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Abstract—Data protection is the process of backing up data
in case of a data loss event. It is one of the most critical
routine activities for every organization. Detecting abnormal
backup jobs is important to prevent data protection failures
and ensure the service quality. Given the large scale backup
endpoints and the variety of backup jobs, from a backup-as-
a-service provider viewpoint, we need a scalable and flexible
outlier detection method that can model a huge number of
objects and well capture their diverse patterns. In this paper,
we introduce H2O, a novel hybrid and hierarchical method
to detect outliers from millions of backup jobs for large scale
data protection. Our method automatically selects an ensemble
of outlier detection models for each multivariate time series
composed by the backup metrics collected for each backup
endpoint by learning their exhibited characteristics. Interac-
tions among multiple variables are considered to better detect
true outliers and reduce false positives. In particular, a new
seasonal-trend decomposition based outlier detection method
is developed, considering the interactions among variables in
the form of common trends, which is robust to the presence
of outliers in the training data. The model selection process
is hierarchical, following a global to local fashion. The final
outlier is determined through an ensemble learning by multiple
models. Built on top of Apache Spark, H2O has been deployed
to detect outliers in a large and complex data protection
environment with more than 600,000 backup endpoints and
3 million daily backup jobs. To the best of our knowledge,
this is the first work that selects and constructs large scale
outlier detection models for multivariate time series on big
data platforms.

Keywords-anomaly detection, multivariate time series, hy-
brid, hierarchical, big data, model selection

I. INTRODUCTION

As the most valuable asset for organizations, data is
crucial to be carefully protected. Data protection or data
backup1 is the activity of creating a secondary copy of data
for the purpose of recovery in case of accidental deletion
of mission-critical files, application corruptions, hardware
failures, and even natural disasters. In this big data era,
with the rapid growth of data, every organization has a
huge amount of objects to be protected, such as databases,
applications, virtual machines, and systems. We refer to
‡Work done at IBM Research during the author’s internship.
1The terms “data protection” and “data backup” are used interchangeably

in this paper.

these objects as backup endpoints. According to a recent
International Data Corporation (IDC) report [1], the world-
wide data protection and recovery software market reached
more than $6 billion in 2015. Many IT companies provide
data protection services. They set up large scale storage
infrastructures to manage backup services for many business
clients, each of which may own hundreds of thousands of
backup endpoints. Service providers are equipped with a
single point of control and administration platform so that
they can configure, schedule, and monitor all the backup
jobs. It is the service provider’s responsibility to make
sure all the backups are operated under the service level
agreement (SLA).

However, it is non-trivial to manage such a large and
complex backup environment with a huge number of backup
endpoints and millions of daily backup jobs. Backups have
different types, such as full, differential, and incremental
backups. Different endpoints have different backup sched-
ules, for instance, some files backed up hourly, some systems
daily, and some applications maybe weekly. Clients may
also request different backup policies. For instance, certain
applications need to have weekly full backups supplemented
with daily differential backups. These endpoints exhibit quite
different backup patterns and characteristics over time. Iden-
tifying abnormal backups from such a large and diverse set
of backup jobs is very important to prevent data protection
failures. For instance, some backup policies can be miscon-
figured by human during service update or transition process,
which can cause certain critical data to be accidentally
excluded from the backup path. As a result, the total backup
file size and job duration time will drop greatly. In another
case, on backup servers with file expiration and versioning
mechanism, if several backup versions are unexpectedly
created within a very short time (e.g., significant increase
of backup file count and size), the older backup version
will expire and be deleted. If the old backup happens to
contain important files which have not been backed up in the
newly created versions, significant data protection failures
can happen.

In this paper, we introduce H2O, a novel hybrid and



hierarchical method to detect anomalies2 from millions of
backup jobs and ensure the service quality of data pro-
tection. Specifically, our method automatically selects the
best anomaly detection models for each multivariate time
series composed by the backup metrics of an endpoint based
on the exhibited characteristics. The interactions among
different variables or dimensions are also considered to
better identify true anomalies and reduce false positives. The
final anomalies are identified through an ensemble learning
from the models trained on all the variables. Built on top of
Apache Spark, H2O automates the model selection process
and constructs millions of anomaly detection models in
parallel.

Our motivation for exploring a hybrid and hierarchical
method to detect anomalies in large scale data protection
is multifold. First, the time series representing each backup
endpoint is multivariate or multidimensional. These variables
exhibit different characteristics over time. While some vari-
ables show strong seasonality, others may not exhibit such
temporal patterns. As a result, a single type of model is not
appropriate to fit all the variables. Therefore, we propose
a hybrid method to fit variables with different models de-
pending upon their time series characteristics. For variables
with significant seasonality, we develop a new seasonal-trend
decomposition based anomaly detection method, considering
the interactions among different variables in the form of
common trends, which is more robust to outliers in the
training data and can better detect true anomalies.

Second, there are many candidate models for anomaly
detection in multivariate time series. These models have
different performance on different types of data. For in-
stance, the seasonal-trend decomposition based method can
be used to detect anomalies in time series exhibiting strong
seasonality. However, it does not perform well when applied
to time series without seasonality. Vector autoregression
(VAR) is one of the most widely used models for multi-
variate time series analysis. It can be applied for anomaly
detection when the predicted value is significantly different
from the observation. But if the data does not exhibit time
series characteristics, VAR cannot predict future values well
because of the low goodness-of-fit to training data. On the
other hand, distance based models, such as local outlier
factor (LOF), may be able to better detect anomalies from
such data, treating each data point as independent. Time
series based models are able to capture “global” patterns in
the data while distance based models are more focused on
“local” characteristics. Therefore, we propose a hierarchical
model selection method, which selects the best models for
variables following a global to local fashion.

Third, we are facing the problem of constructing a huge
number of anomaly detection models for all the endpoints.
Big data computing platforms, such as Apache Spark, make

2The terms “anomalies” and “outliers” are used interchangeably in this
paper.

it scalable to construct hybrid models for a large amount
of modeling objects in parallel and perform intensive model
selections. We believe that this is the first work that selects
and constructs large scale anomaly detection models for
multivariate time series. We present the performance of
H2O in a large scale experiment, where the number of
constructed models is at least 100 times larger than the
reported experimental study in previous work [2]. Although
H2O is applied in data protection, our method is very general
and can be used to detect anomalies in other domains.

The rest of the paper is organized as follows. We review
related work in Section II and introduce the preliminaries on
the anomaly detection models in Section III. Our proposed
H2O method is discussed in Section IV. Section V is on the
experiments and results. Finally, we conclude in Section VI.

II. RELATED WORK

Our work is mostly related to the anomaly detection in
large scale multivariate or multi-dimensional time series.

To detect outliers in time series, one of the most widely
used method is to build statistical model for the historical
data and then predict the value at future time point t [3].
An outlier is detected if the observed data is significantly
different from the expected value. Several well known
statistical models have been proposed to model time series,
including autoregression (AR) for univariate time series, and
vector autoregression (VAR) for multivariate time series [4].
Günnemann et al. [5] develop a multivariate autoregression
method to detect anomalies in product and service ratings.

Seasonal-trend decomposition based method has been
recently used to detect anomalies in time series with strong
seasonality. A time series can be decomposed into the trend,
seasonal, and remainder components [6]. Vallisand et al.
[7] propose a piecewise median decomposition method to
detect anomalies in the cloud data at Twitter. Specifically,
the trend component is estimated as a piecewise combina-
tion of short-term medians and the seasonal component is
extracted by STL (Seasonal-trend decomposition based on
Loess), a well known decomposition method in time series
analysis [6]. The remainder is computed by subtracting the
trend and seasonal components from the original data. A
customized extreme studentized deviate test (ESD) [8] is
finally applied to all the remainders to detect the top k
anomalies. Decomposition based method has also been used
in detecting anomalies at Airbnb’s payment platform, where
the seasonality is estimated by Fast Fourier Transform (FFT)
and the trend is estimated by rolling median [9]. However, all
the existing decomposition based anomaly detection meth-
ods are only focused on univariate time series. Greenaway-
McGrevy [10] has made efforts in removing the seasonal
component from multivariate time series in economics by
estimating the trend component using a factor model, which
captures covariation and common changes among multiple
time series. Motivated by the work in [10], in this paper,



we develop a new decomposition based anomaly detection
method for multivariate time series.

Another family of anomaly detection methods for multi-
dimensional data is based on full dimensional distances to
local neighborhoods. Local outlier factor (LOF) measures
the local deviation of a given point with respect to its
neighbors [11]. As variants of LOF, incremental LOF [12] is
proposed to determine the LOF score instantly for new arriv-
ing data record, and LoOP [13] scales the LOF score to [0,
1], which can be interpreted as the probability of a data point
being an outlier. These methods can also be applied to multi-
dimensional time series, which treat the time series at each
time point as independent and do not consider their temporal
characteristics. Instead of using full dimensional distances,
some methods have been proposed to detect anomalies in
subspaces to avoid the sparse nature of distance distributions
in high dimensional spaces. The feature bagging method [14]
randomly selects a set of dimensions as a subspace and
then applies LOF under each subspace. Keller et al. [15]
compute and rank outlier scores in high contrast subspaces
with a significant amount of conditional dependence among
selected dimensions. Since anomaly scores are obtained
from different subspaces, ensemble methods can be applied
to combine the results and derive the final consensus [16],
[17].

Several big data frameworks have been developed to
detect anomalies in large scale data sources. Solaimani et al.
[18] develop a Chi-square based method to detect anomalous
time series in performance data at VMware based cloud
data centers. The anomalies are time series, or data streams,
instead of individual data points. The new arriving stream is
compared with previous streams using Chi-square test [19],
which determines if they follow the same distribution. Simi-
larly, L. Rettig et al. [20] apply Kullback-Leibler divergence
[21] and Pearson correlation to compare the distributions of
two time series in order to detect anomalies over big data
streams. Most recently, Laptev et al. [2] introduce EGADS,
a generic and scalable framework for automated anomaly
detection on large scale data at Yahoo, which can detect three
classes of anomalies: outliers, change points, and anomalous
time series. Their framework automatically selects the best
model for time series depending on their characteristics.
All the aforementioned frameworks are only focused on
detecting anomalies from univariate time series. H2O, how-
ever, detects anomalies over large scale multivariate time
series, considering the covariation and interactions among
the variables. An ensemble of models are selected for all the
variables in a multivariate time series. The model selection
process is hierarchical, following a global to local fashion,
which is the first of its kind.

III. PRELIMINARIES

In this section, we introduce the preliminaries of anomaly
detection models used in our proposed H2O method.

Specifically, our models are from three categories: (a)
seasonal-trend decomposition based anomaly detection,
(b) vector autoregression (VAR) based anomaly detec-
tion, and (c) distance-based anomaly detection. Let yt =
(y1t, y2t, ..., yKt)

t denote a time series at time t, which
consists of K variables. The entire multivariate time series
is denoted by Y = (y1,y2, ...,yT ), where T is the total
number of time points.

A. Seasonal-Trend Decomposition based Anomaly Detection

Generally speaking, a time series comprises three compo-
nents: trend, seasonal, and remainder. The trend component
describes a long term non-stationary change in the data. The
seasonal component describes if the series is influenced by
seasonal factors or fixed and known period. The remainder
represents the component in the time series after the seasonal
and trend components are removed. Seasonal-trend decom-
position has been used in detecting anomalies in univariate
time series data. Suppose the trend component, the seasonal
component, and the remainder component in the vth time
series are denoted by Yv , Tv , Sv , and Rv , respectively, for
v = 1, ..., N , where N is the total number of time series.
We have

Yv = Tv + Sv + Rv . (1)

Many methods can be used for a seasonal-trend decom-
position. One of the most well known methods is STL,
a seasonal-trend decomposition procedure based on Loess
(locally weighted scatterplot smoothing) [6]. After the de-
composition, if the absolute value of the estimated remainder
is significantly larger than the others, the corresponding data
point is considered as an anomaly.

B. Vector Autoregression based Anomaly Detection

The vector autoregression (VAR) model is widely used in
economics and finance for multivariate time series analysis.
Each variable is a linear function of past lags of itself and
the lags of the other variables. The VAR model of lag p,
denoted by VAR(p), is defined as

yt = A1yt−1 + ...+Apyt−p + ut ,

where Ai are coefficient matrices for i = 1, ...., p, and ut is
the error term. A model selection method, such as Akaike
information criterion (AIC) [22], can be applied to select
the optimal value of p. When VAR is used for anomaly
detection, we can determine if the data point is abnormal on
each variable by comparing its estimated value in yt with
the corresponding real observed value.

C. Local Outlier Factor

As a distance based anomaly detection method, local
outlier factor (LOF) measures the deviation of a data point
with respect to its density in the neighborhood formed by the
k nearest neighbors [11]. Specifically, the local reachability



density is proposed to estimate the degree of abnormality.
The local reachability density of a given data point is defined
as the inverse of the average reachability distance of its
k nearest neighbors. Its outlier factor is computed as the
average of the ratios between the local reachability density
of this data point and its k nearest neighbors. A data point
is identified as an outlier if it has a higher outlier factor than
its neighbors.

IV. PROPOSED METHOD

In this section, we introduce H2O, a hybrid and hierarchi-
cal method for outlier detection.

The three outlier detection methods introduced in Sec-
tion III are representatives in their own categories. Given
a time series, we first determine if there is seasonality in
the data. Seasonal-trend decomposition based models can
best handle such type of data. If the time series does not
exhibit significant seasonality, we apply VAR to model
the time series, which has shown flexibility in modeling
multivariate time series without strong assumptions. If VAR
cannot model the time series very well, as indicated by its
low goodness-of-fit value, we assume that the data does
not have strong time series characteristics. Finally, LOF, a
distance-based method focusing on local patterns, is applied
to detect anomalies. Therefore, our model selection process
is hierarchical, following a global to local fashion, and starts
from checking the most strong pattern (i.e., seasonality) in
time series. We explain the detailed steps in the following
sections.

A. Determine periodicity or seasonality

We first determine the seasonality in each variable through
a spectral analysis. After removing a linear trend from the
series, the spectral density function is estimated from the
best fitting autoregression model using AIC. If there is a
large maximum in the spectral density function at frequency
f , the periodicity or seasonality will be 1/f , which is
rounded to the nearest integer.

B. Decomposition based Anomaly Detection (STL+DFA)

We apply seasonal-trend decomposition based method to
detect anomalies on the variables with strong seasonality.
One important issue in this type of anomaly detection model
is the trend estimation. A sudden change in a time series
is graduated over many time periods. As shown in previous
work [7], the trend estimation can be easily affected by such
spikes in the training data, and therefore introduce artificial
anomalies into the detection. In this paper, we develop a
new seasonal-trend decomposition based anomaly detection
model by considering the covariation and interactions among
variables in the form of common trends. Specifically, we
apply dynamic factor analysis (DFA) [23] to obtain the
common trends among multiple variables. In practice, we
find the trend estimated by DFA is more robust to the

presence of outliers in the training data and less distorted by
the sudden changes. Therefore, the number of false positives
can be significantly reduced.

DFA is a dimension reduction technique that aims to
model a multivariate time series with K variables in terms
of M common trends. The trend can be analyzed through
univariate models by treating them as K separate trends.
However, the interactions between variables are ignored.
DFA aims to reduce the number of trends from K to M
by considering the common changes in the variables. The
general formulation for the dynamic factor model with M
common trends is given by:

xt = xt−1 + wt where wt ∼ MVN(0,Q)

yt = Zxt + a + vt where vt ∼ MVN(0,R)

x0 ∼ MVN(π,Λ) , (2)

where Z contains the factor loadings, which is of dimension
N × M , and xt is a vector containing the M common
trends at time t. wt and vt are the error components at
time t, following a multivariate normal distribution, with Q
and R being the covariance matrix, respectively. x0 is the
common trend at the initial time point, which also follows a
multivariate normal distribution with mean π and covariance
matrix Λ. The idea is that the response variables (y) are
modeled as a linear combination of common trend (x) and
factor loadings (Z) plus some offsets (a). An expectation-
maximization (EM) algorithm can be applied to infer all
the parameters [23]. The number of common trends can be
determined by model selection, such as AIC. Note that after
the common trend x is estimated, it needs to be multiplied
by the factor loadings Z to obtain the final trend for each
individual variable.

After obtaining the trend components from DFA, we apply
STL to extract the seasonal component of each variable. The
remainder component in each variable is obtained by sub-
tracting the seasonal and trend components from the original
data. For each variable, we can determine if the data point
is anomalous on that variable by examining its remainder
component as introduced in Section III-A. Since both STL
and DFA are applied, we denote our new decomposition
based anomaly detection method as STL+DFA.

C. VAR

For variables without strong seasonality, we apply vector
autoregression (VAR) to model the multivariate time series,
where the optimal lag value p is determined by AIC. We then
obtain the fitted R2 value for each variable. If the average
value of all the R2 values is smaller than a threshold, we
assume that VAR does not fit the multivariate time series
very well. Otherwise, we use the trained VAR model to
detect anomalies as introduced in Section III. Specifically,
for each variable, we compare the estimated value and
the real observation at the time point t. If their absolute



Figure 1. An H2O running example

difference is above certain threshold, we consider the data
point is abnormal on that variable.

D. LOF

Finally, for all the variables which have gone through
the above steps, we apply the local outlier factor (LOF)
model to identify anomalies. Specifically, LOF computes
the distance using either multiple dimensions or a single
dimension, depending on the number of variables left.

E. Ensemble Learning

We have selected the best outlier detection modes for a
multivariate time series based on the exhibited time series
characteristics from each variable. Specifically, if a group of
variables exhibit seasonality, we apply STL+DFA to detect
the outliers. If only one variable shows seasonality, STL
is applied. Similarly, VAR is used for modeling multiple
variables and AR is used for modeling a single variable.
LOF is applied to detect the outliers locally if the series
does not exhibit strong global temporal pattern. Finally, we
have an ensemble of selected models for each multivariate
time series. Note that except LOF, all the other methods still
detect anomalies on each variable separately although the
covariation and interactions among multiple variables have
been considered in the modeling process. A majority vote
scheme is finally applied to determine if the multivariate
time series at a certain time point is anomalous or not.
Each variable has one vote in the ensemble learning. Since
LOF can be applied to multiple variables using their full
dimensional distance, if there are k variables in LOF, it will

Figure 2. H2O overall framework

take k votes in the final voting. In Figure 1, we show a
running example of the entire model selection and ensemble
learning process.

F. Apache Spark

Apache Spark has been widely used for large-scale data
computation. Spark introduces an abstraction called resilient
distributed datasets (RDDs), which is a fault-tolerant collec-
tion of elements that can be operated in parallel. Spark has an
advanced Directed Acyclic Graph (DAG) execution engine
that supports cyclic data flow and in-memory computing. As
an extension of the core Spark engine, SparkR [24] provides
a frontend to use Spark from R. To leverage the in-memory
parallel data processing advantage of Spark, we implement
H2O in R and run it using SparkR. Specifically, all the
multivariate time series are abstracted as RDDs and assigned
automatically to different compute nodes to construct large
number of models in parallel. Figure 2 shows the overall
framework of H2O.

V. EXPERIMENT

We evaluate H2O on a real world data set from a large
data protection service provider. We first introduce the data
set and experimental setup. Second, we show that our new
seasonal-trend decomposition based method using dynamic
factor analysis can better detect true outliers and signif-
icantly reduce false positives, comparing with traditional
STL decomposition based method. Third, we illustrate the
importance of doing model selection and show that H2O can
automatically adapt to the dynamically changing character-
istics of variables and always select the best models. We
then compare the performance of H2O with two baseline
models through a simulation study. Lastly, we provide the
distribution of selected models over time.

A. Data Set and Experimental Setup

The data set contains the backup performance metrics
for about 420,000 unique backup endpoints, which have



Table I
A BACKUP JOB METADATA RECORD EXAMPLE

Attributes BACKUP ID SERVER ID CLIENT ID TARGET TYPE JobTimeLocal ByteCount ErrorCount FileCount JobDuration
Values 203399774 6221 1343910 /path/to/backup/location Incremental 2016-01-01 16:26:18.01 3.854E10 0 17799 1395

(a) STL+DFA (b) STL (detected outliers are marked with blue triangles)

Figure 3. Seasonal-trend decomposition for multivariate time series using STL+DFA and STL

81 million backup jobs running on 2,700 servers over a
time window of 210 days3. Note that one backup endpoint
may have more than one backup type. We want to detect
anomalies from backup jobs of the same type. Therefore, for
each backup endpoint, we further separate all of its backup
jobs according to its backup types. Eventually, we obtain
about 700,000 unique backup endpoint and type pairs. We
need to construct an anomaly detection model for each pair.
Therefore, 700,000 anomaly detection models need to be
constructed in total. Every backup job has a time stamped
performance record. One such record is shown in Table I.
Our modeling target has a sequence of backup jobs running
at different time points, whose performance metrics compose
a multivariate time series. In our experiment, we select four
backup performance metrics: byte count, file count, error
count, and job duration. We denote these four metrics as
v0, v1, v2, and v3, respectively. Therefore, the multivariate
time series has 4 variables. All the multivariate time series
have 120 data points unless otherwise specified. We have
deployed H2O on an Apache Spark (version 1.6.1) cluster
with 20 nodes, where each node has an Intel Xeon E3-
1260L CPU of 2.4 GHZ, 8 cores, and 16GB memory. We

3It is a subset of all the backup jobs in our running environment

have every worker node host 8 executors, which has 1 core
and 2GB memory. All the algorithms are implemented in R,
which are running using SparkR [24] on the cluster.

B. Decomposition based Anomaly Detection

We first determine the seasonality in each variable using
the R package forecast [25]. For multivariate time series with
seasonality, we develop a new seasonal-trend decomposition
based anomaly detection method using STL and dynamic
factor Analysis (STL+DFA), which considers the covariation
and interactions among multiple variables in the form of
common trend. Specifically, dynamic factor analysis (DFA)
is applied to estimate the common trend. The number of
common trends is determined using the AIC, which is
readily parallelizable. In this experiment, we empirically set
it to be one to reduce the running time as we find that there
is no significant difference in the trend estimation between
one and more trends due to the relatively small number of
variables. The seasonal component is still extracted by STL.
We leverage the R packages MARSS [26] and forecast [25]
to perform STL+DFA and STL. The remainder are finally
obtained by subtracting the trend and seasonal components
from the original data.

Figure 3 shows the seasonal-trend decomposition results



of applying STL+DFA and STL to a multivariate time series.
We show the decomposition results on v0 and v3, since only
these two variables exhibit seasonal pattern, which are of
seasonality 7 and 6, respectively. The seasonal components
of STL+DFA and STL are omitted in Figure 3, since they
are identical, extracted using the same procedure. The k-
σ rule in Gaussian distribution is applied to the remainder
component of each variable to detect outliers. Specifically,
we set k = 2, that is, if the remainder component is two
standard deviations away from 0, the corresponding data
point on that dimension is considered to be abnormal. The
higher the value of k, the more stringent the outlier detection.
In Figure 3, the dash lines in the residual plot indicates
the threshold for ±2σ. A data point is finally identified
as an anomaly if it is abnormal on both variables. As we
can see, the trend components extracted by STL+DFA are
relatively smooth and less affected by the spikes. On the
other hand, STL introduces seven false positives (marked
with blue triangles) due to local sudden changes in the
trend estimation. Our new method therefore has better per-
formance in detecting true positives than STL by considering
the covariation and interactions among variables.

C. Model Selection

We illustrate in this section the importance of doing
model selection. Specifically, we compare the performance
of STL+DFA, VAR, and LOF on detecting anomalies in
different time series. A sliding window method is applied,
where all the models are trained on the historical data inside
the window and used to predict whether the next observation
is abnormal or not. Specifically, the window size is set to
45. The lag length in VAR is selected by AIC from a given
range of values (the maximal lag length is set to be half
of the length of the historical window). The goodness-of-fit
of a VAR model is computed as the mean of the fitted R2

values for each individual variables. We empirically consider
a VAR model as under-fitting if its goodness-of-fit is less
than 0.5. LOF computes the neighborhood density using
the full Euclidean distance between normalized data points.
The number of nearest neighbors k in LOF is empirically
set to be 10. We leverage the R package vars [27] for
VAR modeling and the package rlof [28] for LOF. We use
the same 2-σ rule to detect anomalies in VAR and LOF.
Specifically, in VAR model, for each variable, we obtain the
absolute difference between the estimated value and the real
observation at both historical and current time points. If the
difference at the current time point is significantly larger
than the other values (more than 2σ away from the mean),
the data point is considered to be abnormal on that variable.
Similarly, in LOF, if the anomalous score of a data point is
significantly larger than the others (more than 2σ away from
the mean), it is identified as an anomaly on the variables that
LOF is applied to.

Figure 4 shows the results of applying STL+DFA, VAR,

Figure 4. Outlier detection using STL+DFA, VAR, and LOF on multi-
variate time series with seasonality

and LOF to a multivariate time series with seasonality. The
first 45 observations composes the first historical training
window, which is indicated by the red vertical line. We
only detect outliers from the observations on the right side
of the red line. We consider the data point corresponding
to the big spike in v0 and v3 as a true outlier. All the
detected outliers are highlighted in Figure 4 only if they
are abnormal on both variables. As we can see, STL+DFA
successfully detects the true outlier (marked with red square)
and no false positive is incurred. Although VAR and LOF
detect the same true outlier, they introduce false positives
as well. The reason that VAR introduces false positives
is because its training is affected by the big spike in the
historical data. LOF introduces false positives since it is a
local anomalous measurement, and the data distribution in
the local neighborhood may affect the result. Therefore, for
multivariate time series with strong seasonality, STL+DFA
outperforms VAR and LOF because it can better capture
the seasonal pattern and is less affected by outliers in the
training data.

In Figure 5, we compare the performance of VAR and
LOF on multivariate time series without seasonality. The
time series in Figure 5(a) has three non-seasonal variables,
i.e., v0, v2 and v3. We consider the spike after the first
window (indicated by the red vertical line) as a true outlier.
The VAR model fits the data well and detects the true outlier
(marked with blue circle). LOF also detects the true outlier
but introduces several false positives. On the other hand,
Figure 5(b) shows one example where LOF outperforms



(a) VAR outperforms LOF when VAR is well fitted. (b) LOF outperforms VAR when VAR is not well fitted.

Figure 5. Outlier detection using VAR and LOF on multivariate time series without seasonality

VAR when VAR is under-fitting. We consider the data point
corresponding to the big spike on v0, v2, and v3 as a true
outlier. Although the VAR model captures the true outlier,
marked with the first green triangle from left in Figure 5(b),
it also incurs four more false positives following the true
outlier. LOF only introduces one false positive, marked with
the first green triangle from right in Figure 5(b), which is
caused by the significant change in a single variable v0.

As shown in Figure 4 and Figure 5, different methods
have different performance depending on the time series
characteristics. STL+DFA and VAR, as time series modeling
based methods, have good outlier detection performance
when the data shows strong temporal characteristics, while
LOF is more focused on local patterns. Therefore, it is
important to conduct model selection. In H2O, we select
the model in a hierarchical way, following a global to local
fashion.

D. Model Evolution

H2O selects models depending upon the exhibited char-
acteristics of variables in multivariate time series. Since
the variables have dynamic patterns, the selected models
also vary over time. In Figure 6, we show one example of
the dynamic evolving behavior of model selection in H2O.
Similar as before, a sliding window method is applied, where
the models are selected based on the characteristics of 45
historical observations in the window. The red vertical lines
indicate the time point where the selected model changes.

Figure 6. The evolution of selected model for a multivariate time series

As shown in Figure 6, there is no strong seasonal pattern
in all the variables in the beginning. VAR is selected
first since it has shown high goodness-of-fit on all the
variables. As seasonality is detected on v0 over time, H2O
automatically selects STL for v0 since only variable exhibits
seasonality. VAR remains selected for v2 and v3. Gradually,
v3 also exhibits seasonality. Therefore, STL+DFA is selected
for v0 and v3 since two variables show seasonality. An AR
model is selected for v2 since only one variable left which



Figure 7. The performance of outlier detection models in simulation study

does not show seasonality. As we can see, H2O can auto-
matically adapt to the dynamically changing characteristics
of variables and always select the best models.

E. Simulation Study

We evaluate the performance of H2O using a simulation
study. We randomly select 100, 000 multivariate time series
from the data set, each of which contains 46 data points. We
use the first 45 data points as training data and predict if the
46th data point is an outlier. We artificially change the 46th
data point to be either true outlier or noise. Specifically, a
true outlier is defined as a data point which is abnormal on
all variables of a multivariate time series (i.e., its value is
significantly larger than the other data points), and a noise
is defined as a data point which is abnormal only on one
variable. Among the 100, 000 time series, we randomly have
one half of the 46th data points replaced by true outliers and
the other half by noise. We compare the anomaly detection
performance of H2O as well as VAR and LOF on these
time series. Note that the reason that we do not include
a standalone seasonal-trend decomposition based method
as comparison is because some variables do not shown
seasonality in the multivariate time series. It does not make
sense to enforce a decomposition on such variables. VAR
uses the same majority voting schema as H2O to determine
the outlier while LOF can directly identify if a data point is
an outlier by using the full dimensional distance.

Figure 7 shows the performance of these three methods.
As we can see, H2O outperforms VAR and LOF on both
precision and recall, since it models both seasonal and non-
seasonal time series well via the hybrid and hierarchical
model selection. The VAR model is applied to all the time
series regardless of its goodness-of-fit. Therefore, the under-
fitting VAR models induce both false positives and false
negatives. The performance of LOF suffers from introducing
false positives. The dramatic change in one variable does not
necessarily indicate an outlier in multivariate time series,
without considering the change in other variables. However,

Figure 8. The snapshot of the distribution of selected models over ten
consecutive weeks

LOF may consider such noise as outliers due to the sig-
nificant change in full dimensional distances. Overall, our
proposed H2O method improves the F1 score by 10% and
12%, comparing with LOF and VAR, respectively.

F. Model Distribution

In this section, we show the distribution of selected
models for a large number of multivariate time series. We
employ H2O to determine the best models for each time
series at a given time point. As the selected models vary
over time, we obtain a weekly snapshot of the distribution
of selected models for all the time series (in total around
330, 000) over ten consecutive weeks. Similar as before, the
training window size is 45. Figure 8 shows the ten snapshots,
where all the models are categorized into six categories.
CONSTANT indicates that all the variables of a multivariate
time series are constant within the training window, where
no anomaly detection is needed. If the seasonal-trend decom-
position based method is selected for a time series, we label
the selected model as STL+DFA, which also includes STL,
for simplicity. Similarly, VAR indicates autoregression based
outlier detection method, which also includes AR. STL+DFA
& VAR indicates that both decomposition and autoregression
based methods are selected. STL+DFA & LOF indicates both
decomposition and distance based methods are selected. As
we can see in Figure 8, the proportion of each category
keeps almost the same with slight fluctuation over time.
An ensemble of outlier detection methods from different
categories, i.e., STL+DFA & VAR and STL+DFA & LOF, are
selected for more than 40% of the multivariate time series.

VI. CONCLUSION

To drive the backup service quality excellence, we intro-
duce H2O, a hybrid and hierarchical outlier detection method
for multivariate time series composed by the performance
metrics of backup jobs. Instead of fitting a single type of
model on all the variables, we propose a hybrid method



which employs an ensemble of models to capture the diverse
patterns of variables. A hierarchical model selection process
is applied to select the best anomaly detection models for
variables based on their time series characteristics, following
a global to local fashion. We also develop a new seasonal-
trend decomposition based detection method for multivariate
time series, which considers the covariation and interactions
among variables. Built on top of the Apache Spark, H2O
automatically selects and constructs a large number of
anomaly detection models in parallel. Extensive experiments
illustrate the robustness and superior performance of H2O.
Last but not the least, our H2O method by its nature is
very general and can be applied to detect anomalies over
multivariate time series in many other domains, such as IT
system health monitoring and fault detection.
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