
Diagnosis of Neural Network via Backward
Deduction

Peifeng Yin, Lei Huang, Sunhwan Lee, Mu Qiao, Shubhi Asthana and Tagiga Nakamura
IBM Research - Almaden, San Jose, US

Email: peifengy@us.ibm.com lei.huang1@ibm.com {shlee, mqiao, sasthan, taiga}@us.ibm.com

Abstract—Although widely used in various areas, the Deep
Neural Network suffers from the lack of interpretability. Existing
works usually focus on one data instance and the found expla-
nations are thus limited. We argue that a good understanding of
a model should contain both systematic explanations of model
behavior and effective detection of its vulnerability. Particularly
we propose to use backward deduction to achieve these two goals.
Given a constraint on the model output, the deduction backtracks
the architecture to find corresponding data ranges in the input. In
each layer, depending on the type, specific rules and/or algorithms
are developed. The resulted ranges in the end can be interpreted
by sampling exemplary data from them. In experiment we show
that with different strategies in selecting the data ranges, the
sampled fake data can either explain the model or reflect its
vulnerability.

Index Terms—deep neural network, backward deduction, di-
agnose, interpretation, vulnerability detection

I. INTRODUCTION

Deep Neural Networks (DNN) has made significant
progress in a lot of areas. However, they are usually treated as
black boxes, suffering from the lack of interpretability. This
problem may result in various issues such as losing user trust,
missing fairness and even being vulnerable for adversarial
attacks. For example, carefully-crafted input could purposely
lead a model to misclassification [1], [2].

Existing works on explanation focus on one instance and
aim to find its critical attribute(s) for the final classifica-
tion [3]–[6]. These explanations are limited. We argue that
a good understanding of a model should contain at least two
systematic aspects. Firstly, it needs to show how the model is
consistent with the training data. Secondly, it needs to report
the model’s vulnerability for adversarial attacks. We name this
process as Diagnosis. To achieve these two goals, one should
focus on the model itself.

The running of a Neural Network is a sequence of layer-
based computation [7]. To diagnose the model, one intuition
is to trace its flow in a backward order. That means, setting
a constraint on a particular output, we aim to identify the
corresponding input ranges layer by layer. Such backtrack runs
in a strict compliance with logic and is similar to deductive
reasoning (i.e., yielding true conclusions given the premises
are true [8]). We thus refer to this process as Deduction.

In this work we propose a deduction framework to diagnose
a neural network. It starts with an initial output constraint on
the final layer, and deducts the corresponding input ranges.

This process is conducted in an iterative way, where newly
deducted input ranges of the current layer will serve as the
next one’s output constraints. For each layer type, we develop
specific deductive rules and/or algorithms. The framework
stops at the first layer with a set of deducted input data ranges.
They can be interpreted by human user via sampled exem-
plary data instances. Many studies have shown that exemplar-
based reasoning is fundamental to human understanding and
cognitive perception [9]. Experiments demonstrate that with
different ranking functions in selecting data ranges, those
sampled data either show similar patterns with training data
or expose model’s vulnerability.

The key challenge lies in the deduction for affine projection
layer. Geometrically, the task is to find a set of hyper rectangles
to occupy an irregular high dimensional space. There are infi-
nite solutions. We adopt a greedy algorithm, each time finding
one hyper rectangle with maximal volume. The remaining
spaces are then split into sub-problems to solve. This task is
equivalent to select one maximal extreme point on the hyper
plane to form a new hyper rectangle with the given minimal
extreme point1. By replacing coordination basis, the problem is
transformed to the one with an explicit and easily-computed
solution. As the quantity of sub-spaces grows exponentially
and there is no theoretic stop point, we also discuss options
of ranking functions and stop criteria with respect to whether
the training data is available or not.

Our contributions are in three folds. Firstly, we provided
a unified framework to explain the model, and to detect
its vulnerability using a deduction approach. Secondly, spe-
cific algorithms are proposed for backward deduction by
introducing empirical metrics to efficiently check and tailor
invalid spaces. Lastly, the results from experiments conducted
with two synthetic data and one real world data provide a
convincing evidence that the proposed approach can benefit
the research community to pursue a different direction to gain
better interpretability of a complex model like neural network.

The rest of the paper is organized as follows. Related
work is introduced in section II. We formulate the deduction
problem in Section III. Section IV presents detailed steps of
our backward deduction framework to find the set of data
ranges. Experimental results on two synthetic and one real
datasets are shown in Section V, followed by the conclusion
and future works in Section VI.

1Please refer to Section IV for detailed definitions



II. RELATED WORK

Most existing methods for interpreting deep neural net-
works (DNN) are attribution methods, which can be generally
grouped into two categories (1) perturbation-based methods,
and (2) backpropagation-based methods.

To explain the predictions made by the deep learning model,
perturbation-based methods firstly modify an input feature (or
feature set) by removing, masking or altering them to generate
a new input, which will be fed into the deep learning model
to generate the corresponding new output. The attribution of
the input feature can be directly computed by measuring the
difference between the new output and original output [10].
The LIME [3] explains the predictions of various classifiers by
learning an interpretable model locally around the prediction.
Zhou and Troyanskaya [11] modified genomic sequence ele-
ments and measured those impact on the output. Perturbation-
based methods can interpret model predictions to a certain
extent, but they are usually computationally expensive as each
perturbation requires a separate forward propagation through
the network.

In contrast to perturbation-based methods, backpropagation-
based methods only need one time forward and backward
propagation through the network, but can compute attributions
for all input features. The Gradient*Input [12] computes the
partial output’s derivatives in regard to each input feature,
and assigns contribution score by measuring the difference
between the activation of each neuron to its reference ac-
tivation. The Integrated Gradients method [5] identifies two
axioms Sensitivity and Implementation Invariance to guide
the attribution method design, which computes the integrated
gradient by cumulating gradients at all points that are along
the straightline path. Moreover, Bach et al. [7] proposed a
layer-wise relevance propatation (LRP) based method, which
assumes that the classifier can be decomposed into several
layers of computation. The LRP is computed with a backward
pass, and the pixel contributions can be visualized by heatmap.
The DeepLIFT [4] is also a backpropagation-based method,
which decomposes the prediction of a neural network on
a specific input by backpropagating the contributions of all
neurons in the network to every input feature. There are
many other methods such as saliency maps [13] showing how
minor change to the input could affect the classification score
based on the gradient information, PatternNet [14] providing
neuron-wise explanations, and Deep-Taylor Decomposition
[15] decomposing the classification decision as a sum of
relevance scores.

Although various attribution methods have been proposed to
help interpret DNNs, it is difficult to know how these methods
are related and which one is better for a given DNN. Mean-
while, some attribution methods often generate inconsistent
explanations [16]. Thus, Lundberg and Lee [17] proposed
a unified framework SHAP based on existing explainability
methods to improve the computational performance, and make
explanations more robust, consistent, and align with human
intuition. On the other hand, attribution methods may lack

reliability when the explanation is sensitive to factors that do
not contribute to the model prediction [18], and lack sensitivity
to DNN parameter values, i.e., producing similar explanations
for a DNN with randomly initialized weights and learned
weights [19]. Many efforts have been done to interpret DNNs
from other perspectives, such as self-explaining method [20]
and bayesian non-parametric approach [21].

III. PROBLEM FORMULATION

In this section we formulate the deduction problem as well
as define basic concepts. Given a pre-trained neural network
for classification, the diagnosis is to find what input would
make the model classify this instance to be a particular class.
In this work, we use the data range to describe the input
characteristics.

Definition III.1 (Data Range). A data range r =
〈xmin,xmax〉 is represented by a pair of two vectors
xmin,xmax ∈ Rd, where ∀1 ≤ k ≤ d,xmin[k] ≤ xmax[k].

As can be seen in Definition III.1, a data range is a hyper
rectangle in d-dimensional vector space. In the rest of the
paper, if a data point x ∈ Rd falls in a data range r, we
denote it as x ∈ r.

The diagnosis is to find a set of data ranges such that all data
points falling in one of these ranges would be classified into
a particular class. To be more general, we use a quantified
probability range for the target class. The problem can be
formulated as below:

Definition III.2 (Neural Network Diagnosis). Given a pre-
trained neural network F for multi-label classification and a
target label index j, the goal is to find a set of data ranges
S = {r1, · · · , rn}, s.t. ∀x ∈ Rd, if ∃r ∈ S and x ∈ r, then
vmin ≤ F(x) ≤ 1.

In practice, the lower-bound of the probability vmin depends
on the desired confidence of the found data ranges, where
larger value indicates higher confidence level of the model.

The prediction process of a neural network is essentially a
concatenation of functions. Under Definition III.2, the diag-
nosis can be recursively done in a backward order, where the
found data ranges in layer l are the output constraint for layer
l − 1. We define the layer diagnosis problem as below.

Definition III.3 (Layer Diagnosis). Given lth layer function fl
and set of output constraints (data ranges) Sl+1, i.e., diagnosis
result at layer l+1, the goal is to find a set of input data ranges
Sl, s.t. ∀x ∈ Rdl , if ∃rl ∈ Sl and x ∈ rl, then ∃rl+1 ∈ Sl+1

and fl(x) ∈ rl+1.

We name the process of finding data ranges as deduction.
For monotonic and element-wise functions such as sigmoid,
hyperbolic and relu, the deduction is straightforward. For soft-
max layer, under Definition III.3, the problem can be converted
to a particular case of affine projection layer. Therefore, we
only focus on the dedution for affine projection in the rest of
the work.



IV. DEDUCTION FOR AFFINE PROJECTION

The deduction for affine projection layer is to find a set
of data ranges for the input so that the output falls in the
desired ranges. The task can be split into several sub-tasks.
Firstly, given a set of output data ranges, we can consider one
at each time. In this case, the union of resulted input ranges
for different outputs would be the final answer. Secondly,
for multi-dimension output data ranges, we can focus on
one dimension. Then the intersection of resulted input ranges
would be the deducted explanation.

On the basis of Definition III.3, we define the sub-problem
for affine projection with 1-dimension output below.

Definition IV.1 (1-dim Affine Deduction). For layer affine
projection with one-dimension output, let 〈w ∈ Rd, b ∈ R〉
denote the corresponding linear mapping vector and the scalar
bias. Given the lower and upper bound vmin, vmax, the goal is
to find a set of input data ranges S, s.t. ∀x ∈ Rd, if ∃r ∈ S and
x ∈ r, the inequation always holds: vmin ≤ wT ·x+b ≤ vmax.

Note that the upper and lower bound inequation can be
mutually transformed, i.e., wT · x + b ≤ v ↔ (−w)T ·
x + (−b) ≥ (−v). With no loss of generality, we assume
the right half of the inequation (wT · x + b ≤ v). But all
discussed algorithms can be applied to the other half with a
trivial transformation.

To solve the problem, we take three steps: i) generate a
candidate data range, ii) check the validity of the candidate
and iii) if not valid, tailor it to be a set of valid ranges. We
discuss details of each one in the following subsections.

A. Generate Candidate Data Range

The deduction starts with generating a single data range,
which provides an initial hyper rectangle to work on. Usually,
this candidate should contain all possible data points.

Considering an affine projection layer, theoretically the in-
put range should be an unbounded hyper rectangle. In practice,
however, such input comes from either the last activation layer
or the raw data feature. For the former case, the input would
be bounded by the value range of the activation functions.
For example, the hyperbolic activation results in the input to
be [−1, 1] for every dimension. For the latter case, the input
would be bounded by the domain itself. For example, the gray
picture leads to the input to be non-negative integers ranging
from 0 to 255.

With an initial data range, we can do further pruning if the
data that is used to train the model is also available. Depending
on the purpose of deduction, this step could be different. We
consider two cases. Firstly, the aim is to explain the model
behavior consistent with the training data. Then the data range
should contain as many data points as possible. With all
training data, we can run the forward computation till the
target layer, then filter those that are within the given bound.
The candidate data range is the minimum hyper rectangle that
contains all remaining data points.

Alternatively, the goal could be detecting the model vulner-
ability. That means, to find data ranges that are legal input but

should not be classified to the class. In this case, the candidate
should contain as less training data as possible. Following the
same steps as above to obtain the minimum data range that
contains all training data, we subtract the initial data range
with this one. The resulted set of data ranges can be final
candidates for following check and tailor.

B. Validity of Data Range

This step checks whether a candidate data range is valid to
serve as the output range for last layer. Otherwise, whether it
needs to be tailored or directly discarded.

Definition IV.2 (Valid Data Range). Given a one-dim affine
projection 〈w, b〉, a valid data range r with regarding to a
upper bound vmax is the one whose all contained data points
∀x ∈ r satisfy such inequation w · x+ b ≤ vmax.

By definition, one needs to test all data points to check
whether a data range is valid or not. This solution is definitely
impractical as for continuous numbers, it is impossible to
traverse all data points. Recall in Definition III.1, a data range
is a hyper rectangle. Thus all points contained in a data range
are bounded by its corner points. And we can only focus on
the corner points for validity checking.

Definition IV.3 (Corner Point). Given a d-dimension data
range r = 〈xmin,xmax〉, its corner point xc ∈ Rd is
a data point in the same vector space and its element
value is either from minimum or maximal bound, i.e., ∀i ∈
{1, 2, · · · , d},xc[i] ∈ {xmin[i],xmax[i]}.

Theorem 1. Given an affine projection 〈w, b〉, a data range
r = 〈xmin,xmax〉 is valid if all of its corner points have a
projected value no larger than the target upper bound vmax.

Proof. By checking the sign of the w for each dimension, we
construct such a corner point xc that, ∀i ∈ {1, 2, · · · , d},

xc[i] =


xmax[i] if sign(w[i]) > 0

xmin[i] if sign(w[i]) < 0

0 otherwise

∀x ∈ r and ∀i ∈ {1, 2, · · · , d}, the inequation below is always
true:

sign(w[i])T · x[i] ≤ sign(w[i])T · xc[i]

Thus we have wT · x+ b ≤ wT · xc + b ≤ vmax.

The Theorem 1 provides a feasible way to check the validity
of a candidate data range. However, it faces scalability issue
as a d-dimension data range has 2d corner points. The process
of proof suggests there is a non-decreasing order among these
corner points and we can only check the one with maximal
projected value. Formally, we define such point as maximal
extreme point.

Definition IV.4 (Maximal Extreme Point). Given a data range,
its maximal extreme point cmax for an affine projection is
such a corner point that achieves maximal projected value,
i.e., cmax = argmaxx∈r w

T · x+ b.



Correspondingly, we can define the minimal extreme point:

Definition IV.5 (Minimal Extreme Point). Given a data range,
its minimal extreme point cmin for an affine projection is
such a corner point that achieves minimal projected value,
i.e., cmin = argminx∈r w

T · x+ b.

To check the validity of a data range, we first spend O(d)
to construct maximal and minimal extreme point cmax, cmin,
then compare their projected values with target upper bound.
There are in total three meaningful cases and we summarize
them as well as corresponding actions in the following:
• The projected value of cmax is no larger than the upper

bound. The whole data range is a valid one and can be
directly used as output range for early layer deduction.

• The projected value of cmin is larger than the upper
bound. This suggests the whole data range should be
discarded.

• The projected value of cmin is no larger than the upper
bound but not for cmax. The data range is partially
valid and needs to be tailored, which we discuss in
Section IV-C.

C. Tailor Data Range Framework

In this step, the goal is to tailor a partially valid data range
to a valid set of smaller data ranges. In general, after validity
checking, these to-be-tailored data ranges have an invalid
maximal extreme point and a valid minimal extreme point.

Geometrically, a partially valid data range is a hyper rectan-
gle intercepted by a hyper plane. A 2-D example is illustrated
in Figure 1a, where a rectangle is split by a straight line
into two regions. The lower invalid part contains the maximal
extreme point and upper valid one contains the minimal
extreme point.

Tailoring a partially valid data range can be formulated
as finding a new maximal extreme point to form a different
data range with original minimal extreme point. We show
three strategies from Figure 1b to 1d. The first one selects
a point within invalid area, leading to another partially invalid
data range. In Figure 1c, a new point is selected within the
valid region. Although valid, the resulted range excludes too
much valid spaces in original range. Therefore, the strategy of
selecting new point exactly on the hyper plane, as shown in
Figure 1d is the only acceptable one.

For a partially valid data range, it is impossible to cover
the whole valid part with a single valid data range. When a
maximal extreme point is selected on the plane, the formed
new valid data range cuts the remaining part into several
partially valid regions. Generally, there are d sub-ranges in a
d-dimension space. Figure 2 illustrates the idea in 2-D space.
To complete the tailoring step, we can recursively select new
maximal extreme point for each sub-problem. Algorithm 1
shows the pseudo code of tailoring framework. The procedure
works with given hyper plane weight w, the upper bound vmax

and the initial data range r0. Note that we combine the affine
projection’s shift b with original upper bound for simplicity.
In the while loop, a new maximal extreme point is selected for

each sub-problem to form a valid data range. This step also
generates d candidate data ranges by replacing the original
cmin’s value with found cmax for each dimension (line 12
to 14). Finally the algorithm stops with returning the set of
valid data ranges S.

Algorithm 1 Tailor Framework
1: procedure FRAMEWORK(w, vmax, r0) .

x ∈ r0,w · x ≤ vmax

2: S← ∅, Q← ∅ . initialize result set and Priority
Queue

3: Q.push(0, r0)
4: construct cmax0 from r0
5: while Stopping criteria are not met ∧ Q 6= ∅ do
6: , r ← Q.pop()
7: construct cmin from r
8: select cmax according to w, vmax, cmin, r
9: construct valid data range r′ from cmin, cmax

10: S← S ∪ {r′}
11: for i← 1, d do . d-dimension vector space
12: cmini

← cmin

13: cmini
[i]← cmax[i]

14: construct ri from cmini
, cmax0

15: score← Rank(ri)
16: Q.push(score, ri)
17: end for
18: end while
19: return S
20: end procedure

There are three issues that need to be addressed in this
framework. Firstly, we need to provide a way to select the
maximal extreme point (line 8). Also, as the quantity of the
problems increases in a exponential rate, it is impractical to
solve all of them. Therefore we need a mechanism to rank the
sub-problems to determine which one to solve first (line 15).
Finally, we need a way to decide when such recursion should
stop (while loop in line 5). These issues are discussed one-
by-one in the rest of the section.

D. Selection of Maximal Extreme Point

Even the choice space is narrowed down on the hyper plane,
there are still infinite candidates. To further prune search space,
we need to make use of dominance relation between two
points.

Definition IV.6 (Dominance). Given an affine projection’s
weight w, for two points x1,x2 ∈ Rd, if for every dimension
i ∈ {1, 2, · · · , d}, sign(w[i])T · x1[i] ≥ sign(w[i])T · x2[i],
we define that point x1 is dominated by point x2 under w.

Combining the Definition of minimal extreme point in
Definition IV.5 with the dominance, we know that all points
that fall in the data range are dominated by the minimal
extreme point. To select a new maximal extreme point, we
consider several situations depending on whether the point is
dominated by minimal extreme point and whether it is in the



(a) Original Data Range (b) Selection in Invalid Region (c) Selection in Valid Region (d) Selection on Hyper Plane

Fig. 1. Tailor Data Range by Finding New Maximal Extreme Point

Fig. 2. Tailoring as an Infinitely Recursive Problem

original data range. Again to illustrate the concept, we show
a 2-D example in Figure 3.

Fig. 3. New Maximal Extreme Point on Hyper Plane

The option 1 is neither within the data range nor dominated
by the minimal extreme point. As can be seen, the resulted new
range is partially valid and the valid part is not overlapped with
the original one. The second candidate (option 2) is dominated
by the minimal extreme point but falls out of the original data
range. The obtained range is a valid one. However, there is
a region that does not overlap with original one. Therefore,
selection of candidate maximal extreme point should satisfy
two conditions: i) on the hyper plane and ii) dominated by the
minimal extreme point.

Particularly we consider two edge-cases, where the candi-
date point is on the edge of dominance or the data range. As
shown in Figure 3, the “option 3” point is on the edge of
dominance and it leads to an empty data range. Alternatively,
if the point is on the other edge of data range (option 4),
the obtained data range is a valid one, making the remaining
original data range a new minimal extreme point. This scenario
suggests different positions lead to different results and we
need to consider which one would be optimal. In this work,

we define the optimum one is the point where the resulted
valid data range achieves maximal volume.

Definition IV.7 (Data Range Volume). Given a data range r =
{xmin,xmax} in d-dimensional space, its volume is defined as
the product of length in each dimension, i.e.,

∏d
i=1 |xmax[i]−

xmin[i]|.

Definition IV.8 (Selection of Maximal Extreme Point). Given
a hyper plane w, vmax and a partially valid data range r
in d-dimension space, let cmin denote the minimal extreme
point. The goal is to select a maximal extreme point on the
intersection between hyper plane and the valid range so that
the volume of resulted data range is maximized.

cmax = argmaxx∈r∧wT ·x=vmax

d∏
i=1

|x[i]− cmin[i]|

With no loss of generality, we assume that for each dimen-
sion i) the weight w is non-zero and ii) the data range’s upper
and lower bounds are not equal. Otherwise, the corresponding
dimensions would either have no constraint or be constant.
Then the problem would be reduced to a space with lower
dimensions.

To solve the problem, we transform it to a simpler form
via changing coordinate basis such that the minimal extreme
point cmin is both the origin of the new coordinate and the
lower bound of the data range r. Formally, let ei denote the
standard basis where the ith element is 1 and others 0. The
new basis is constructed with the sign of cmin. We denote it
as d× d matrix A, where each column is a basis, represented
as

Ai = sign(cmax[i]−cmin[i])ei =

{
ei if cmin[i] < cmax[i]

−ei otherwise
(1)

It can be seen that the new basis is still orthogonal and
normalized. Also, it is symmetric (AT = A) and revertible.
Particularly its inverse matrix is itself A = A−1.

The transformation is shown as a two-step projection:
1) Shift the point by the vector −cmin

2) Linearly map the point with matrix A

Let x ∈ Rd denote a data point under standard basis, after
projection, the new data under new basis is z = A·(x−cmin).



Conversely, given a data point z in new basis, the original point
can be obtained by an inverse projection, i.e., x = A−1 · z+
cmin.

After the conversion, the data range consists of non-negative
data points where the origin is its corner point. Formally, let
rA = {0, zmax} denote the data range, wA, vmaxA

the new
hyper plane. The optimization problem is converted to:

argmax0<z≤zmax∧wT
A·z=vmaxA

d∏
i=1

z[i] (2)

To solve the problem, we define the following objective
function:

L(z) =
d∑

i=1

log z[i] + λ · (vmaxA
−wT

A · z) (3)

where λ is a Lagrange multiplier. We can obtain the solution
that maximize the objective function by setting the differenti-
ation to be zero, i.e., dL

dz = 0. There exists an explicit solution
z∗:

z∗ =
vmaxA

d
· 1

wA
(4)

Note that the wA and vmaxA
are all positive values, thus

z∗ > 0. If for each dimension i we have z∗[i] ≤ zmax[i], then
z∗ is the final solution. Otherwise, for violated dimensions,
we set it to be the upper bound of the data range and treat
them as constant. The original problem is reduced to one
with less variables. This iterative process continues until all
dimensions of z are fixed. Finally we convert the solution to
the space under originally standard basis, that is the optimal
maximal extreme point as the projection itself keeps geometry
properties such as distance and relative angle w.r.t cmin.

Algorithm 2 Selection of New Maximal Extreme Point
1: procedure SELECTMAX(w, vmax, r)
2: cmin, cmax ← construct min/max extreme points from
r

3: A← construct new basis according to cmin, cmax

4: wA ← AT ·w
5: vmaxA

← vmax −wT · cmin

6: zmax ← A · (cmax − cmin)
7: z← ∅d, mask← 1d

8: while sum(mask) > 0 do
9: z[mask]← vmaxA

sum(mask) ·
1

wA[mask]

10: if ∀1 ≤ i ≤ d, z[i] ≤ zmax[i] then
11: break
12: end if
13: vmaxA

← vmaxA
− wA[z > zmax]

T · zmax[z >
zmax]

14: mask[z > zmax]← 0 . variables become
constants

15: z[z > zmax]← zmax[z > zmax]
16: end while
17: return A−1 · z+ cmin

18: end procedure

We show the pseudo code of selecting new maximal extreme
point in Algorithm 2. It first constructs the new axis and
converts the original problem to a simpler form (line 3 to 6).
To solve the optimization problem, the algorithm starts with
d variables (line 7). In the while loop, every time a solution
is obtained according to Equation (4), it checks whether it is
within the data range. If so, the loops is stopped. Otherwise,
the violated dimension is set to be non-variable (line 14)
and revised to be legally maximal value (line 15). Finally
the algorithm converts the obtained complete solution back
to original basis and returns it (line 17).

E. Ranking and Stopping Criteria
Here we discuss two remaining issues in Algorithm 1

tailoring framework, i.e., ranking and stopping criteria. As
noted earlier, the tailoring problem is an infinitely recursive
process with an exponential growth rate. Thus we need to solve
problems with higher priority and stop the algorithm when
some criteria is met. Similar to generation of candidate data
range in Section IV-A, we have different strategies depending
on whether the training is data available.

a) Training Data Unavailable: When the training data
is not available, the ranking is to find the candidate that can
potentially result in a large valid data range. Recall in Equation
(4), the candidate minimal extreme point cmin only affects the
value of vmaxA

, where a higher value leads to a larger volume.
Given vmaxA

= vmax−wT cmin, the wT cmin can serve as the
ranking score, where smaller value indicates higher priority.

As for stopping criteria, there are two options, i.e., setting
volume threshold or limiting the number of data ranges. Note
that during the recursive process, there is an increasing order
for the value of wT cmin, suggesting the decreasing volume
of candidate problems. The algorithm can stop if the top can-
didate problem has a value lower than a predefined threshold.
Alternatively, we only return the top-k largest data range. In
implementation, a candidate list of k valid data ranges are kept.
Once the top candidate problems have a smaller estimated
volume than the kth data range, the algorithm can stop and
return the current list.

b) Training Data Available: When training data is avail-
able, candidate partially valid data ranges can be ranked based
on the number of data points dominated by their minimal
extreme point cmin. If the goal is to explain the model
with training data patterns, then those with larger dominated
instances are preferred. If the goal is to detect the vulnerability
of the model, the one with lower dominated points is then
preferred. Another variant would be the density, i.e., the
number of dominated points divided by the volume.

It is similar for stopping criteria. Firstly, a dominance
threshold can be predefined and the algorithm would stop
if the top candidate has a number lower than the threshold.
Alternatively, the algorithm can return top-k data ranges that
contain most data points.

V. EVALUATION

In this section we conduct experiments to demonstrate the
running of our deduction framework. Particularly we run three



experiments of which two are on synthetic data and one on real
data. The first experiment is to diagnose a logistic regression
on binary classification. It is on a 2-dimensional synthetic data
that can be linearly separated. The second experiment is to
diagnose a multi-layer neural network on multi-classification
problem. To visualize the deduction result on each layer,
we restrict the number of classes to be 2. But we do use
the softmax layer as the decision output. Finally, we run
experiments with MNIST data [22].

A. Diagnose Logistic Regression

The logistic regression can be treated as a special example
of a multi-layer neural network without hidden layers. In
this experiment we aim to demonstrate the running of our
linear deduction as well as the impact of different initial
probability boundaries on the final deduction results. For
ease of visualization, we generate 1,000 2D synthetic data
of two classes that can be linearly separated. And a logistic
regression model is trained with 100% classification accuracy.
The decision boundary for class 1 is 0.5. We change the initial
output probability boundary (i.e., vmin) from 0.5 to 0.65 and
visualize the deduction results in Figure 4.

As can be seen, the data of two classes distributed on two
triangles respectively, with a clear boundary of straight line.
The black rectangles represent the deducted data ranges for
class 1 found by our deduction framework and they recursively
occupy the space with given probability threshold. Further-
more, as threshold increases, these rectangles are moving away
from the decision boundary, which is consistent with the model
behavior.

B. Diagnose Neural Network

In this experiment, we train a multi-layer neural network
on a data set that can not be linearly separated. Particularly,
the neural network consists of two affine projection layers
with a hyperbolic nonlinear activation in between, and it
uses a softmax layer as the output normalization. For ease
of visualization, we limit the hidden layer to 2 neurons. The
model achieves 96.7% classification accuracy. We then run
our framework to explain the decision for class 0 and plot in
Figure 5 the data distribution and the deducted ranges in each
layer in a backward order.

In Figure 5a, the framework finds two data ranges (repre-
sented as black rectangles) for which the softmax will output a
probability bigger than 0.5 on the class 0. In hidden-to-output
affine projection layer, these found data ranges serve as the
output constraint and the framework then finds a series of input
ranges that satisfy them, as shown in Figure 5b. One may note
that some rectangles do not contain any data points. In next
round of deduction, they may disappear as output constraints
if the framework fail to find corresponding input data ranges.
Figure 5c confirms it as all found data ranges contain some
training data. Finally, Figure 5d shows the distribution of raw
input data and the final explanations of the deduction. All
black rectangles cover parts of the class 0 data (blue dots), all
of which have an output probability no smaller than 0.5. Some

data ranges contain areas with no data points. In practice, they
are the potential vulnerability of model that can suffer from
adversarial attacks.

C. Diagnose Neural Network on MNIST Data

In this experiment we explain the neural network aiming
for classification on MNIST data set. Particularly, we pretrain
a neural network with one hidden layer of 10 neurons. And
we use hyperbolic as nonlinear activation function. Finally
softmax is used as the output normalization. The model
achieves 92.2% accuracy.

Since it is impossible to visualize resulted high-dimensional
data ranges as in previous two experiments, we instead uni-
formly sample data points from each found data range and
visualize them. During deduction, we adopt two separate
ranking strategies, i.e., i) ranking on data coverage and ii)
ranking on volume. The first one aims to find data range that
is more consistent with training data while the second one
aims to find vulnerability of the trained model.

Figure 6 shows a comparison of exemplary data with these
two strategies. Note that all sampled data points have an output
probability no smaller than 0.9 for the class. As can be seen in
Figure 6a, strategy I results in clear sampled images that can
be easily recognized. Also, data sampled from different ranges
show different writing styles. This is reasonable as similar
writing-style images are close to each other and thus more
likely to fall in the same data range. In Figure 6b, sampled data
points under strategy II ranking are quite vague and difficult to
be recognized. This result suggests the potential vulnerability
of the model for adversarial attack.

VI. CONCLUSION AND FUTURE WORK

In this paper we discussed a novel method to explain
a trained neural network as well as detecting its possible
vulnerability by backward deduction, the process of finding
data ranges per layer in a backward order. We formulated the
problem as to find a series of hyper rectangles to cover the
originally irregular space and developed a greedy algorithm to
iteratively complete the task. To narrow the search space down,
we leveraged the dominance relationship between points in a
hyper rectangle, and defined ranking and stop criteria for both
when training data is available and unavailable. Experiments
on both synthetic and real data sets demonstrate promising
deduction results.

For future work, we plan to extend the current framework
for convolutional and recurrent neural network (CNN and
RNN) layers. Also, as the iterative process of finding hyper
rectangles is independent from each other, we plan to deploy
the framework on a distributed and pipeline environment to
improve the efficiency.
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