
StackInsights: Cognitive Learning for Hybrid Cloud Readiness

Mu Qiao, Luis Bathen, Simon-Pierre Génot, Sunhwan Lee, Ramani Routray
IBM Almaden Research Center, San Jose, California, CA
Email: {mqiao,bathen,sgenot,shlee,routrayr}@us.ibm.com

Abstract—Hybrid cloud is an integrated cloud computing
environment utilizing a mix of public cloud, private cloud, and
on-premise IT infrastructures. Workload awareness, defined
as a detailed full range understanding of each individual
workload, is essential in implementing the hybrid cloud. While
it is critical to perform an accurate analysis to determine
which workloads are appropriate for on-premise deployment
versus which workloads can be migrated to a cloud off-premise,
the assessment is mainly performed by rule or policy based
approaches. In this paper, we introduce StackInsights, a novel
cognitive system to automatically analyze and predict the cloud
readiness of workloads for an enterprise. Our system harnesses
the critical metrics across the entire stack: (1) infrastruc-
ture metrics, (2) data relevance metrics, and (3) application
taxonomy, to identify workloads that have characteristics of
(a) low sensitivity with respect to business security, criticality
and compliance, and (b) low response time requirements and
access patterns. Since the capture of the data relevance metrics
involves an intrusive and in-depth scanning of the content of
storage objects, a machine learning model is applied to perform
the business relevance classification by learning from the meta
level metrics harnessed across stack. In contrast to traditional
methods, StackInsights significantly reduces the total time for
hybrid cloud readiness assessment by orders of magnitude.

Keywords-hybrid cloud, cognitive learning, sensitivity, infras-
tructure, classification

I. INTRODUCTION

Hybrid cloud, which utilizes a mix of public cloud, private
cloud, and on-premise, has become the dominant cloud
deployment architecture for enterprises. Public cloud offers
a multi-tenant environment, where physical resources, such
as computing, storage and network devices, are shared and
accessible over a public network, whereas private cloud
is operated solely for a single organization with dedicated
resources. Hybrid cloud inherits the advantages of these two
cloud models and allows workloads to move between them
according to the change of business needs and cost, therefore
resulting in greater deployment flexibility. The global hybrid
cloud market is estimated to grow from USD 33.28 Billion
in 2016 to USD 91.74 Billion in 2021 [1].

Business sensitivity is one of the main factors that enter-
prises consider when deciding which cloud model to deploy.
For example, an enterprise can deploy public clouds for test
and development workloads, where security and compliance
are not an issue. However, it is hard to meet PCI (pay-
ment card industry) or SOX (Sarbanes-Oxley) compliance
in public clouds due to the nature of multi-tenancy. On

the other hand, because private clouds are dedicated to
a single organization, the architecture can be designed to
assure high level security and stringent compliance, such as
HIPAA (health insurance portability and accountability act).
Therefore, private clouds are usually deployed for business
sensitive and critical workloads. Infrastructure is another
important factor to consider when choosing between public
and private clouds. Since private cloud is a single-tenant
environment where resources can be specified and highly
customized, it is ideal to host data which are frequently
accessed and require fast response times. For example, high-
end storage system can be used in private cloud to deliver
IOPS (input/output operations per second) with a guaranteed
response time.

Moreover, business sensitivity and infrastructure are tra-
ditionally considered in two separate schools of work. How-
ever, not all data is created equal, neither is the infrastruc-
ture. In this paper, we introduce StackInsights, a novel cogni-
tive learning system to automatically analyze and predict the
cloud readiness of workloads for an enterprise by consider-
ing both business sensitivity and infrastructure. StackInsights
classifies the entire data into several subspaces, as shown in
Figure 1, where the X-axis indicates the infrastructure heat
map (e.g., storage access intensity) and the Y -axis represents
the business sensitivity. A threshold on the X-axis is set
to determine if the data is “cold” or “hot” with respect to
infrastructure related performance metrics, and on the Y -
axis, the data is classified into three categories: “sensitive”,
“non-sensitive”, or “non-classifiable”. Formally, we define
sensitive data as the data owned by the enterprise, which if
lost or compromised, bares financial, integrity, and compli-
ance damage. There are many different forms of sensitive
data, such as sensitive personal information (SPI), personal
health information (PHI), confidential business information,
client data, intellectual property, and other domain-specific
sensitive information. The category of “non-classifiable”
includes structured data, such as databases, the sensitivity
of which can be analyzed using domain knowledge. For
example, the databases storing employment information in
the HR department should be highly sensitive. All the data
which are cold and non-sensitive can be migrated to public
clouds while the rest should reside in private clouds. The
thresholds on the X-axis and Y -axis can also be adjusted
by users. The areas of the subspaces indicate the size of
data migrating to different clouds, thereby, serving as a



cloud sizing tool. The hotness of data on the X-axis can be
obtained by measuring infrastructure performance metrics.
The key issue therefore lies in how to determine the business
sensitivity of data on the Y -axis.

To the best of our knowledge, StackInsights is the first
cognitive system that uses machine learning to understand
data sensitivity based on metadata, as it correlates appli-
cation, data, and infrastructure metrics for hybrid cloud
readiness assessment. In contrast to traditional methods
which require content scanning for sensitivity analysis,
StackInsights significantly reduces the total running time
through predictive analytics. It advises users what data are
appropriate to be stored on premises, or to be migrated to
the cloud, and the specific cloud deployment model, by
integrating both data sensitivity and hotness in terms of
infrastructure performance.

The rest of the paper is organized as follows. We describe
our motivation and contribution in Section II. The relevant
work is reviewed in Section III. In Section IV, we introduce
the framework of StackInsights as well as the cognitive
learning components. Section V is on the experiments and
results. Finally, we conclude in Section VI.

Figure 1: Hybrid cloud migration overview

II. MOTIVATION AND CONTRIBUTION

The classification of data sensitivity belongs to the general
domain of data classification, which allows organizations to
categorize data by business relevance and sensitivity in order
to maintain the confidentiality and integrity of their data.
Data classification is a very costly activity. In large organiza-
tions, data is usually stored and secured by many repositories
or systems in different geographical locations, which may
have different data privacy and regulatory compliances.
Various security access approvals have to be obtained in
order to get access to data. In addition, traditional sensitivity
assessment approaches require an intrusive and in-depth
content scanning of the objects, which is not scalable in this
big data era, where numerous structured and unstructured
data are generated in real-time. To solve this issue, we
develop a machine learning model in StackInsights, which
can perform a business sensitivity classification by learning
from file metadata, which is much easier and cost-efficient
to collect. By using meta data, we can already obtain a

sensitivity prediction model with high accuracy. Therefore,
we do not have to perform a detailed content analysis on all
the files. Instead, intensive content analysis only needs to
be conducted on the predicted non-sensitive files for further
screening. Our model-based approach significantly reduces
the total sensitivity assessment time.

When migrating workloads among private, public, and
hybrid clouds, one of the biggest challenges is the storage
layer. An enterprise’s infrastructure might consist of a mix-
ture of file, block, and object storage, which have different
properties and offer their own advantages. Enterprises big or
small tend to manage large and heterogeneous environments.
For example, one of our IT environments supports around
100 business accounts, spread over several geographical
locations, amassing a total of 200 PB of block storages
alone. Similarly, our file storage fabric is also massive, where
file shares (mapped to volumes/q-trees) may be in the TB,
or even PB scale.

Given such a large storage infrastructure with a number
of volumes, we need to determine their cloud migration
priority, i.e., which volumes should be migrated first. Data
sensitivity is one of the most important factors in cloud
migration. Volumes of low sensitivity can be sanitized first
and then migrated to the public cloud. From the point of
view of cloud migration service admins, it is not critical
to know the exact sensitivity of the volumes, but rather
the sensitivity “level” of the volumes, so that the migration
priority can be assigned. The traditional sensitivity assess-
ment approaches, which require content scanning, are very
expensive. It is impractical and not necessary to perform a
full content scanning on all the volumes in order to obtain
the priority. Machine learning can help predict the sensitivity
of files based on the easily collected file meta data, and then
obtain the migration priority within a much shorter time.

It is expensive to determine the business sensitivity of
each storage volume. We therefore develop a clustering com-
ponent in StackInsights, which identifies groups of volumes
that share similar characteristics. Specifically, the volumes
are clustered based on their meta level information, which
are obtained by aggregating the file metadata at the volume
level. The sensitivity of a representative volume in each
cluster is used as the representative sensitivity of all the
volumes in the same cluster. To obtain the sensitivity of a
representative volume, we apply a machine learning model
to predict the sensitivity of each single file on that volume.
The sensitivity of a volume is defined as the number of
sensitive files divided by the total number the files. Similarly,
we also obtain the IOPS of each volume and compute its IO
density, which is defined as IOPS per GB. All the volumes
which have both low business sensitivity and low IO density
can be the candidates to be migrated to public clouds while
the other volumes should remain on premise or be migrated
to private clouds.



III. RELATED WORK

In the marketplace of enterprise softwares, there are tools
developed for data classification in regard of data governance
or life cycle management. For example, [2] [3] provide data
classification services for managing and retaining various
types of data such as emails and other unstructured data
through pre-determined rules or dictionary searches. Data
privacy and security have become the most pressing con-
cerns for organizations. To embrace the General Data Pro-
tection Regulation (GDPR) by European Union, enterprises
are making great efforts in addressing key data protection
requirements as well as automating the compliance process.
For example, IBM Security Guardium solutions [14] help
clients secure their sensitive data across a full range of
environments. Data classification, as the first step to security,
has become extremely important. Only after we understand
which data are sensitive through classification, we can then
better protect the data. On the other hand, [13] assesses
the cloud migration readiness by providing a questionnaire
to the owner of the infrastructure. Many of existing tools
lack of cognitive capability, and even if there is, the data
preparation step requires the scanning of file content, which
is not scalable or only supports certain file types.

Besides the rule-based approaches to classify data, there
are also attempts leveraging a predictive model. Model-based
approaches are much more systematic and scalable because
there is no need to generate a rule to classify files manually.
The proof-of-concept data classification system that crawls
all files in order to analyze data sensitivity was studied
in [4]. A new nearest neighbor algorithm was proposed
in [5] to determine the sensitivity of files. [8] proposed
to use the decision tree classifier for finding associations
between a file’s properties and metadata. [6] introduced
a general-purpose method to detect sensitive information
from textual documents using the information theory. The
application to data loss prevention by using automatic text
classification algorithms for classifying the sensitivity of
business documents was introduced in [7]. However, most of
the existing works require an exhaustive process to crawl the
contents of data, which is impractical in many applications
due to privacy, governance, or regulation.

There are preliminary works in the field of hybrid cloud
migrations whose components include a data classification
method. The tool of migrating enterprise services into hy-
brid cloud-based deployment was introduced in [9]. The
complexity of enterprise applications is highlighted and the
model, accommodating the complexity and evaluating the
benefits of a hybrid cloud migration, is developed. Though
the work sheds insight on the security of data, the tool
does not assess the sensitivity of applications at file level.
Rule-based decision support tool is deployed in [10] as
a modeling tool to compare various infrastructures for IT
architects. However, in many practical cases, IT architects

have no visibility into the content of data. Therefore, it is
not straightforward to model their applications, data, and
infrastructure requirements without understanding the nature
of data such as sensitivity. In addition, [11] developed a
framework to automate the migration of web server to the
cloud.

As observed in previous works, data classification and
hybrid cloud migration are explored separately although
they are tightly related. In contrast, our proposed framework
covers the whole process including classifying data, assess-
ing the readiness of cloud migration, and finally a decision
support for hybrid cloud migration. Furthermore, we develop
an efficient and scalable method to determine the cloud
readiness by considering data sensitivity and infrastructure
performance through a cognitive learning process.

IV. STACKINSIGHTS FRAMEWORK

We show the high-level framework of StackInsights in
Figure 2. In order to gain insights into an existing IT
environment, we scan various layers across the entire stack:
(1) the application layer, (2) the data layer, and (3) the
infrastructure layer. The application layer tells us the types
of the running workloads, what components they depend on,
and the specific requirements. The data layer provides file
metadata as well as content. Finally, the infrastructure layer
provides performance metrics, such as, how often the data
are accessed, and where they are stored.
Workload Scan: This can be done through IBM’s Tivoli Ap-
plication Dependency Discovery Manager (TADDM) [12],
which provides an automated discovery and application
mappings. This step is important as we need to understand
the running of workloads or applications before starting
the scan. For example, the file content scanning can be
invasive to latency-sensitive workloads and interfere with
their running.
Infrastructure Scan: Our framework is composed of a set
pluggable modules that can be adapted to scan different
infrastructures. This is important as infrastructures tend to be
heterogeneous in nature. For example, a storage infrastruc-
ture may have a mixture of different storages, management
technologies developed by multiple providers, as well as
different ways of accessing data (e.g., via block, file, or
object stores). If the workload scan tells us that the storage
layer consists mostly of storage filers, we can assume that
at this layer, most data is reached through protocols such
as Network File System (NFS), and Common Internet File
System (CIFS), as well as manufacturer-specific APIs such
as NetApp’s ONTAP [15]. Once the infrastructure scan is
completed, we can then build a location map of all the
data and identify the storage volumes or file shares that are
most critical for scanning. For the rest of the paper, we will
use volume and file share interchangeably as NetApp filers
have the notion of q-trees/volumes as mapping points for file
shares, which are exposed to users through protocols such as



Figure 2: StackInsights framework

CIFS. The root q-tree/volume for each share is mounted on
our virtual machines as read-only directories. Similarly, with
block storage, we care mostly about volume granularity, as
most migration utilities operate at this level.
Volume Clustering: Given a large heterogeneous IT in-
frastructure, we first apply a clustering method to identify
groups of volumes that share similar characteristics. The
volume are clustered based on their meta level information
which are obtained by aggregating the metadata of all the
files on the same volume. We apply the K-means algorithm
to obtain the volume clusters. After all the volumes are
clustered, we select a representative volume from each
cluster and further analyze the business sensitivity of every
representative volume. We assume the volumes in the same
cluster share a similar sensitivity score.
Cognitive Learning: Business sensitivity is a critical factor
in hybrid cloud migration. We need to analyze the sensitivity
of the representative volume in each volume cluster, which is
defined as the number of sensitive files divided by the total
number of files on that volume. The current approach to
detecting sensitive files requires in-depth content scanning,
which is intrusive and expensive. However, even a single
storage volume may contain millions of files, in TB or PB
scale. It will take a tremendous amount of time to do a
full content scan. In StackInsights, we develop a cognitive
learning component to predict the sensitivity of files based
on easily obtained metadata, which significantly reduces the
total running time.
File Content Crawling: We randomly sample a subset of
files from the selected representative storage volume, crawl
their content, and apply the traditional rule based approach
to determine the sensitivity. Files are identified as sensitive
or non-sensitive by matching against a list of regular expres-
sions and keywords predefined by users. The definition of
sensitive files can be modified or extended with the domain
knowledge of specific industry verticals. The crawling output
contains attributes such as file name, file path, the number of
total tokens excluding stop words, the number of matching
key words, email address, phone number, social security
number, and credit card number. Users can define the file

sensitivity labeling rule. For example, a file can be labelled
as sensitive if it contains any sensitive information in the
dictionary. Users can also specify a more stringent rule, such
as the file is sensitive only if the percentage of sensitive
information is above a certain threshold. The sensitivity
labels of these files are correlated with their metadata,
which compose the training data for building our sensitivity
prediction model.
Intelligent File Sampling: The quality of training data
has a significant impact on the performance of machine
learning model. In StackInsights, we develop a clustering
based progressive sampling method to obtain a “good”
training data. All the files on a storage volume are first
clustered using their metadata, for example, via K-means.
We then compute the percentage of data points assigned
to each cluster. A random sampling is performed on each
cluster to select data points proportionally, with respect to
the previously obtained percentages. We crawl the content
of the selected files and determine their sensitivity using the
approach introduced in file content crawling. A progressive
sampling method is applied to determine the final total
sampling size. We start from a relatively small sampling
percentage and apply the aforementioned clustering-based
sampling to obtain a set of training data. A machine learning
model is trained on this data set. We obtain the model’s
classification accuracy on a held-out test dataset. Comparing
with the classification accuracy from the previous run, if
the accuracy improves, we will do an incremental sampling
on all the clusters, per user defined sampling size. If the
change of classification accuracy is within a predetermined
threshold or the total sampling size reaches an upper bound,
the sampling process will be stopped.
Metadata-based Sensitivity Prediction: We use the newly
sampled dataset to train a binary classification machine
learning model. Each file is represented as a feature vector,
derived from the file metadata.The output is the classifica-
tion label “sensitive” or “non-sensitive”. Once the machine
learning model is built, we can then apply it to classify
the remaining files on the volume based on the available
metadata obtained from the infrastructure scan.



V. EXPERIMENT

Our environment consists of roughly 100 different ac-
counts, with a wide variety of storage requirements. Each
account has a mixture of file, block, and object storage.
We choose a mid-size account, whose storage infrastructure
is predominantly file storage. This account has two data
centers, each one with a set of NetApp filers in clustered
mode (roughly 33.8 TB). We install one secure virtual
machine inside each site preloaded with our StackInsights
scanning codebase. We use those virtual machines to scan
the environment and extract the necessary information for
further analysis. The storage filer gives us a map of what the
file storage infrastructure looks like. We first build a tree of
the infrastructure by starting from the cluster and then down
to the file level. In parallel, we poll the storage filers for
IOPS for each storage volume. This will allow us to measure
the IO density for each volume. We use IBM’s TADDM tool
to get a picture of the different running workloads. Because
the filers in the environment are all NetApp filers, we use the
ONTAP APIs to extract file metadata, as well as performance
metrics from the filers.

A. IOPS and file metadata collection

The IOPS for each volume is collected over a four-
week time window. We then compute the hourly-average
IO density (IO per second per GB) for each volume. In
Figure 3(a), all the volumes are aligned along the X-axis
according to their IO density. As we can see, except V5,
the IO density of all the other volumes is between 0.0 and
0.01, which is relatively cold. Note that since the highest IO
density is only around 0.05, we indicate the corresponding
hotness as “warm” on the X-axis.

In total, we extract the metadata for more than 13 million
files. One file meta data example is shown in Table I.
The volume level metadata is then obtained by aggregat-
ing the metadata of all the files on the same volume.
One volume metadata example is shown in Table II. The
“Top3ExtensionbySize” attribute is the top three file exten-
sions ranked by their total size. “NotModifiedin1YearCount”
is the percentage of files on that volume that have not
been modified in the past one year in terms of file counts.
Similarly, “notAccessedin1YearSize” is the percentage of
files on that volume that have not been accessed in the past
one year in terms of file sizes. All the other attributes are
likewise.

After the volume level metadata is obtained, we apply
K-means to do clustering on all the volumes. Due to the
relatively small number of volumes, we empirically set
K = 3. The optimal value of K can be determined by the
elbow method, which considers the percentage of variance
explained by the clusters against the total number of clusters.
Figure 3(b) shows the clustering results. Note that we have
not considered the data sensitivity yet, so all the volumes
are still aligned along the X-axis. We select a representative

volume from each cluster, which is defined as the one with
the minimum total distance to the other volumes in the
same cluster. A sensitivity analysis is performed on each
representative volume. The volumes in the same cluster are
assumed to share similar sensitivity score.

(a) Volumes are aligned by IO density

(b) Volume clustering

(c) Volume sensitivity and IO density map

Figure 3: StackInsights volume analytical maps

B. Metadata-based Sensitivity Prediction

1) Training Data: For each representative volume, we
build a machine learning model to learn the sensitivity of
all the files. One of the selected volume from the first data
center contains 3.9 million files, which are 2.64 TB in size.
From the infrastructure scan introduced in Section IV, we
obtain the metadata of all the files. We randomly select a
subset of the files to crawl their content and determine the
sensitivity using the dictionary based approach introduced
in Section IV. Specifically, we use Apache Tika to scan the
file content. A file is considered as sensitive if it contains
any sensitive information in the dictionary defined by the
user. We finally obtain a set of 114,854 files with both their
metadata and sensitivity labels, where 66,221 (57.65%) files



Table I: A file metadata example
Attribute File name File extension File path Last accessed time Creation time Changed time Last modified time File size (bytes) Bytes used
Value Feedback Survey 2015.docx .docx /path/to/file/location 2015-10-21 09:28:37.00 2015-10-21 09:28:31.00 2016-08-08 20:51:35.00 2015-10-21 09:28:37.00 20195 20480

Table II: A volume metadata example
Attribute Volume size Total file count Total file size Top3ExtensionbySize Top3ExtensionbyCount NotModifiedin1YearCount NotModifiedin1YearSize NotModifiedin3YearCount
Value 6.06 TB 3,627,061 2.64 TB nsf, zip, xls doc, xls, pdf 94.18% 89.44 % 0.0%
Attribute NotModifiedin3YearSize NotAccessedin1YearCount notAccessedin1YearSize NotAccessedin3YearCount NotAccessedin3YearSize NotAccessedAfter2WeekCount NotAccessedAfter2WeekSize IO Density
Value 0.0% 81.03% 76.28% 0.0% 0.0% 49.10% 53.13% 7.89E-3

labelled as sensitive. Similarly, we obtain another set of
39,571 files with both their metadata and sensitivity labels
from a presentative volume in the second data center. This
data set includes 21,284 sensitive files (53.79%). In the
following, we will refer to these two data sets as dataset
I and dataset II.

2) Feature Engineering: Given the training data, we de-
rive features from file metadata for the classification model.
Specifically, the features are divided into several categories:
file name, file extension, file path, file size related, and time
related. Name Features: we extract the name of the file
in plain text. The file name can contain textual informa-
tion that indicate the file sensitivity. For example, a file
named “patent disclosure review Feb2 2015.docx” proba-
bly contains intellectual property information and should
be considered as sensitive. We model each file name using
the bag-of-word approach (removing all numeric characters,
punctuation marks, and stop words) and represent it as a
vector v = [v1, ..., vn], where n is the size of the vocabulary
and vi is the frequency of word i in the file name. Path
Features: the file paths are extracted from the file system.
We extract all the folders that are d levels away from the
root. Assuming that m folders are found, we store them in
a list l = [l1, ..., lm]. For a given file f , we represent it as a
feature vector v = [v1, ...vm] of length m, where vi = 1 if
f belongs to folder li, otherwise 0. Extension Features: we
collect all the extensions that belong to our training set and
store them in a list e = [e1, ..., em], where m is the total
number of extensions. For a given file f , we will represent
it as a feature vector v = [v1, ..., vm], where vi = 1 if f has
extension ei, otherwise 0. Size Related Features: the file
size represents the size that was allocated on disk to the file,
while the bytes used represents the bytes that were actually
written. Time Related Features: we include three time
related features for each file: specifically, the time difference
between the last accessed time and the creation time, the
difference between the changed time and the creation time,
and the difference between the last modified time and the
creation time. All the differences are in the number of days.
Feature Summary: After the features in each category are
collected, we concatenate them into a larger feature vector
to represent each file. Because the size of the file path
feature grows exponentially with the depth d, we choose
d = 2 empirically in our experiments. All the features are
normalized into the range [0, 1]. Table III summarizes the

Table III: Feature summary
Feature category dataset I dataset II

File name 29736 14861
File path 788 315

File extensions 1170 316
File size related 2 2

Time related 3 3
Total feature size 31699 15497

Table IV: Top ten features
Feature Type dataset I dataset II

Extension .url .xls
Extension .properties .txt
Extension .mdm .html
Extension .pas .net
File Size - -

Bytes Used - -
Last access time diff - -

Change time diff - -
Last modified time diff - -

Text “feature” “username”

total feature size for each category and the overall size of
the feature vector.

3) Feature Selection: We investigate which features are
the most significant in the machine learning model. We apply
mutual information to select the top features. Table IV shows
the top ten selected features. Among the top ten features, file
extension features take the most percentage. In addition, the
two file size related and three time related features are also
significant. Text tokens “feature” and “username” are also
among the top ten. Note that we use “username” to replace
an actual username due to privacy. We do not find any file
path features in the list, which indicate that the location of
the file in the filesystem may carry less significance. For
example, one particular folder may include both sensitive
and non-sensitive files.

4) Prediction Models: After all the features are extracted,
we build machine learning models on our training data
and apply them to predict the file sensitivity using meta
data. Specifically, we compare the performance of several
well-known classification models: Naive Bayes, Logistic
Regression, Support Vector Machines (SVM), and Random
Forest.

All the experiments are conducted using 10 fold cross
validation. Naive Bayes has the advantage of having no
parameters to optimize on. Logistic Regression has only
one parameter: the regularization parameter C. In order
to select the optimal value C, we run grid search using



10-fold cross-validation on multiple values of C. We find
that the best C value is 0.9. For SVM, the linear kernel
is selected. In practice, we find that the RBF kernel takes
a very long time to converge. The optimal regularization
parameter C is selected following the same procedure as
with Logistic Regression. The optimal C value is set to
be 0.8 for linear SVM. We use the default parameter
setting for Random Forest, where the number of tree in
the forest is 10, no maximum tree depth constraint, and
the samples are drawn with replacement. Table V shows
the performance of each model in terms of overall accuracy,
precision, recall, and F1 score. In our classification problem,
the positive class is “sensitive” while the negative class
is “non-sensitive”. Specifically, the precision is defined as
tp/(tp+ fp), where tp is the number of true positives and
fp the number of false positives. The recall is tp/(tp+fn),
where fn is the number of false negatives. Accuracy is
defined as the number of samples that are correctly classified
divided by the total number of samples. The F1 score is
2× (precision× recall)/(precision+ recall).

In Table V, the percentages of sensitive files in dataset
I and II are 57.65% and 53.79%, respectively. Therefore,
the classes in the training data are roughly balanced. As we
can see, Random Forest has the best performance among
all the models over all the metrics. The precision and
recall on dataset I are above 90%. In contrast to other
models, Random Forest, as an ensemble method, combines
the predictions of several base estimators, i.e., decision trees.
Each tree in the ensemble is built from a sample drawn
with replacement from the training set. When splitting a
node during the construction of the tree, the split is chosen
as the best split among a random subset of the features.
Since both the feature size and sample size are large in our
classification, as a result of this randomness, the variance
of the forest is reduced due to averaging, hence yielding an
overall better model. In practice, the percentage of sensitive
files in the training data depends on the specific domain
and sensitivity labeling. In some domain, the sensitivity
labelling may be stringent, resulting in a relatively small
percentage of sensitive files. We also design experiments to
test the performance of machine learning models for such
case. Still, Random Forest has the best performance among
all the models over all the metrics. Due to space limit, we
do not show the results here. We select Random Forest as
the final machine learning model.

To have a detailed analysis of the classification results, we
show the confusion matrices of Random Forest (one fold in
a two-fold cross validation) in Table VI, which allows us
to see how well the model performs on the classification of
each class. Overall, the error ratios on false positives and
false negatives are balanced on both datasets.

5) Prediction Model Usage: We do not intend to use the
above prediction model to completely replace the traditional
content scanning method. As we can see, the prediction

Table V: Models on datasets of balanced classes
Model (dataset I) Accuracy Precision Recall F1

Naive Bayes 0.8044 0.8348 0.8238 0.8293
Logistic Regression 0.8115 0.8664 0.7959 0.8296

SVM 0.8309 0.8730 0.8269 0.8493
Random Forest 0.9014 0.9250 0.9022 0.9135

Model (dataset II) Accuracy Precision Recall F1

Naive Bayes 0.7780 0.7855 0.8081 0.7966
Logistic Regression 0.7923 0.8350 0.7652 0.7985

SVM 0.8055 0.8493 0.7762 0.8111
Random Forest 0.8739 0.8926 0.8703 0.8813

Table VI: Model confusion matrices
Random Forest (dataset I) Non-Sensitive Sensitive

Non-Sensitive 21493 (0.88) 2824 (0.12)
Sensitive 3999 (0.12) 29112 (0.88)

Random Forest (dataset II) Non-Sensitive Sensitive
Non-Sensitive 7897 (0.86) 1247 (0.14)

Sensitive 1535 (0.14) 9107 (0.86)

model is based on meta data and cannot achieve 100% accu-
racy. In data governance and security, the misclassification
of sensitive data can be catastrophic for an organization.
Therefore, a thorough sensitivity screening has to be per-
formed in order to make sure all the sensitive information are
identified. From the machine learning model, all the files that
are predicted as sensitive will be labelled as sensitive data.
We can then perform intensive content scanning method
on all the files that are predicted to be non-sensitive. For
example, after applying Random Forest on dataset I, 25,492
files are predicted as non-sensitive. The content scanning
based method will then be applied to these files, so that
the 3,999 misclassified sensitive files can be identified. In
contrast to the content scanning of all the 57,428 files, we
now only need to perform content scanning on 25,492 files,
significantly smaller than the original number of files. There
are certainly non-sensitive files miscalssified as sensitive
files. For example, 2824 non-sensitive files are misclassified
as sensitive files. As a result, they will be “over-protected”.
However, the percentage of such files only takes 4.91%
of the total files. As a simple comparison baseline, with
the percentage of sensitive files in the training data (i.e.,
57.65%) for dataset I, a user can randomly selects 57.65%
data, and label them as sensitive and the remaining as non-
sensitive, without using the prediction model. They can then
perform content scanning on the previously labelled non-
sensitive files in order to identify any sensitive information.
Note that in this baseline, among the 57.65% files that are
labelled as sensitive, 42.35% files are actually non-sensitive
(based on the percentage of non-sensitive files in the training
data), therefore, 57.65% × 42.35% = 24.41% amount of
non-sensitive files are misclassified as sensitive, therefore
“over-protected”, in contrast to 4.9% that are misclassified
by the prediction model.



6) Prediction Ranking and Running Time: After the ma-
chine learning model is trained, we apply it to predict the
sensitivity of the remaining files on the same volume. For
dataset I, we apply Random Forest to predict the sensitivity
of the remaining 3.9 million files and measure its running
time. On a local machine with 2.5 GHz Intel Core i7 CPU
and 16GB of RAM, the total running time is 112 minutes.
As a comparison, it took more than 30 hours to scan the
content of only 228,000 files (about 5.85% of 3.9 million),
in order to determine their sensitivity. StackInsights therefore
reduces the total running time by orders of magnitude.

We also apply the trained learning model to predict
the sensitivity of files on other volumes in the same data
center. Table VII shows the prediction results: the predicted
sensitive files number, volume sensitivity, and running time
in seconds. As we can see, V1 and V4 have sensitivity close
to 1. They also belong to the same cluster in Figure 3(b). V2,
V3, and V5 have sensitivity between 0.45 and 0.70, which
are in the same cluster. V6 and V7 are in the same cluster,
with predicted sensitivity 0.5758 and 0.1728, respectively.

Table VII: Prediction results on all the volumes
Total file # Sensitive file # Sensitivity Running time (sec)

V1 400415 385369 0.9624 286.28
V2 7798224 5501763 0.7055 5993.20
V3 3894711 1804798 0.4633 6720
V4 170808 170808 1.0000 134.01
V5 1481322 902804 0.6095 1133.58
V6 686 395 0.5758 0.51
V7 81 14 0.1728 0.06

7) Migration Insights: After the sensitivity of all the
files on a storage volume is predicted, we can compute the
sensitivity score of volumes. The sensitivity score is defined
as the number of sensitive files divided by the total number
of files on that volume. As shown in Figure 3(c), the volumes
are ordered based on their sensitivity level and hotness.
Therefore, all the volumes which are cold and low sensitive
can be migrated to the public cloud. The remaining should
be migrated to the private cloud or remain on premise.

VI. CONCLUSIONS AND FUTURE WORK

We have introduced StackInsights, a cognitive learning
system which automatically analyzes and predicts the cloud
readiness of workloads. StackInsights correlates the metrics
from application, data, and infrastructure layers to identify
the business sensitivity of data as well as their hotness in
terms of infrastructure performance, and provides insights
into hybrid cloud migration. Given the scale of data and in-
frastructure, a machine learning model is developed in Stack-
Insights to predict file sensitivity based on the metadata.
In contrast to traditional approach which requires intrusive
and expensive content scanning, StackInsights significantly
reduces the total running time for sensitivity classification
by orders of magnitude, therefore, is scalable to be deployed
in large scale IT environment. Our current system is mainly

focused on understanding the sensitivity of textual files. In
the future, we will analyze the sensitive information from
multimedia data, such as images, videos, and audios. Simi-
larly, we can predict their sensitivity based on the meta level
information. Last but not the least, the cognitive learning
capabilities of StackInsights can be greatly enhanced by
collecting more metadata across the stack.

REFERENCES

[1] Markets and Markets. http://www.marketsandmarkets.
com/.

[2] Symantec Data Classification Services https://support.
symantec.com/en US/article.HOWTO124009.html.

[3] Varonis Data Classification Framework. https://www.
varonis.com/products/data-classification-framework/.

[4] Y. Park, S. C. Gates, W. Teiken, et al. An experimental
study on the measurement of data sensitivity. In Pro-
ceedings of BADGERS, pages 70-77, 2011.

[5] M. Ali and L. T. Jung. Confidentiality based file
attributes and data classification using tsf-knn. In Pro-
ceedings of ICITCS, pages 1-5, 2015.

[6] D. Sanchez, M. Batet, and A. Viejo. Detecting
Sensitive Information from Textual Documents: An
Information-Theoretic Approach. In Proceedings of
MDAI, pages 173-184, 2012.

[7] M. Hart, P. Manadhata, and R. Johnson. Text Classi-
fication for Data Loss Prevention. In Proceedings of
PETS, pages 18-37, 2011.

[8] M. Mesnier, E. Thereska, G. R. Ganger, et al., File
classification in self-* storage systems. In Proceedings
of ICAC, pages 44-51, 2004.

[9] M. Hajjat, X. Sun, Y.-W. E. Sung, et al. Cloudward
bound: Planning for beneficial migration of enterprise
applications to the cloud. In Proceedings of SIG-
COMM, 2010.

[10] A. Khajeh-Hosseini, I. Sommerville, J. Bogaerts, and P.
Teregowda. Decision support tools for cloud migration
in the enterprise. In Proceedings of IEEE Cloud, pages
541-548, 2011.

[11] M. Menzel and R. Ranjan. Cloudgenius: Decision
support for web server cloud migration. In Proceedings
of WWW, pages 979-988, 2012.

[12] IBM - Tivoli Application Dependency Discovery
Manager. http://www-03.ibm.com/software/products/
en/tivoliapplicationdependencydiscoverymanager

[13] IBM - Cloud Brokerage Solutions. https:
//www-935.ibm.com/services/us/en/it-services/
systems/cloud-brokerage-service/.

[14] IBM Security Guardium Family. http:
//www-03.ibm.com/software/products/en/
ibm-security-guardium-family.

[15] NetApp ONTAP http://www.netapp.com/us/products/
platform-os/ontap/index.aspx.


