11 7.15 7.15 -0.24
M =20 7.88 6.99 6.79 7.88 7.84 7.11 6.06 0.73
M =60 10.91 7.03 7.43 7.72 7.43 735 6.42 0.61

(c) Data Set 3 with eight classes and dimensiof000
Errorrate (%) L=5 L=10 L=20 L=30 L=40 L=50 n.vc. diff
M =238 1141 11.06 1096 10.79 10.86 10.86 10.79 0.00
M = 32 15.58 11.71 11.11 11.66 11.24 11.9110.24 0.87
M = 96 12.79 14.26 18.23 12.29 11.79 11.0911.01 0.08

from the newsgroup data, referred to in short esmp.graphics, rec.sport.baseball, sci.med, sci.space,
talk.politics.guns are used to form our first data set. Each document is regexsdy a vector containing
the frequencies of 1000 words obtained by the feature seteapproach aforementioned. In the second
data set, we use the same topics as in the first one but indieasé@nension of the word frequency vector
to 3455. Our third data set is of dimension 5000 and contaigist ¢opics: comp.0s.ms-windows.misc,
comp.windows.x, alt.atheism, soc.religion.christiagi,rsed, sci.space, sci.space, talk.politics.mide&st

all the three data sets, the sample size of each topic indimertg data set is around 500, roughly equal to
that of the test data set. We assign the same number of migtun@onents to each class for simplicity.
Only the total number of componenis is specified in the discussion.

Table 2 provides the classification error rates of the twg-B&M on the three data sets with different
values ofM and L. When M is fixed in each row, the difference between the lowest eatsa achieved by
the two-way GMM and the error rate of MDA-n.v.c. is also cdédad. These differences are unddiff” in
the last column of each subtable. In Table 2(a), whér= 5 and20, the lowest error rates obtained by the
two-way GMM are equal to or smaller than the error rates of MDA c.. WhenlM = 60, MDA-n.v.c. gives
the overall lowest error rat&.54%, while the lowest error rate obtained by the two-way GMM i27% at
L = 50 or 110. When we increase the dimension of the word frequency veetdrithe number of topics to
be classified, as in the second and third data sets, Tabl@@¢JTable 2(c) show that the lowest error rate
in each row is most of the time achieved by MDA-n.v.c.. Howetlee differences shown under the column
of “diff” are always less than 1%. The performance of the two-way GMNhus comparable to that of
MDA-n.v.c., but is achieved at significantly lower dimensso For instance, in Table 2(c), whaih = 32,
the value underdiff” is 0.87% and the lowest error rate of the two-way GMM is obéal atl = 20.
According to Theorem 3.1, dt = 20, this data set is classified using 320K L = 320) dimensions versus
the original dimension 05000. Of particular interest is whef/ = 5 for the first and second data sets and
M = 8 for the third data set. In those cases, a single componessigreed to each class, and hence MDA
and the two-way GMM are essentially QDA with or without meagularization. We find that for QDA,
variable clustering results in lower error rates for thess®tdata set and equal error rates for the other two.

Let us examine the two-way mixture models obtained for treedlassescomp.os.ms-windows.miand
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Figure 2: The sizes of the word clusters tmmp.os.ms-windows.mifeft) andcomp.windows.gight).

comp.windows,xin the third data set. Consider for example the models With= 32 and . = 30. Fig.2
shows the number of words in each of the 30 word (aka variathesyers for the two classes. These word
clusters are indexed in an order of descending sizes. The sizthese word clusters are highly uneven. In
each case, the largest cluster accounts for more than hilé efords. Moreover, the largest cluster contains
words with nearly zero frequencies, which is consistenhuliie fact that for any particular topic class, a
majority of the words almost never occur. They are thus ¢ atdifferently by the model.

Classification error rates obtained by SVM for these thrda dats are also reported. We use the linear
kernel with different values of the penalty parameféto do the classification. The value 6f with the
minimum cross validation error rate on the training datas#ten selected and used for the final classifica-
tion on the test data set. The SVM classification error ratethese three data sets aré8% (Data Set 1),
5.98% (Data Set 2) and.67% (Data Set 3), respectively. Comparing with the resultgtish Table 2, SVM
is only slightly better than MDA-n.v.c. and two-way GMM. Hewer, two-way GMM achieves these error
rates with a significantly smaller number of dimensions.oABVM is computationally more expensive and
not scalable when the number of classes is large. Unlikevtayp-GMM, SVM does not provide a model
for each class, which in some applications may be needecegariptive purpose.

Imagery Data: The data set we used contains 1400 images each represerséd bymensional feature
vector. The original images contad®6 x 384 or 384 x 256 pixels. The feature vectors are generated as
follows. We first divide each image into 16 even sized blodks ¢ division). For each of the 16 blocks, the
averagel, U, V color components are computed. We also add the percentaggigefpoints in each block
as a feature. The edges are detected by thresholding timsilgtgradient at every pixel. In summary, every
block has 4 features, 64 features in total for the entire Enathese 1400 images come from 5 classes of
different semanticsmountain scener{800), women(300), flower (300), city sceng300), andbeach scene
(200), where the numbers in the parenthesis indicate thplsasize of each class. Five-fold cross-validation
is used to compute the classification accuracy. We use the samber of mixture components to model
each class.

Table 3 lists the classification error rates obtained by Weway GMM with a range of values fa¥/
and L. WhenM is fixed, asL increases, the error rates of the two-way GMM tend to deerelasTable 3,
the lowest error rate in each row is achieved by the two-wayMGMor this data set, becaug&’ L > 64,
dimension reduction is not obtained according to Theorein3owever, the total number of parameters in
the model is much reduced due to variable clustering, eajpe@hen/ is large.

Since the dimension of the imagery data is moderate, at t@asparing with the previous two data
collections, we also experiment with the two-way GMM witHl fcovariance matrices, that is, Model (5)
in Section 2. Table 4 provides the classification error ratgsined by this model. WheM is fixed, the
lowest error rates are achieved by two-way GMM excepdat= 10 and M = 20. Comparing Table 3
with Table 4, the performance of the two-way GMM with full @iance matrices is slightly worse than the

11



two-way GMM with diagonal covariance matrices. In other laggtions, it has also been noted that using

diagonal covariance matrices often is not inferior to ful/ariance matrices even at moderate dimensions.
One reason is that the restriction on covariance can be aosaped by having more components. It is thus

difficult to observe obvious improvement by relaxing the aeance.

We apply SVM with aradial basis function(RBF) kernel to the imagery classification problem. The
penalty parametet’ and the kernel parameterare identified by a grid search using cross validation. The
final SVM error rate with five-fold cross validation &1.00%. In Table 3, the minimum error rate of
two-way GMM is32.43% at M = 40 and L = 36. Similar to the previous examples, the classification
accuracies of SVM and two-way GMM for the imagery data areyvadose. We also apply a variable
selection based SVM to this classification problem sincediheension of the imagery data is moderately
high. The wrapper subset evaluation method [26] and forwasd-first search in WEKA [27] are employed
to select the optimal subset of variables. In the wrappesetudvaluation method, the classification accuracy
of SVM s used to measure the goodness of a particular varglidset. The final classification is obtained by
applying SVM to the data with selected variables. For the S\iwolved in the variable selection scheme,
the kernel function and the parameters are the same as thiodefSVM without variable selection. The
best subset of variables is of si2g, yielding a five-fold cross validation error rate ®.93%. Comparing
with the minimum error rates listed in Table 3 and Table 4, 82.43% (M = 40 andL = 36) and33.21%

(M = 40 and L = 56), the performance of SVM with variable selection is slighttorse than that of
two-way GMM.

Table 3: The classification error rates in percent achieyetthé two-way GMM for the imagery data

Errorrate (%) L=8 L=12 L=16 L=24 L=36 L=48 L=52 L=56 n.v.cC.
M=5 4550 44.00 4457 4421 4464 4350 4393 4364 43.79
M =10 40.29 37.86 36.93 3557 3543 35.07 35.5035.00 35.57
M =20 3521 36.29 3564 3493 34.79 35.07 36.0033.93 37.36
M =30 3543 36.07 3486 34.64 33.00 3457 3436 3493 34.64
M =40 38.79 37.07 36.36 34.79 3243 3564 36.00 3536 36.21
M =50 3750 3550 33.93 34.07 33.21 3414 3493 3493 36.50

Table 4: The classification error rates in percent achieyetthé two-way GMM with full covariance matri-
ces for the imagery data

Errorrate (%) L=8 L=12 L=16 L=24 L=36 L=48 L=52 L=56 n.v.cC.
M=5 46.57 4586 4421 4457 4457  43.93  43.9343.57 43.79
M =10 42.86 4271 41.86 4043  40.00 37.79 37.14  37.585.71
M =20 4221 43.14 3950 3821 36.86  37.07 36.07  35.534.14
M =30 43.43 4214 4121 39.00 3850 36.29 35.79 36.79 35.86
M =40 43.64 4200 4150 3843 36.29 36.07 33.6433.21 33.29
M =50 4279 41.07  39.07 37.71 3593 33.86 34.14 3529 34.57

Computational Efficiency: We hereby report the running time of two-way GMM on a laptopiva.66
GHz Intel CPU and 4.00 GB RAM. For the microarray data, whén= 18 and . = 70, it takes about 30
minutes to train the classifier on four fifths of the data arsd tiee classifier on one fifth of the data (that is,
to finish computation for one fold in a five-fold cross validat setup). For the text document data (2514
training samples, 2475 test samples, 5 classes, 3455 donshsvhen)M = 20 and L = 50, it takes about
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40 minutes to train and test the classifier. For the imagetg,ddaM = 30 and L = 24, two-way GMM
with diagonal covariance matrices takes only 14 secondsishficomputation for one fold of the five-fold
cross validation. The EM algorithm converges fast and themgdational cost for each iteration is linear in
npM L. The longer running time required by the microarray as weltlee text document data is because
of the high dimensions and coding in Matlab. We expect muadhitehrunning time if the experiments are
conducted using C/C++. Although the grid search of M and tthierrincreases the computation time, the
search can be readily parallelized in a cluster computirngy@mment.

6 Conclusions and Future Work

In this paper, we proposed the two-way Gaussian mixture hrfodelassifying high dimensional data. A

dimension reduction property is proved for a two-way migtof distributions from any exponential family.

Experiments conducted on multiple real data sets show hieatito-way mixture model often outperforms
the mixture without variable clustering. Comparing with EWvith and without variable selection, two-

way mixture model achieves close or better performanceerilie importance of QDA as a fundamental
classification method, we also investigated QDA with meaulegrization by variable grouping, and found
that the regularization results in better classificationalbthe data sets we experimented with.

For data sets arising out of engineering systems, variablefeatures, often form natural groups ac-
cording to their physical meanings. Such prior knowledgey i exploited in the future when we create
variable groups in the two-way mixture. Another issue ttzat loe explored is the component-wise whitening
strategy we proposed for moderately high dimensional d&@nvwdiagonal covariance matrices are consid-
ered too restrictive. In the current experiments, we did gtmgerve gain from this strategy. It is worthy
to study whether the approach can be improved by more rolstistation of covariance and whether new
applications may benefit from the approach.
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Appendix A
We now prove Theorem 3.1. Denote the number of variablesgitticluster in clasé by 7y, 1, SN, mey =
p for all k. Suppose variables in clusteunder class: are {j§k’l),j§k’l), ...,jf,’,fjf)}. The general two-way

mixture model in (6) can also be written as

M p
fX=xY =k = > mmpmk) [[ ¢ (i0m.cpom.)
m=1 j=1

L Mk,
= Z Tm H H 0] (flsz(k.,l) ‘gm,l) . (17)
MER), =11=1
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Since the distribution ij(k,l) is from the exponential family, we have

Nk, Nk,

I1¢ (wjlgk,nwm,l) = HGXP (Z 1s(Om) Ts (2 j000) = B(Gm,z)> h (ijl(k,n)
- Mkl Nkl
= exp (Zﬁs m,l ZT @) = 1k B0 )Hh<fv (kl)> (18)

We have definedl; ;(x) = Z?i’{T(xj(k,l)). More specifically,T; x(x) = (Tix1(x), s T1k.5(%))",
whereT ;. (x) = >./51 Ty(xen), s = 1, ..., S. Substitute (18) into (17),

FX=xY =Fk)
L Nkl L Mk,
= > T HeXp (Z 0., ZT T <kl — Nk, B(Om ))] [HHh(ﬂﬁjng))]
MER, =1 =1 i=1

meR), =1 j=1

= {Z WmHeXP (Zns m) Tk, s( )nk,lB(om,l)>:| [H h(l‘j)] :

Becausef (Y = k|X =x) x f(X =x,Y = k),
FY =kX=x)oc Y WmHeXP (Z??s m ) T gs(X) — Uk,zB(Om,z)>
mERy

subject toZkK:1 f(Y =k | X =x) = 1. As the posterior probability of given X = x only depends on
T x.s(x), X andY are conditionally independent givén ;. s(x), L = 1, ..., L,k =1, ..., K,s =1, ..., S,
or equivalently,T; .(x),l =1, ..., L, k=1, ..., K.

Appendix B

The E-step of EM computeQ(;+1]1:) and the M-step maximizes iQ(1y11|Y:) = Ellog f(v|ti+1) |
w,1;], wherev is the complete datay the incomplete, and(-) the density function. Let®) be the latent
component identity ok(). We abuse the notatiof(x() slightly to mean the non-missing variables in
x@, Herev = {x® y® 70 . =1 ... n}, andw = {A(xD),y® i = 1,...n}. Qry1lthr) =
S FE [log Fx® 70y @)ap, 1) | A(x(i)),y(i),zpt] , Where

E {10 FxD, 70 @Dy, 1y | A(Xa)),y(i),w]

= F [1 wl o SV TAD), (i)ﬂﬁt] + B [1055297(1') (y™) | A(X(i)%y(i)’%] +

t-+1) 2(t+1) i
ZE [loggb (+ i) et+1) (p(r( )])70 20) (1) (p(r () ) | A(x®), yt ),lﬁt} (19)

Let ¢;.., be the posterior probability fak (x(?)) being in component: undery, as given in Eq.(12).
The first term in (19),E[log 7 (Hl | AD), 5@ ] = M g log 7h™) . The second term in
(19) is zero. For the third term, conS|der eatkeparately. Ifxg.z) is not missing, that isA(:cg.i)) =1,
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the distribution of the complete da{aﬂéi), 7 41 conditioned on the incomplete data is random only in
terms ofr(® ¢ {1,..., M}, which is the pmf given by the posterior probabilitigs,,. Thus,

i) (t+1) (t+1) i
10g¢ 5 T<>c<t+1)(b(7<)) ) 0% a0 prin) ) | A,y ),1#4

@ _ (1) 2
Z lo _ ( - Hm C““)(b(m),j))
diym * 8 9 o (t+1) 20 2(t+1)
\/ g mc<t+1)(b m).j) m,e(t+1) (b(m),j)
If J:S-) is missing, that isA(x’) = 0, the distribution of the complete da{a: y(i)} conditioned on

the incomplete data is random in terms of both € {1,..., M} and the varlablecg. ). The conditional dis-
tribution of () s still given by the posterior probabilitieg,m, m =1, ..., M. The conditional distribution

(@) (i) _ z(t)
ofa: given {A(x®), 5@ 70 = m} undery, |sN( O bm).j)* O et (b(m).j )) Thus
(3) t+1 ;
Ellog ¢( ‘ NTt(er)l t+1)(b(7.(i))7j)70-27(-( i) 2(t+1 ) (b(r | A( ) ?/( )ﬂ/Jt]
M ®) _ ) 2 o
S i |10 1 B (“m,aw(b(m),j) ”mc<t+1><b<m>,j>> t T e b(m).)
im 5 92T 952D
\/ mo? <t+1 (b(m),5) m,c(t+1) (b(m),j)

In summaryQ (141 | ¢¢) is given by the formula below. Let

@) _  (t+1) 2 ®) (t-+1) ()
Ay = (5 = Ho 4 4. ) Ay — (” m.c® (b(m),j) ~ Hm,ctt+1) (b(m),j>) O e ® (b(m).j)
(1) ) - (t+1) '
02 el (b)) 20 ) bm). )
Then

QW1 | ¥r) = Z Z gimlogmh™ +

i=1 m=1

n

M p . .
>3 D i |log Y — - (A)Ar+ (1= AE)A,)
i=1 m=1j=1

O e+ 1) (b(m), )

Based on the obtaine@ (11 | ¥1), the formulas for updating the parameters in Eqgs.@3)L6) can
be easily derived.
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