Temporal Tensor Transformation Network for
Multivariate Time Series Prediction

Yuya Jeremy Ong, Mu Qiao, Divyesh Jadav
IBM Research - Almaden, San Jose, CA, USA
Emails: yuyajong@ibm.com, {mgiao, divyesh}@us.ibm.com

Abstract—Multivariate time series prediction has applications
in a wide variety of domains and is considered to be a very
challenging task, especially when the variables have correlations
and exhibit complex temporal patterns, such as seasonality and
trend. Many existing methods suffer from strong statistical
assumptions, numerical issues with high dimensionality, manual
feature engineering efforts, and scalability. In this work, we
present a novel deep learning architecture, known as Temporal
Tensor Transformation Network, which transforms the original
multivariate time series into a higher order of tensor through the
proposed Temporal-Slicing Stack Transformation. This yields a
new representation of the original multivariate time series, which
enables the convolution kernel to extract complex and non-linear
features as well as variable interactional signals from a relatively
large temporal region. Experimental results show that Temporal
Tensor Transformation Network outperforms several state-of-the-
art methods on window-based predictions across various tasks.
The proposed architecture also demonstrates robust prediction
performance through an extensive sensitivity analysis.

Index Terms—multivariate time series, deep learning, predic-
tion, convolution, tensor transformation

I. INTRODUCTION

Multivariate time series prediction has gained wide spread
adoptions in various fields and domains, including modeling
financial markets [1], meteorology [2], and energy demand
forecasting [3]. These algorithms model and predict future
time series values based on their historical temporal patterns
found amongst multiple variables within the dataset. Although
various methods have been proposed to predict multivariate
time series based on classical statistical modeling and deep
neural networks, each method presents some key challenges
when preprocessing and extracting the right set of features
when working with multivariate features.

Classical statistical models, such as Vector Auto Regression
(VAR), assume that the time series is stationary, i.e., the sum-
mary statistics of data points are consistent over time [4]. Thus,
preprocessing procedures are usually required to remove trend,
seasonality, and other time-dependent structures from the raw
series in order to make the data stationary. Furthermore,
these models also assume the independence condition in the
underlying linear regression problem, i.e., the random errors in
the model are not correlated over time [4]. Autocorrelation and
partial autocorrelation functions are usually applied to identify
the appropriate order of variables. Constructing statistically
meaningful prediction models requires performing various
preprocessing, transformations, and feature engineering, which

are both time consuming and difficult to scale in practical
settings.

On the other hand, time series prediction models based
on deep learning can be categorized into two approaches -
stateless and stateful models. Stateful models, such as Recur-
rent Neural Networks (RNNs), are models where the internal
weights account for each of the temporal state of the data.
In contrast, stateless models, such as Convolutional Neural
Networks (CNNs), do not explicitly account for the temporal
states of the dataset. In particular, CNNs have been utilized
as a method to directly extract features from raw time series
and generate predictions, or as part of a downstream feature
extraction process within a larger neural network architecture
[5] [6].

When CNNs are utilized within a multivariate time series
model, there are two primary ways the convolution operation
can be applied to the data. One method convolves the input
data over the temporal-variable axis, where one of the kernel
dimensions are fixed to the total number of variables in
the input matrix data [6]. The other method considers each
variable as a separate 1D convolution, and correspondingly
convolves the data over multiple channels for each feature
[7]. However, a caveat to the former approach of utilizing
CNNs assumes that the feature representation of the input
matrix data is only able to observe a narrow set of variable
interactions within the convolutional kernel. Alternatively, the
latter convolution operation where we consider each feature
in the time series as an independent channel also suffers from
similar issues where the kernel is only able to observe a
small local-window of time steps as its filters convolve over
the data. In both scenarios, the convolution operations for
both methods render a limited perspective of the time series.
Different from traditional image-based use of CNNs, where
objects in different regions could be quite distinct, time series
data tend to be relatively homogeneous. The prediction of
future values depend more on the global pattern within the
historical time window, rather than a local pattern.

To address the two limitations presented above from both
the classical statistical and deep learning methods, we propose
a novel neural network architecture for multivariate time series
prediction with a new class of transformation functions, known
as temporal-slicing stack transformation. These operations
transform the original input data structure into a higher-order
tensor, where the individual features in the time series are
rearranged from a 1D temporal sequence into a 2D matrix.

This transformation expands the view of the receptive field.
As a result, the convolution is operated on a temporally larger
region, which may help capture time-dependent features such
as trend and seasonality, as well as variable interactions in a
longer range. Furthermore, as these operations can be learned
within an end-to-end manner, this allows the transformation
process to be performed jointly with the downstream time
series prediction task.

Temporal Window Slices ——_

Fig. 1. Visualization of the Temporal-Slicing Stack Transformation process

The temporal-slicing stack transformation is demonstrated
in Figure 1, where a window is utilized to slide over the
2D time series data and extract a collection of time series
slices. These slices are then correspondingly stacked on top
of each other sequentially to form a 3D tensor. Specifically
the three dimensions are “features”, “time”, and “stack”. For
multivariate time series, the transformation will convert a 2D
time series into a 3D tensor. For univariate time series, the
transformation will render a 2D matrix. The resulting structure
yields an emergent pattern, where a spatial feature extractor,
such as CNN, can explicitly model complex and nonlinear
autocorrelational features. To illustrate this, we use the trans-
formation of univariate time series as an example. Figure 2
shows the transformation results of univariate time series from
four different data sets. We also show their corresponding
autocorrelation plots. The transformation demonstrates strong
patterns for time series of high autocorrelations. Comparing
with the original 1D time series, the 2D matrix has much
richer information and therefore may enable more informative
feature extraction.

The rest of the paper is organized as follows. We highlight
various statistical and deep learning approaches for time series
analysis in Section II. Definitions of the temporal tensor
transformation, the temporal-slicing stack transformation, and
the proposed model architecture are described in Section III.
The experimental setup, data sets, and results are presented in
Section IV. In Section V, we perform sensitivity analysis based
on experiments with synthesized datasets. We finally conclude
and discuss future directions in Section VI.

II. RELATED WORK

In this section, we review the prior work for multivariate
time series prediction. We first introduce some of the known
classical statistical methods and then present several state-of-
the-art deep learning methods for time series modeling.

Time series prediction has been well studied with various
statistical modeling methods for both univariate and multi-

variate data. For univariate time series modeling, the Auto
Regressive Integrated Moving Average (ARIMA) model is
often applied using the Box-Jenkins modeling process [4].
Other variants of the ARIMA models have been proposed
to model temporal patterns from the data, for example,
seasonality (SARMA) and coefficient dependent periodicity
(PARMA) [8]. Furthermore, methods combining ARIMA and
neural networks have also been developed to model both
linear and non-linear dynamics [9]. For multivariate time
series prediction, vector based methods, such as Vector Auto
Regression (VAR) methods, extend the Auto Regressive (AR)
models for univariate time series modeling [4] [10]. Variants of
the VAR model have also been proposed, such as VARMAX
[11] and VARX [12], where the model subsumes properties
of the original VAR model and jointly learns interactions
between the given variables. Additionally, Gaussian Process
[13], as a non-parametric statistical model, is used to predict
over a distribution of continuous variables, as opposed to the
aforementioned parametric methods. Statistical models often
have very high computational complexity and face numerical
issues, when the number of variables in the time series is high.

With the advent of deep learning, new neural network
architectures have been proposed for multivariate time series
prediction. Borovykh et al. [14] developed a multivariate time
series model based on the WaveNet architecture [15], which
is originally designed for speech audio signal processing.
They augment the original architecture by simplifying and
optimizing its core algorithms with the dialated convolution
to capture long-term multivariate temporal data with noisy
signals. Another multivariate time series modeling framework
is proposed by Lai et al. [6], namely LSTNet, which combines
CNN and RNN to extract hierarchical short-term and long-
term temporal dependencies from the time series. In addition
to model dependencies, LSTNet also accounts for the autore-
gressive component of the model as a residual connection
between the CNN and LSTM components. Qin et al. [16] de-
velop a dual-stage attention-based neural network architecture
for multivariate time series modeling, which utilizes two sets
of RNN as an encoder-decoder based architecture. Through
each stage of the attention-based network architecture, the
method attends to both the feature and temporal dimensions
to adaptively select the relevant driving series.

III. MODEL ARCHITECTURE

In this section, we present the architecture of the proposed
Temporal Tensor Transformation Network. First, we introduce
the key notations used in the paper as well as the formal
problem definition for multivariate time series prediction. We
then introduce the Temporal Tensor Transformation operation.
Finally, we present the proposed neural network architecture.

A. Notations

We use z to denote a one-dimensional vector, X to de-
note a two-dimensional matrix, and X’ to represent a three-
dimensional tensor. Scalars with respect to their corresponding

Electricity ACF

2 il 1TIIH
=

Exchange Rate ACF

: H“ e

Solar ACF

- HHWIHHHHHHHH

0 5 10 15 0

Traffic ACF

I

s

Fig. 2. Comparison of the autocorrelation plots and the resulting Temporal Tensor Transformations

indices are denoted by lower-case letters, followed by sub-
scripted letter triplets. For instance, x; ; of a 3D-tensor X’
indicates the (i, j, k)-th scalar value of the tensor X. Further
notation and variables will be introduced and defined as they
appear in the context.

B. Problem Definition

We now formally define the multivariate time series pre-
diction problem. Given a complete multivariate time series
dataset X = {x1,x9,...,2,}, where x € R™*" m is the
number of features, and n is the total number of time steps
in the multivariate series, the objective is to predict a future
series of values up to a defined horizon window. Specifically,
given a subset of the time series up to time step 7', our
model, denoted as function F'(-), will take a time series
Xr = {x1,29,...,27} € R™*T ag input, and subsequently
generate an output sequence of }A’TJrh € R™*", where h is
the horizon window. Hence, the model can be formulated as
the mapping function F(X7) = Yy ip.

C. Temporal Tensor Transformation

The proposed transformation augments the original data by
adding a single higher-order dimension to the original data
input. For example, if the input series data is a 1D vector
of values (i.e., univariate time series), the transformed data
structure will be a 2D matrix structure. Likewise, if the input
is a 2D matrix (i.e., multivariate time series), the resulting
structure will be a 3D tensor.

We define the Temporal Tensor Transformation as a map-
ping function TT : X — X, where X e R™T is
the input multivariate time series and the resulting transfor-
mation generates a 3D tensor X € R”*“X° Here, w is
the slice window size (i.e., the number of steps within a
time window), and o is the number of slices or the stack
height of the resulting transformed tensor. The value of o can
be computed based on the values of hyperparameters. Our

specific temporal tensor transformation is referred to as the

Temporal-Slicing Stack Transformation. Before introducing
the Temporal-Slicing Stack operation, we will first introduce
the hyperparameters involved in the slicing process.

The window size, denoted by w, defines the overall slicing
window of the transformation function, and determines one of
the major dimensions of the output tensor. The length of the
slicing window is fixed by the number of features in the time
series, i.e., m. Therefore, the resulting slicing window is of
dimension m X w. The stride parameter of the slicing window,
denoted by s, indicates how many time steps to advance the
slicing window along the temporal dimension. The greater the
stride, the lower the overall pattern resolution, due to the loss
of information among contiguous values within the time series.
The dilation parameter d is similar to the parameter introduced
by Yu et al. [17] for dilated CNN, which allows us to slice a
wider receptive window size without compromising to limited
memory space. The padding value p is similar to how CNN
inherently increases the dimensionality of the original data
structure. It allows for shift-invariant transformations as well
as retaining the dimensional size of the data. Specifically,
padding in our context refers to the process of symmetrically
appending a set of 1D-vectors of size m to both ends of
the input time series matrix along the temporal dimension.
However, we hypothesize that such values appended to the
time series data may be potentially problematic, due to the
risk of contaminating the original series data with noise or out-
of-distribution values. Thus, we need to carefully choose the
padding values, for example, using the same adjacent values or
the local mean of vectors within a predetermined time window.

Given the hyperparameters defined above, we can
deterministically derive the number of slices o as follows:

T+2p—2dw—-1)—1
0= \\ +2p (w) + 1J
s
We summarize the Temporal-Slicing Stack Transformation
in Algorithm 1. For simplicity, we do not consider padding

and dilation in the formulation (i.e. p = 0 and d = 1).

2D CONV

MAXPOOL 2D

2D CONV
MAXPOOL 2D
FLATTEN
NS

Fig. 3. Temporal Tensor Transformation Network Architecture

Algorithm 1 Temporal-Slicing Stack Transformation

Input: X € R™*T: 2D input multivariate time series
Output: X € R"™*“*°: 3D output temporal tensor
Init: X € Rm*wxo
for : =1 to o do

X[, i) = X[y % 800 % 5 4 w]
end for
return X

B e

D. Neural Network Architecture

In this section, we describe the deep learning architecture on
top of the proposed temporal tensor transformation, which is
referred to as TSSNet. The neural network architecture is based
on a fairly simple network structure, as shown in Figure 3.

1) Temporal-Slicing Stack Transformation: Given the initial
input multivariate time series X, we first perform the temporal
tensor transformation as described in Algorithm 1. As noted
previously, the Temporal-Slicing Stack Transformation is de-
fined as a mapping of 7T : X — X, where the input data is a
two dimensional matrix X € R”™*7T and the output is a three
dimensional tensor X' € R™*wxo,

2) Convolutional Neural Network: After transforming the
input time series data to X , we utilize a CNN to extract
features from the tensor along the w x o plane. That is, we
treat each feature as a separate channel. The total number of
channels is therefore equal to the number of features m. We
also fix one dimension of the CNN kernel to be the stack
height o. The dimension of the kernel is thus o x k, where k
is the width of the convolving kernel. Suppose we have [CNN
kernels, the i-th kernel learns the following set of weights:

hi =W« X +b;, ie{l,2,.,1}

where * denotes the convolution operator, W; and b; are the
weight and bias parameters, respectively. Note that during this
process, we do not apply any sort of activation function as the
model is sensitive to any type of operation that can collapse
the range of values from the input (e.g., negative values will
become zero in RELU). We empirically set the number of
kernels to be m. The output feature maps from the convolution
operation is subsequently fed into a max pooling operation,
which is applied over the same w x o plane. We repeat these
two operations twice in a successive manner.

3) Dense Layer: After the features are extracted from the
CNN layer, the corresponding feature maps are then flattened
out as a single vector. It is then subsequently fed into one fully
connected hidden layer, fcy:

f01:W1Xh+b1

where h is the 1D flatted out feature map from the previous
CNN feature maps, and W; and b; are the weight and bias
parameters, respectively. As a heuristic, the dimension of the
hidden weight parameters used in this dense layer is usually
greater than that of the output layer dimensions. Finally the
subsequent latent vector fc¢; is fed into the output layer, where
we learn the following set of parameters:

9=Wax fer +bo

where W5 and b, are the weight and bias parameters. The final
output is a 1D vector, § € R™*"_ which can also be reshaped
as a 2D matrix of dimensions m X h.

E. Objective Function

To train the proposed neural network architecture, we min-
imize the squared error loss function:

' Y, — V|2
mn Z Y tll 7

t€Ttrain

where the cost is minimized w.r.t. the parameters O, and || - [|%
denotes the Frobenius norm.

E. Optimization Method

To optimize the cost function, we utilize canonical methods
for optimizing standard neural network. Specifically, we can
apply common gradient-based methods such as stochastic
gradient descent (SGD) or the Adam algorithm [18].

IV. EXPERIMENT

We evaluate the performance of the proposed neural net-
work architecture in this section. We first introduce several
baseline models used for the benchmark comparison, and then
the evaluation metrics and data sets, and finally present the
experimental results.

A. Baseline Models

To evaluate the performance and robustness of our proposed
model, we compare it against the following methods:

o Vector Auto Regression (VAR)

o Long Short-Term Memory (LSTM)

o Gated Recurrent Unit (GRU)

o 1D Convolutional Neural Network (CNN)

o LSTNet [6]

All implementations are developed in PyTorch [19], with
the exception of the Vector Autoregression (VAR) model
which is based on the Python StatsModels package [20]. Our
evaluations are performed across models which are stateful
(i.e. VAR and RNN variants), stateless (i.e. CNN variants),
and a hybrid of the two (i.e. LSTNet).

For Recurrent Neural Network variants, we implement a
many-to-one single layer vanilla architecture for the Long
Short-Term Memory (LSTM) and Gated Recurrent Unit
(GRU) with both having two fully connected layers appended
at the end. Likewise, the 1D Convolutional Neural Network
(CNN) architecture utilizes a single 1D CNN and a max pool-
ing block with two fully connected layers. In this architecture,
we treat the 2D input time series as a single channel image
and perform convolution over the temporal-variable plane. The
LSTNet architecture is based on the code package from Lai et.
al [6]. For all the neural network based models, they generate
a batched multistep prediction values instead of a single time
step output. For Vector Auto Regression, the predictions are
generated in an iterative manner, where the prediction at the
current time step is appended to the previous input in order to
predict the value at the next time step.

B. Evaluation Metrics

To compare all the methods, we use the following two
evaluation metrics. The objective of our models is to
minimize the Root Mean Squared Error (RMSE), while
jointly maximizing the empirical correlation coefficient
(CORR).

Root Mean Square Error (RMSE):

n m h

RMSE = % Z Z Z(yijt — Vijt)?

i=1 \ j=1t=1

where Y,)7 e R»*™mXh and n is the total number
of samples being computed. We aggregate the error across
all m features for a total of /h horizons of the predicted values.

Empirical Correlation Coefficient (CORR):
CORR = l - 27:1 21;10}1‘3'15 - ji:t)(j}ijt — j)i:t)
nia \/Z;"ﬂ Z?Zl(yijt — Vi) 2(Vije — Vit)?

where), 3> e Rrxmxh 3 and 3> denote the ground truth
value, the predicted value, the mean value of the ground truth
for each feature, and the mean value of the predicted value
for each feature, respectively.

C. Data Sets

We use four benchmark data sets across a wide variety
of domain applications to compare the performance of all
the models. Each data set presented here has various degrees
of non-stationarity. This allows us to evaluate the potential
strengths and weaknesses of our proposed model architecture.
Due to memory-constraints, for each data set, excluding the
Exchange Rate data set, we select at random ten features as a
method of dimensionality reduction. We plot the autocorrela-
tional functions for each data set in Figure 4.

Electricity ACF Traffic ACF

Autocorrelation
2
Autocorrelation

111 \Iu‘. il
-os0 Il IR ll ‘II hl Iu‘ |

ETI)] 50

(TATTTATTIRTIO
I

) U\J/ U U Uph

@ 30 S00 750 1000 1350 1500 1750 2000
Lag (Hours)

W 150 20 B0 00 150 00 X1 10 B0
Lag {Hours) Lag Hours)

g (Hours

Exchange Rate ACF

Autocarrelation

Auty
5

0 1000 00 00 4000 5000 GO0 TODO
Lag (Hours)

Fig. 4. Autocorrelation function plots of the raw datasets

1) Electricity Usage [21]: The data set contains electricity
consumption recordings sampled at 15 min intervals between
the year of 2012 to 2014 for 321 clients. It is pre-processed
to reflect the hourly consumption rate of the electricity usage
instead. From the ACF plot, we can see that different fea-
tures have different levels of autocorrelation, notably a strong
presence of seasonality as most of the features tend to have a
consistent lag at around 24 hours.

2) Foreign Exchange Rates: The data set is collected over a
period of 26 years between 1990 and 2016, and consists of the
daily exchange rates from eight different countries. It contains
a total sample size of 7,588. Out of the four data sets, it does
not show strong presence of the auto-correlational signal.

3) Solar Power Production [22]: The data set comes from
the Solar Power Data for Integration Studies, which contains
the solar power and hourly day-ahead forecasts for approxi-
mately 6,000 simulated PV plants, at a sampling rate of every
5 minutes, in the year of 2006. From the ACF plot, we can see
that the selected features all have uniform seasonality patterns
with lag values around 140 hours.

4) San Francisco Traffic [23]: The data set is from the
Caltrans Performance Measurement System (PeMS), where
traffic data was collected in real-time from over many detectors
over the span of one year between 2015 and 2016, in the San
Francisco Bay Area freeway. These detectors represent the
density of the traffic between 0.0 and 1.0, where 0.0 indicates
no traffic and 1.0 represents high amounts of congestion. From

the ACF plot, we can see that most of the selected features
have a seasonality with lag values around 160 hours.

For evaluation, we split the data set into three different
partitions in a chronological manner, with the first 60% of
the data set used for training the model, the next 20% of the
data for computing validation scores, and the remaining 20%
of the data for testing.

D. Hyperparameters

For training models, we tune the hyperparameters using the
Gaussian Process Optimization Framework (GPyOpt) [24].
We focus the parameter optimizations on the Temporal-Slicing
Stack Transformation. In particular, the window size, w, is
varied between the range of 5 to 10, and the stride, s, is
varied between the range of 1 to 5. Furthermore, we also tune
the learning rate of our model between values of [0,0.01]
and apply gradient clipping value of 10. Furthermore, we
correspondingly adjust the hidden weight dimensions of the
model such that the dimension of the first dense layer has a
greater number of parameters than the second output dense
layer, or the final output dimension of the model. We perform
100 iterations of the modeling process and select the model
with the highest empirical correlation coefficient score as our
objective value to optimize over.

E. Experimental Results

We present the experimental results on the two defined
evaluation metrics in Table 1. For each data set, we provide
the model with a fixed input of 7' = 168 time steps and obtain
predictions over a horizon window of 15, 30, 60, and 120 time
steps. We note that these horizons are multi-step window based
predictions, as opposed to a single-point estimation. The best
performing models with respect to the empirical correlations
are in bold for each data set and horizon. We also provide
a comparative graph summary of the Empirical Correlation
Coefficient in Figure 5.

Based on the empirical results, our proposed model (denoted
by TSSNet) outperforms the baseline models on the Electricity,
Solar Energy, and Traffic data sets, and outperforms some of
the baselines on the Exchange Rates data set. We attribute our
analysis based on two key observations: i) the use of state-
ful versus stateless model types and ii) the autocorrelations
present in the data set.

In Figure 5, we observe a noticeable cluster between state-
less models (i.e. 1D CNN, LSTNet, and TSSNet) and stateful
models (i.e. LSTM, GRU, and VAR) in terms of the overall
performance. Furthermore, we observe a sharper performance
degradation over larger temporal horizon for stateful models
than stateless models. Within stateless models, our proposed
model consistently retains an upper bound performance, while
the 1D CNN model primarily remains as a lower bound with
the LSTNet in between. This trend is also present in the
Exchange Rate data set.

The other factor affecting the overall performance of our
model is the presence of autocorrelations in the data set, in
particular, the seasonality. As previously shown in Figure 4, we

have noted that there is a strong presence of autocorrelationa
within the Electricity, Solar Energy, and Traffic data sets,
while weaker in the Exchange Rate data set. This realization
in context with our empirical results shed light on some ob-
servations. For highly autocorrelational data, stateless models
tend to perform better over stateful models. However, with
weaker autocorrelational signals such as the Exchange Rate
data set, our model performs better than the stateless models,
but marginally worse than the stateful model variants.

In particular, our experimental results with 1D CNNs and
LSTNet demonstrate that the methods in how convolution
is applied over the temporal data can lead to difference
in performance. Hence, this comparison indicates that our
transformation method enables high efficiency of information
gain with respect to the autocorrelational features captured
over a large temporal region.

We also plot sample predictions against our test set at
horizon h = 120, with an empirical comparison against
LSTNet. The results are shown in Figure 6. We have chosen to
evaluate LSTNet for its marginally close performance in terms
of the empirical correlation coefficient, but having slightly
lower RMSE scores as shown in Table I. From Figure 6, we
can observe how effectively our model can predict non-linear
patterns as the model is able to adapt to most of the acute
signals in the data. From the Electricity data set, we observe
much more precise adaptations to the peaks and troughs of the
cyclical signals. In the Traffic data set, the proposed TSSNet
is able to capture the sinusoidal patterns, however is slightly
less precise to sudden peaks such as those found in the last
two cycles of the data set. In the Solar Energy data set, we
observe a closer fit to the overall shape of the data, as it closely
captures both the non-linear and linear patterns within the data.
However, for the Exchange Rate dataset, we see that both
models have a relatively hard time with the predictions due to
high noisy outputs. In TSSNet, we observe that the predictions
are relatively stable and centralized around a consistent range
of values, while LSTNet’s predictions are sporadically shifting
the prediction values from time to time.

V. SENSITIVITY ANALYSIS

In this section, we perform sensitivity analysis to eval-
uate and understand the advantages and limitations of our
proposed architecture. This analysis fixates the intermediate
model architecture and manipulates the input and output data
parameters in a controlled manner. We observe the resulting
effects to the overall performance of the model and draw
conclusions on the robustness of our architecture.

In particular, our objectives in this analysis are two folds.
First, we empirically study and demonstrate the underlying
properties of how our proposed model is able to learn emergent
autocorrelational patterns from controlled and synthesized
inputs. We subsequently analyze the activation maps to better
understand the extracted features. In the second analysis, we
evaluate the robustness of the proposed model architecture by
varying the input and output dimensions. These two exper-

TABLE I
RMSE AND CORR OF MULTIVARIATE TIME SERIES PREDICTION METHODS

Dataset Electricity Solar Energy Traffic Exchange Rate
Model Metric 15 30 60 120 15 30 60 120 15 30 60 120 15 30 60 120
VAR RMSE | 0.123 0.135 0.148 0.162 | 0.078 0.129 0.180 0.219 | 0.082 0.089 0.098 0.108 | 0.015 0.021 0.031 0.047
CORR | 0.701 0.667 0.607 0.507 | 0929 0.809 0.648 0425 | 0.719 0.679 0.604 0477 | 0979 0.961 0.922 0.845
RNN (LSTM) RMSE | 0.126 0.125 0.129 0.131 | 0.132 0.190 0.215 0.219 | 0.084 0.087 0.091 0.094 | 0.032 0.034 0.048 0.057
CORR | 0.725 0.709 0.687 0.672 | 0.859 0.643 0.526 0517 | 0.721 0.694 0.664 0.646 | 0958 0942 0.907 0.837
RNN (GRU) RMSE | 0.126 0.126 0.130 0.131 0.132 0.192 0214 0.219 | 0.086 0.089 0.092 0.094 | 0.021 0.030 0.037 0.059
CORR | 0.720 0.706 0.683 0.668 | 0.857 0.634 0.522 0513 | 0.711 0.687 0.663 0.640 | 0971 0945 0911 0.837
ID CNN RMSE | 0.057 0.059 0.073 0.083 | 0.085 0.109 0.123 0.123 | 0.070 0.071 0.069 0.072 | 0.039 0.044 0.051 0.069
CORR | 0.891 0.879 0.831 0.796 | 0946 0918 0.899 0.885 | 0.837 0.831 0.835 0.835 | 0937 0909 0.847 0.729
LSTNet RMSE | 0.064 0.062 0.060 0.060 | 0.077 0.094 0.110 0.119 | 0.066 0.067 0.068 0.068 | 0.056 0.059 0.059 0.074
CORR | 0.890 0.867 0.873 0.868 | 0956 0.936 0906 0.899 | 0.855 0.847 0.843 0.843 | 0.815 0.796 0.747 0.699
TSSNet RMSE | 0.055 0.057 0.059 0.058 | 0.076 0.094 0.105 0.098 | 0.062 0.062 0.067 0.065 | 0.029 0.040 0.050 0.065
CORR | 0.896 0.888 0.879 0.878 | 0956 0.937 0918 0909 | 0.859 0.860 0.852 0.855 | 0944 0914 0.895 0.780
10 Electricity 10 Solar Energy 10 Traffic 0 Exchange Rate
0.9 - 0.9 0.9 0.9
L 2 \v<' B
0.8 0.8 0.8 0.8
2
B 074 0.7 4 0.7 4 0.74
[
S 06 0.6 0.6 0.6
0.5 0.5 4 0.5 4 0.54
0.4+ 0.4 4 0.4 0.4+
15 0 50 120 15 30 50 120 15 0 50 120 15 30 50 120
Horizon Horizon Horizon Horizon
—e— VAR LSTM —#— GRU —#— IDCNN —#4— LSTNet —¥ TSSNet

Fig. 5. Empirical correlation coefficient plots by prediction horizon

Electricity - Test Prediction (H = 120)

Traffic - Test Prediction (H = 120)

this experiment, we generate a set of synthetic data sets from

Value

— Actual
—— LSTNet
—— TssNet

simple functions which explicitly exhibit properties of season-
ality and trend, as demonstrated in Figure 7. Through these
controlled and simplified experiments, we can uncover some
of the underlying mechanisms for extracting autocorrelational
features from the data.

We overfit our models with inputs from known simple

[20 40 80 100 120

60
Timestep

Solar Energy - Test Prediction (H = 120)

0 20 40 80 100 120

60
Timestep

Exchange Rate - Test Prediction (H = 120)

deterministic functions, such as the sine and linear functions.
We then evaluate the resulting activation maps (after the

08 — Actual
—— LsThet

—— TsSNet

— Actual
—— LSTNet
—— TssNet

first convolutional layer) generated by the model, in order to

Value

o 20 40 60 80
Timestep

100 120 0 20 40 60 80

Timestep

100 120

Fig. 6. Comparison of TSSNet and LSTNet predictions

iments will help us better identify some of the core inner
workings and draw insights of the model.

A. Synthesized Data Sensitivity Analysis

In this section, we describe methods used for observing
the underlying feature maps that are generated by CNN. We
perform these experiments to empirically identify properties
of autocorrelational signals such as seasonality and trend. For

identify which salient features are extracted by the learned
CNN filters. Furthermore, to evaluate robustness of our model,
we inject noise of various degrees by adding a noise factor
¢ within the sine function argument as sin(x + «e), where
« is the ratio of the noise present, and ¢ € R is a random
number sampled from a standard normal distribution. For each
function, we empirically evaluate the robustness by increasing
the degree of o from 0.00 to 0.75.

Based on the experimental formulation above, we demon-
strate the feature maps generated by the CNN layer, as pre-
sented in Figure 7. Along the vertical axis, we list the different
deterministic functions utilized to generate the synthetic data
set, while on the horizontal axis we show the effect over the
different rates of noise injection.

Empirically, we found that the CNN filters perform the
roles of both a feature extractor as well as a de-noising
component of the model. For the first function, y = sin(x),
we can observe that the model is able to pick up the uniform
repetitive pattern of the data as exhibited by the uniform

y = sin(x)

ALY

y = sin(x)+x

[T, e

y ZQT*SZTL(ZE) J'llllllll’lllllll

y=u1xx*sin(x)+x -:,“.'-,-..

u.l.nr

” .|.l’||.|.|l""
AT

14 -l_,iu.l'!"'"

FETrA Y 'l'l
N '{Hr-{l |n'l

‘.I.' 'u'F

Jaddd _-'. | 2 i

Fig. 7. CNN feature maps of synthesized function datasets

checkerboard like pattern. Even with the injected noise, we
see that the filter is able to de-noise a fair amount of the
artifacts from the model and still retain the core checkerboard-
like pattern as exhibited when a = 0. In the second function,
y = sin(z) + z, we observe across all values of «, the
activation map shows a uniform gradient-like pattern. This
indicates that the model attenuates the sin(x) component of
the function and focuses only on the linear component of
the model. In essence, the filter treats sin(x) as a constant
and emphasizes the monotonically increasing nature of the
time series data from the linear component of the equation.
Hence, the resulting activation map reveals a gradient like
pattern which indicates an increasing trend. For the third and
fourth functions, we observe the same uniform checkerboard
pattern similar to the first function. Furthermore, we observe
a slight gradient effect indicating that the values on the left
region of the plot is darker and the right region is lighter.
This implies that the model’s learned filter can extract both
the seasonal component as well as the linear trend pattern
concurrently from the synthetic data set. The fourth function
contains a slightly darker pattern which is indicative of the
extra linear factor.

From these controlled experiments, we empirically demon-
strate the effectiveness of using CNNs as feature extractors
to identify core autocorrelational components of the model,
notably, seasonality and trend from the transformed temporal
tensor representations. Furthermore, we also demonstrate that
such learned filters are able to act as de-noising filters, which
can enable generalizations for noisy input time series.

B. Sensitivity Analysis on Input Size v.s. Prediction Horizon

In our previous experiments, we have only evaluated our
models against a fixed input size of 168 time steps while
we correspondingly vary the output horizon time steps for
prediction. In this experiment, we perform a sensitivity anal-
ysis by varying both the input and output dimensions. One
key motivation behind this experimentation is to assess the
balance of the input and output dimensions and how they
influence the overall predictive power of the model. Various
degrees of temporal granularity, such as daily, weekly, or

monthly perspectives of the input data can strongly influence
the respective outcome of the prediction due to the observa-
tional scope of the information provided to the model. This
is particularly important when considering autocorrelational
patterns, as long-range dependencies of repetitive patterns can
significantly change with respect to the different temporal
granularities of the data. As a result, the representation that
the model learns will also differ and consequently affect the
prediction performance. For this analysis, we constrain our
experiment to only evaluate the performance of our proposed
model architecture (i.e. TSSNet). We vary the input size by
32, 64, 128, and 256, while also vary the output horizon size
by 15, 30, 60, and 120, respectively. We perform experiments
with every combination of these input and output dimensions
for evaluation.

The experimental results are shown in Table II. We also
provide two plots, which evaluate the empirical correlation
coefficient performance degradation from the perspective of
the input and output dimensions respectively, as shown in
Figures 8 and 9. From these plots, we can draw upon several
key insights regarding the overall robustness of our model,
as well as some heuristics which can potentially help with
improving the overall performance of the model.

In Figure 8, we present a plot which demonstrates how
the empirical correlation coefficient performance with differ-
ent input dimensions degrades with respect to the different
output horizon dimensions. First, we can observe a similar
performance degradation effect shown from the previous ex-
periments. In particular, one key observation to note is that the
variance of the correlation with respect to each of the different
output horizons are greater when the data is not highly auto-
correlated. For example, the Exchange Rate time series does
not have strong autocorrelation, therefore exhibiting a wider
variance of correlation scores for the input window size with
respect to the output horizon dimensions. In contrast, for data
sets such as the Electricity and Traffic, the overall correlation
performance degradation is relatively smaller and its variance
bounds are significantly tighter. However, one detail to make
note of in Figure 8§ is the top performing models for each of

TABLE II
RESULTS OF SENSITIVITY ANALYSIS ON INPUT SIZE V.S. PREDICTION HORIZON

Dataset Electricity Solar Energy Traffic Exchange Rate
Input Size | Horizon 15 30 60 120 15 30 60 120 15 30 60 120 15 30 60 120
3 RMSE 0.091 0.098 0.105 0.109 | 0.091 0.128 0.145 0.144 | 0.068 0.072 0.077 0.075 | 0.018 0.027 0.036 0.038
CORR 0.862 0.835 0810 0.796 | 0941 0.879 0.837 0.840 | 0.846 0.825 0.800 0.804 | 0.974 0949 0919 0918
64 RMSE 0.094 0.100 0.104 0.110 | 0.099 0.106 0.113 0.115 | 0.067 0.071 0.072 0.071 0.024 0.029 0.041 0.057
CORR 0.850 0.828 0.811 0.809 | 0.927 0917 0905 0907 | 0.848 0.829 0.818 0.823 | 0.960 0942 0.899 0.824
128 RMSE 0.091 0.101 0.103 0.101 0.083 0.093 0.101 0.102 | 0.066 0.068 0.071 0.069 | 0.029 0.032 0.034 0.063
CORR 0.861 0.828 0.818 0.829 | 0.950 0.937 0926 0923 | 0.845 0.836 0.832 0.835 | 0.954 0936 0.887 0.802
256 RMSE 0.093 0.097 0.101 0.101 0.075 0.089 0.101 0.106 | 0.063 0.064 0.066 0.068 | 0.046 0.054 0.063 0.073
CORR 0.857 0.854 0.821 0.826 | 0.958 0942 0925 0919 | 0.856 0.854 0.844 0.832 | 0.886 0.858 0.773 0.715
Loo Exchange Rate Lo Electricity Loo Traffic Loo Solar Energy
0.95 1 0.95 | 0.95 0.95 1 N
0.90 0.90 4 0.90 0.90
< 0.85 0.85 0.85 - 0.85 __.
% 0.80 0.80 1 % 0.80 1 ﬁ 0.80
S 0751 0.75 4 0.75 0.75
0.704 0.70 4 0.70 0.70
0.65 0.65 1 0.65 0.65
0.60 T r T 0.60 1 T r T 0.60 T r T 0.60 r T T
15 30 60 120 15 30 60 120 15 30 60 120 15 30 60 120
Output Horizon Output Horizon Output Horizon Output Horizon
Input Window
- 32 64 —m— 128 —e— 256
Fig. 8. Input size v.s. output horizon correlation degradation
100 Exchange Rate 100 Electricity Loo Traffic Loo Solar Energy
0.95 4 0.95 4 0.95 0.95 4 H__ﬂ______...—o————"
0.90 - 0.90 4 0.90 0.90 -
S 0.85 085 P —————0 0.85 ?—Fﬁ 0.85
% 0.80 0.80 ?‘"‘F. 0.80 0.80
3 o075 0.754 0.75 4 0.75 4
0.704 0.70 4 0.70 0.70 4
0.65 - 0.65 1 0.65 0.65 -
0.60 T T r 0.60 1— T T r 0.60 1 T r r 0.60 1 T T T
32 64 128 256 32 64 128 256 32 64 128 256 32 64 128 256
Input Window Input Window Input Window Input Window
Output Horizon
- 15 30 -m— 60 —e— 120

Fig. 9. Output horizon v.s. input size correlation degradation

the different data sets. While in the Exchange Rate data set, the
model with input window of 32 performs the best, the other
data sets mostly have larger input window sizes performing
better in general. This results suggest that the overall input
size can significantly affect the performance of the model.
This also provides further evidence that our proposed model
can better extract features from data which exhibits long-range
autocorrelational patterns.

In Figure 9, we present a different view of the results
which demonstrates how the empirical correlation coefficient
performance with different output dimensions is influenced by
varying the input sizes. The motivation behind this analysis
is to evaluate the overall robustness of the different output
horizon dimensions of the model’s prediction with respect
to varying the overall input window dimensions. Unlike the
previous analysis from the first experiment, we focus on

empirically evaluating the effect of the benefited information
gain the model has obtained when provided a greater amount
of temporal information (i.e., a larger input window). In
Figure 9, we also notice very similar effects of the variance
bounds of the correlation results with respect to the different
input window sizes, as highly autocorrelated data tend to
have smaller bounds while non-autocorrelated data have larger
variance ranges. In particular, increasing the input window
sizes with respect to the different output horizon dimensions,
we note that the overall performance degradation is minimal,
and in some cases performance improves for data sets which
exhibit high autocorrelational properties (e.g., the Electricity,
Traffic, and Solar Energy). In contrast, when the data does
not contain any sort of autocorrelational signals (e.g., the
Exchange Rate), the model performance drops significantly as
we increase the input window sizes. These results empirically

reinforce the notion that our model is able to robustly learn
long-range temporal dependencies with high autocorrelational
features.

VI. CONCLUSION

We propose a neural network architecture for multivariate
time series prediction through a new class of transformation
function known as Temporal Tensor Transformations. In par-
ticular, we present the Temporal-Slicing Stack Transformation
which utilizes a slice-based operator to transform the original
2D time series into a 3D tensor. This transformation encodes
long-range auto-correlational features that can be extracted by
a Convolutional Neural Network. Both experimental results
and sensitivity analysis provide strong evidence that the pro-
posed architecture is able to learn non-linear auto-correlational
patterns effectively from the data.

For future work, we plan to investigate various components
of the proposed architecture. To further understand the under-
lying mechanisms and sensitivity of the architecture, we aim
to carefully identify which hyperparameters are more sensitive
with respect to the overall model performance. Additionally,
to better improve the prediction performance of the model
on data without strong autocorrelation, we will explore the
use of hybrid approaches that combine both our stateless
approach in feature extraction in conjunction with recurrent
neural networks. As an extension to the proposed temporal
tensor transformation, we can also explore other types of
transformation methods which utilize explicit components,
such as multivariate interactions and variable sampling rates
among different variables. The core challenges behind these
classes of transformation functions lie in how to design new
structures that can enable efficient information gain through
the use of CNN for feature extractions.

REFERENCES

[1] O. B. Sezer, M. U. Gudelek, and A. M. Ozbayoglu, “Financial time
series forecasting with deep learning: A systematic literature review:
2005-2019,” Applied Soft Computing, vol. 90, p. 106181, 2020.

[2] S. Balluff, J. Bendfeld, and S. Krauter, “Meteorological data forecast
using rnn,” in Deep Learning and Neural Networks: Concepts, Method-
ologies, Tools, and Applications. 1GI Global, 2020, pp. 905-920.

[3] M. Islam, H. S. Che, M. Hasanuzzaman, and N. Rahim, “Energy demand
forecasting,” in Energy for Sustainable Development. Elsevier, 2020,
pp. 105-123.

[4] G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time series
analysis: forecasting and control. John Wiley & Sons, 2015.

[5]1 L. E. Livieris, E. Pintelas, and P. Pintelas, “A cnn—Istm model for gold
price time-series forecasting,” Neural Computing and Applications, pp.
1-10, 2020.

[6] G. Lai, W.-C. Chang, Y. Yang, and H. Liu, “Modeling long-and short-
term temporal patterns with deep neural networks,” in Proceedings of
the International ACM SIGIR Conference on Research & Development
in Information Retrieval, 2018, pp. 95-104.

[71 Y. Zheng, Q. Liu, E. Chen, Y. Ge, and J. L. Zhao, “Time series
classification using multi-channels deep convolutional neural networks,”
in International Conference on Web-Age Information Management.
Springer, 2014, pp. 298-310.

[8] E. Hannan, “A test for singularities in sydney rainfall,” Australian
Journal of Physics, vol. 8, p. 289, 1955.

[9] G. P. Zhang, “Time series forecasting using a hybrid arima and neural

network model,” Neurocomputing, vol. 50, pp. 159-175, 2003.

H. Liitkepohl, New introduction to multiple time series analysis.

Springer Science & Business Media, 2005.

[10]

(11]
[12]

[13]

[14]

[15]

[16]

(17]
[18]

[19]

[20]

[21]

[22]

[23]
[24]

A. Milhoj, Multiple Time Series Modeling Using the SAS VARMAX
Procedure. SAS Institute, 2016.

H. J. Bierens, “Var models with exogenous variables,” Retrieved Octo-
ber, vol. 10, p. 2015, 2004.

M. Alvarez and N. D. Lawrence, “Sparse convolved gaussian processes
for multi-output regression,” in Proceedings of Advances in Neural
Information Processing Systems, 2009, pp. 57-64.

A. Borovykh, S. Bohte, and C. W. Oosterlee, “Conditional time se-
ries forecasting with convolutional neural networks,” arXiv preprint
arXiv:1703.04691, 20117.

A. Van Den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals,
A. Graves, N. Kalchbrenner, A. W. Senior, and K. Kavukcuoglu,
“Wavenet: A generative model for raw audio.” arXiv preprint
arXiv:1609.03499, 2016.

Y. Qin, D. Song, H. Chen, W. Cheng, G. Jiang, and G. Cottrell,
“A dual-stage attention-based recurrent neural network for time series
prediction,” in Proceedings of the International Joint Conference on
Artificial Intelligence, 2017, pp. 2627-2633.

F. Yu and V. Koltun, “Multi-scale context aggregation by dilated
convolutions,” arXiv preprint arXiv:1511.07122, 2015.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
pytorch,” 2017.

S. Seabold and J. Perktold, “Statsmodels: Econometric and statistical
modeling with python,” in Proceedings of the 9th Python in Science
Conference, 2010.

“Uci machine repository: Elec-
tricityloaddiagrams20112014 data set,”
https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014,
accessed: 2019-06-18.

“Solar power data for integration studies - grid modernization - nrel,”
https://www.nrel.gov/grid/solar-power-data.html, accessed: 2019-06-18.

“Caltrans pems,” http://pems.dot.ca.gov/, accessed: 2019-06-18.

T. G. authors, “GPyOpt: A bayesian optimization framework in python,”
http://github.com/SheffieldML/GPyOpt, 2016.

learning

