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Abstract—Hard disk failure prediction plays an important
role in reducing data center downtime and improving ser-
vice reliability. In contrast to existing work of modeling the
prediction problem as classification tasks, we aim to directly
predict the remaining useful life (RUL) of hard disk drives.
We experiment with two different types of machine learning
methods: random forest and long short-term memory (LSTM)
recurrent neural networks. The developed machine learning
models are applied to predict RUL for a large number of hard
disk drives. Preliminary experimental results indicate that ran-
dom forest method using only the current snapshot of SMART
attributes is comparable to or outperforms LSTM, which
models historical temporal patterns of SMART sequences using
a more sophisticated architecture.
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I. INTRODUCTION

Hard disk drive (HDD) has been a primary type of storage
in data centers. With the advance of latest HDD technology,
Western Digital predicts that 70% of all data will be stored
in HDDs and 90% of all data center data will be in HDDs
by 2020 [1]. Hard disk failure is an important contributor to
data center downtime, leading to significant business cost.
Therefore, it is critical to identify disks that have short
remaining useful life (RUL) so that IT service admins can
take proactive actions.

SMART (Self-Monitoring, Analysis and Reporting Tech-
nology) monitoring has been widely used by HDD manufac-
turers to determine when disk failures are likely to happen.
SMART collects disk sensor data, such as temperature
and sector error rates, and deploys disk with embedded
proprietary predictive models. These models are often simple
threshold-based, with very low false alarm rates and weak
predictive power. Advanced prediction models are later
developed to determine whether a disk will fail or not in
the future based on SMART attributes. This task is usually
modeled as a binary classification problem [2] [3].

In this paper, we develop machine learning models to
predict the RUL for a large number of hard disks. While
existing works on hard disk failure prediction are focused on
classifying whether a disk will fail or not, we aim to predict
the exact value of RUL. This predictive analytics provide
IT service admins deeper insights into disk conditions and
enable better disk replacement planning and management.
We apply two types of machine learning models to predict

the RUL: (1) random forest using the current snapshot of
SMART readings, and (2) long short-term memory (LSTM)
neural networks, a type of recurrent neural networks (RNN),
modeling the historical temporal pattern of SMART at-
tributes. Most recently, [4] also applies LSTM to predict
RUL of hard disk drives, where RUL is first binned and the
prediction is modeled as a multi-classification task. Different
from their work, we directly predict the value of RUL via
a regression approach. In addition, we are deploying the
machine learning models on a large number of hard disks
from different disk manufactures.

II. MACHINE LEARNING MODELS

We introduce two types of machine learning models used
in the RUL prediction: random forest, a traditional machine
learning method, and LSTM, a deep neural network, which
is widely used to model sequential data.

A. Random Forest

Random forest (RF), as an ensemble method, combines
the predictions of several decision tree based estimators.
Each tree in the ensemble is built from sub-samples drawn
with replacement from the training data. When splitting a
node during the construction of the tree, the split is chosen
as the best split among a random subset of the features.
As a result of this randomness, the variance of the forest
is reduced due to averaging, hence yielding better predictive
accuracy and mitigating over-fitting. Random forest has been
applied to predict hard disk failure in a binary classification
task [2]. In our work, we apply RF as a regressor on the
RUL based on current SMART readings.

B. Recurrent Neural Networks

Recurrent neural networks (RNN), which accept data
with temporal or sequential dependencies, have been applied
in various image processing, computer vision, and natural
language understanding tasks. For example, RNN is used
to tag word sequences or predict the next word given the
input of a sequence of words that appear before the target
prediction [5]. We apply RNN to model the temporal pattern
of SMART attributes and predict RUL given the input of
SMART sequences.

However, the training of RNNs usually faces the van-
ishing or exploding gradient problems. The magnitude of



the gradient can increase or decrease exponentially within
the beginning or end of the sequence of the network, when
the output prediction is conditioned on long distance fea-
tures [6]. Long short-term memory recurrent neural networks
have been proposed to utilize memory based gates to help
mitigate these issues. An LSTM memory cell is illustrated
in Figure 1.

Figure 1: LSTM cell structure [7]

The memory cell acts as an integrator over time. Suppose
the input data at time t is xt and the hidden state at the
previous time step is ht−1, then the memory cell at time t
has the value:

ct = α⊗ ct−1 + β ⊗ g(xt, ht−1)

where ⊗ is denoted as an element wise multiplication
between two vectors. ct is a linearly weighted combination
between ct−1 and g(xt, ht−1), and is computed additively.
Therefore, if the gradients of the error during the back
propagation through time (BPTT) cannot pass through the
function g at time step t, it has an opportunity to be
propagated backwards further through the previous cell time
step, ct−1. To prevent c from exploding, g is often associated
with a sigmoid or hyperbolic function (tanh) function. The
memory cell allows another path for the gradient of the
error to flow, which effectively solves the vanishing or
exploding gradient problem occurring in RNN architectures.
Specifically, the LSTM cell in Figure 2 is implemented as:

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi)

ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf )

ct = ft ⊗ ct−1 + it ⊗ g(xt, ht−1)

g(xt, ht−1) = tanh (Wxcxt +Whcht−1 + bc)

ot = σ(Wxoxt +Whoht−1 +Wcoct−1 + bo)

ht = ot ⊗ tanh (ct) ,

where σ is the logistic function, i, f , o, and c are the input
gate, forget gate, output gate, and cell vectors, respectively,
and W is the weight matrices.

We design two different LSTM models. Figure 2(a) shows
the LSTM many-to-one (LSTM-M2O) model, where two
stacked LSTM layers, followed by a dense layer, are used
to predict the RUL at the time step tn. Figure 2(b) shows the
LSTM many-to-many (LSTM-M2M) model, where an RUL
is predicted at each time step. LSTM-M2M also has two

stacked LSTM layers, where a time distributed two stacked
dense layers are applied to the hidden state of each cell in
the second LSTM layer.

(a) LSTM many-to-one model

(b) LSTM many-to-many model

Figure 2: LSTM model architectures

III. EXPERIMENT

We apply random forest and LSTM to predict the RUL
of a large number of hard disk drives based on the SMART
attributes. We start with dataset preparation, introduce our
experiment setup, and provide our preliminary results below.

A. Data Preparation

1) Data Set: The data set used for our analysis is the
publicly available Backblaze hard drive data [8]. It contains
hard drive information along with daily SMART attributes
collected for over 91,305 hard drives in a datacenter. We
extract failed disk information from Seagate for a period of
over 16 months (from October 2016 to December 2017).
For each disk model, we collect SMART attributes for over
200 disk drives that had reported failure over this period.



The SMART attributes from every unique disk drive form
a multivariate time series with daily time steps. We focus
our experiment on seagate disk model ST4000DM000, as
the number of disk failure reported was high compared to
other models.

2) Data Cleanup and Normalization: The dataset for
each hard disk contains information about the serial number,
model, hard disk capacity, failure flag (0 is “OK” and 1 is
“failure”) and 90 SMART attributes. As these attributes are
manufacturer specific, we observe that many of them have
null values. We transform all the null values to zeros. The
range of values collected varies by model and serial number.
We group disks having the same model numbers, and scaled
the SMART attributes at each time step to a value between
0 and 1.

3) RUL Generation: As we are dealing with time series
of SMART attributes for individual disk, each disk drive is
assumed to be operating normally at the start of each time
series. It exhibits a change in performance over the time
steps and eventually fails at the last step in the time series.
We generate the RUL for each time step, which provides the
remaining working days a drive would last before it fails.
In addition, we also evaluate our models using a piece-wise
RUL target generation function, which limits the maximum
RUL to a constant value and begins to degrade linearly after
a certain point in time. Specifically, the piece-wise function
is implemented as:

RUL =

{
pw, t ≤ tmr − pw .
−t+ tmr, t > tmr − pw .

where tmr is the true maximum RUL, pw is the piece-wise
maximum RUL, and t is the time step. The reason that we
use a piece-wise linear RUL instead of a linear degrading
one is that when the disk drive is still in “good” condition,
estimating RUL may not be of significance. Therefore, we
can set the RUL during such phase to a constant piece-
wise maximum value and have it linearly degrading after
certain time point. The piece-wise RUL generation is also
used in [9].

4) Data Transformation: The multivariate time series
data for a disk drive is modified into three dimensional array
of sequences, time steps and features, where each time step
consists of multiple SMART attributes. In addition, we have
implemented a sliding window mechanism to augment the
total number of time series in the training data.

B. Building Machine Learning Models

We develop two different LSTM models, as shown in
Figure 2. LSTM-M2O has the many-to-one architecture,
where multivariate time series disk data are grouped into
sequences of predefined length. These sequences are mapped
to a single output value, which corresponds to the RUL
at the last time step in each sequence. LSTM-M2O has
two stacked LSTM layers, the cell of which has 64 units

(aka neurons), followed by a single dense layer. The second
model, LSTM-M2M, is time distributed, where the SMART
attributes feature vector at each time step in the sequence
is mapped to a corresponding RUL value. Hence, each
sequence has multiple output values. LSTM-M2M also has
two stacked LSTM layers, which have the same number of
units (i.e., 64) in each cell as LSTM-M2O. The unit number
of each time distributed dense layer is set to 8. We also apply
dropout to avoid overfitting.

The LSTM models are trained using the three-dimensional
array of sequences, time steps, and features, which are
obtained from the data transformation step in III-A4. To
train random forest, we leverage the same input data as
LSTM. As random forest takes feature vectors as input,
we only use the SMART attributes at the last time step of
each time series and its corresponding RUL for training.
LSTM models the historical temporal patterns in time series
while random forest uses the current snapshot of SMART
attributes. We implement random forest using the Python
scikit-learn package and LSTM using Keras with Tensorflow
as the backend. All The experiments are conducted on a
NVIDIA Tesla P40 GPU. We use the RMSprop optimizer
to estimate the parameters. For random forest, we use the
default setting and empirically set the number of trees to
100. The training of random forest is significantly faster
than LSTM.

C. Experiment Results

We train the machine learning models on the SMART
attributes from one set of hard disks and test the models on
a different set of disks belonging to the same disk model.
The total number of hard disk drives in both training and
test data are around 100. All the 90 SMART attributes are
used as the input features. We compare the performance of
random forest and two LSTM models (i.e. LSTM-M2O and
LSTM-M2M) in terms of their mean absolute error (MAE)
on the test data.

Table I: Mean absolute error (MAE) of random forest (RF)
and LSTM

Models Setup LSTM RF
M2O no sliding window 27.62 22.66
M2O sliding window (size=10) 24.81 24.08
M2M no sliding window 23.26 19.55
M2M sliding window (size=10) 29.04 21.10
M2M piece-wise RUL - no sliding window 8.15 6.40
M2M piece-wise RUL- sliding window (size =10) 9.31 7.86

The length of each sequence, or the number of steps in
the time series, is set to 50. To augment the total number
of sequences, we apply a sliding window mechanism. A
smaller sliding window length will result in more overlap-
ping between sequences as well as more sequences. We
compare the performance of these models with and without
sliding window augmentation. In addition, we also compare



the model performance difference with and without piece-
wise RUL target generation. The results of models under
different setups are summarized in Table I. Without sliding
window augmentation, we obtain 666 training sequences and
268 test sequences. A sliding window of size 10 results in
2,628 training sequences and 1,094 test sequences. In order
to have sequences of the same length and avoid dropping any
significant time steps, zeros padding is performed at the end
of the hard disk life. We randomly split the test data into 75%
as the final test samples and 25% as the validation samples
for LSTM hyper-parameter tuning. For LSTM models, the
number of batch size is 10, the number of epochs is 300,
and the learning rate of the RMSprop optimizer is 0.001.

From Table I, we can see that LSTM-M2O has an MAE
score of 27.62 with no sliding window and 24.81 with a
sliding window of size 10. For random forest, the MAE
scores are 22.65 and 24.08 with and without sliding win-
dows, respectively. LSTM-M2O and random forest models
have similar performance with a sliding window of size
10. For LSTM-M2M, it achieves an MAE score of 23.26
with no sliding window and an increased score of 29.04
when the sliding window is of size 10. As a comparison,
the random forest model shows better performance with
a score of 19.55 without sliding window and 21.55 with
a sliding window. Note that for M2M, the corresponding
random forest model also predicts an RUL at each time step.
The MAE is calculated over all the steps.

In M2M, the RUL value of hard disks has degraded
linearly at each time step. We also generate the piece-wise
RUL using the approach introduced in Section III-A3, where
the RUL is set to a piece-wise maximum constant value
and degrades linearly after a certain time point. Specifi-
cally, we set the piece-wise maximum RUL to be 100. We
observe a significant improvement in the MAE scores for
both LSTM and random forest. With piece-wise RUL, the
MAE of LSTM-M2M is reduced from 23.2 to 8.15 without
sliding window and from 29.04 to 9.31 with the sliding
window. Random forest achieves the lowest MAE score
of 6.4 without sliding window and a score of 7.86 with a
sliding window. Comparing with the LSTM models, random
forest shows comparable or better performance for all the
setups. While the sliding window mechanism can augment
the size of training data, it does not improve the prediction
performance of both LSTM and random forest, except for
LSTM-M2O.

IV. CONCLUSION AND FUTURE WORK

We apply machine learning models to predict the re-
maining useful life (RUL) of hard disk drives. Different
from existing work of hard disk failure prediction in a
classification setup, we directly predict RUL via regres-
sion approaches. Preliminary experimental results indicate
that random forest using the current snapshot of SMART
readings has comparable or better performance than LSTM,

which models the sequential pattern of SMART attributes.
We are deploying the machine learning models for RUL
predictions on a large number of hard disks and investigating
if the performance difference also happens in other disk
models. In the current work, we do not observe a superior
performance of LSTM. One reason may be that the current
time sequences of SMART attributes used in the training
data do not carry strong predictive power with respect
to RUL. Our time series data spans over a period of 16
months, a relatively long period. We are investigating if the
time sequence near disk failure may have more significant
patterns in terms of RUL prediction. In addition, we use
daily SMART attributes, which may not be stable due to
the recovery mechanisms embedded in the disk. It may be
desirable to use a smoothing mechanism to aggregate the
SMART values over a specific time window. More careful
feature selection may also help improve the performance of
LSTM. The application of deep learning on multivariate time
series modeling is an active research area, which requires
more innovative neural network architecture design.
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