
Investigating Genome Analysis Pipeline
Performance on GATK with Cloud Object Storage

Tatsuhiro Chiba
IBM Research

19-21, Nihonbashi Hakozaki-cho
Chuo-ku, Tokyo, 103-8510, Japan

chiba@jp.ibm.com

Takeshi Yoshimura
IBM Research

19-21, Nihonbashi Hakozaki-cho
Chuo-ku, Tokyo, 103-8510, Japan

tyos@jp.ibm.com

Abstract—Achieving fast, scalable, and cost-effective genome
analytics is always important to open up a new frontier in
biomedical and life science. Genome Analysis Toolkit (GATK), an
industry-standard genome analysis tool, improves its scalability
and performance by leveraging Spark and HDFS. Spark with
HDFS has been a leading analytics platform in a past few
years, however, the system cannot exploit full advantage of cloud
elasticity in a recent modern cloud. In this paper we investigate
performance characteristics of GATK using Spark with HDFS
and identify scalability issues. Based on a quantitative analysis,
we introduce a new approach to utilize Cloud Object Storage
(COS) in GATK instead of HDFS, which can help decoupling
compute and storage. We demonstrate how this approach can
contribute to the improvement of the entire pipeline performance
and cost saving. As a result, we demonstrate GATK with IBM
COS can achieve up to 28% faster than GATK with HDFS. We
also show that this approach can achieve up to 67% cost saving
in total, which includes the time for data loading and whole
pipeline analysis.

I. INTRODUCTION

As an increase of rapid development of Next Generation
Sequencing (NGS) technologies, genome analysis has become
an emerging research area in bioinfomatics. Thus, this new
research capability attracts a lot of interest from bio-scientists
who want to perform genome analysis such as Single Nu-
cleotide Polymorphism (SNP) genotyping, genetic variants
identification, and so on. While reducing genome sequencing
cost with the NGS tools, a huge amount of genome sequencing
data has been produced day by day, usually in the range of
100GB. Therefore, it is always important to prepare a system
that can handle the immense size of data as effectively as
possible because genome analytics requires huge amount of
compute and storage resource.

Genome Analysis Toolkit (GATK) [1] is the most popular
and widely used open source genome analytics framework
developed by Broad Institute. GATK also provides a typical
genome variant discovery analysis workflow as a GATK Best
practice [2], which combines multiple tasks into a single
pipeline, so that various genome analytics tools (BWA and
HyplotypeCaller etc.) are integrated with GATK to ensure a
genome analysis ecosystem. Recently, GATK has leveraged
Spark [3] in order to achieve higher scalability in their analy-
sis. As a result, GATK pipeline can accelerate genome analysis
throughput more easily as a whole by taking full advantage of

the capability of node-level and core-level parallelism in each
tool.

Meanwhile, those genome analysis tools running on Spark
assume to utilize Hadoop Distributed File System (HDFS)
[4] as an underlying data storage implicitly. It is a natural
architectural design, because Spark is a successor to Hadoop
and HDFS can effectively manage large data over multiple
nodes in a fault-tolerant way. Besides that, the data locality
in HDFS helps to co-locate compute and storage, which can
exploit those resources as much as possible [5].

Cloud has been widely used in the last decade. Nowadays,
several famous cloud platforms such as AWS, Azure, and
IBM Cloud have become essential infrastructure to establish
large scale system, services, and applications in a scalable and
cost-effective way [6]. Cloud brings various benefits such as
availability and elasticity to our applications, and those are
effective even if the applications do not adopt cloud native
principles. In such situation, it is reasonable to move genome
analytics platforms from on-premise to clouds in terms of
cost efficiency and scalability. However, the current reference
architecture of GATK with Spark and HDFS is not ready to
adopt recent modern cloud technologies due to the limitation
of the analytics system that tightly couples compute and
storage.

Thus, there are several challenges to take full advantages
of cloud scalability in GATK pipeline. First, it is quite hard
to dynamically add or remove storage resource capacity and
nodes in HDFS. HDFS balances data pieces across all nodes
and then maintains entire file system consistency. This limita-
tion forces us to keep a fixed number of nodes to store dataset
even if genome analysis does not require vast storage space.
In addition, we must load the entire dataset to HDFS each
time we want to adjust an adequate storage resource capacity
to the analysis pipeline. This kind of additional data loading
overhead also occurs when we launch Spark/HDFS cluster on
a cloud from scratch. Second, similar to the concern for the
storage elasticity, compute resource elasticity is also crucial
for further optimization to utilize resources more efficiently
in each stage of the analysis pipeline. Dynamic compute
resource allocation based on the analysis demands could help
to reduce the waste of unused resources. Third, workload
characterization is most important to know the capability of

optimization and also helps us to achieve both storage and
compute elasticity in GATK pipeline.

To address these challenges, in this paper, we investigate
the performance and workload characteristics of GATK-Spark
with HDFS (GATK with HDFS, in short) on a cloud en-
vironment to identify potential bottleneck and optimization
opportunities for the genome analysis pipeline first. Based
on the detailed analysis, we enable Cloud Object Storage
(COS) as a replacement for HDFS, which can help to bring
elasticity to GATK by decoupling compute and storage. With
leveraging Spark with COS in GATK, we provide a new
best practice for GATK which introduces storage elasticity
into the genome analysis pipeline. We also implement several
features in GATK to support object storage access, which
can bridge an architectural gap due to the difference between
object storage and HDFS. Then, we demonstrate that our
approach can contribute to not only performance scalability
but also saving cost on the entire pipeline execution while
comparing performance of GATK with COS and with HDFS.
In a typical variant calling pipeline with whole genome
sequencing dataset, we demonstrate that COS achieves a 9%
performance improvement than HDFS when attaching a low
throughput volume to HDFS, and is 20% worse than HDFS
when attaching a high throughput volume to HDFS. We also
found a fundamental overhead why the performance drawback
exists when utilizing COS instead of HDFS in GATK. By
eliminating the performance inhibitor, we finally show that
COS achieves a 28% performance improvement or completely
same performance than HDFS when attaching slower or faster
volumes respectively. As for the cost perspective, we indicate
that COS always has good cost performance with HDFS while
executing an entire analysis pipeline. The main contributions
of this paper are as follows.

• We characterize a typical genome analysis pipeline on
GATK with HDFS, and identify the scalability and elas-
ticity issues in the pipeline.

• We provide a new best practice by enabling COS instead
of HDFS, showing that COS scalability and its cost
effectiveness, and then explaining the fundamental cause
of the overhead introduced by the new best practice
utilizing COS.

• We demonstrate how we can overcome the overhead,
increasing the entire pipeline performance up to 28% and
descreasing the overall costs up to 67%.

II. BACKGROUND AND RELATED WORKS

A. Genome Analysis Pipelines

GATK defines and provides a typical set of DNA sequence
analysis pipeline as GATK Best Practice [2]. Variant discovery,
which identifies genome variants in the DNA, is widely used
genomic analysis. Figure 1 explains an overall pipeline defined
in GATK, consisting of multiple steps. First step is a data
preprocessing to align vast sequences into a reference genome
and create a DNA mapping for the further analysis. There exist
several fast alignment tools, but Borrows-Wheeler Aligner

Whole Genome
(BAM Format)

BWA Mark Duplicate BQRS
Haplotype

Caller

Variant Result
(VCF Format)

input output

GATK Pipeline

Storage (Local File System, HDFS, Object Storage, etc.)

RAW data
(FASTQ Format)

input

Focused Steps

Fig. 1. GATK Pipeline for Genome Variant Discovery

(BWA) is a popular tool based on Borrows-Wheeler Transform
(BWT) algorithm. GATK implements BWA-MEM in a first
step of the pipeline for this purpose. In this paper, we skipped
this step and used a BAM format as an input file. BAM format
is compressed binary to represent aligned sequences.

Next step is MarkDupilicates phase, which marks duplicated
fragment of sequences by utilizing reference genome data
and alignment information. This steps reads a vast amount
of genome data while comparing a large number of key value
pairs. Then, the third step is Base Quality Core Recalibration
(BQSR) phase, which adjusts quality scores for the aligned
read dataset by applying a machine learning model to correct
systematic technical sequencing machine errors.

After finishing these steps, variant discovery phase, named
Haplotype Caller, starts processing as a final step. This phase
searches all of the genome variants by comparing well known
reference genome variants. To speed up this sequence compar-
ison phase, Haplotype Caller implements PairHMM Forward
algorithm, and several accelerator implementations are avail-
able to take full advantage of underlying CPU features, such
as native SIMD function support and OpenMP multi-threading
support. The last stage in this step materializes a final output,
VCF file, which contains all of the discovered genome variants
with some headers.

B. Analytics Engine and Storage on Cloud

Apache Spark [3] is one of the most widely used analytics
engines especially for big data processing. With applying in-
memory computing style, Spark has extremely higher through-
put than predecessor engines such as Hadoop. Since HDFS
[4] has been a primary data lake in on-premise analytics
environments in the past decade, the combination of Spark
and HDFS still remains as a first choice even if we move
into a cloud, because this architecture is stable and does not
require additional learning cost. Spark itself is flexible in a
backend storage for reading/writing data, so it can work well
in not only HDFS, but also with other types of storage such
as RDB, key-value store, and object storage.

Cloud object storage such as AWS S3, IBM Cloud Object
Storage (COS), and Google Cloud Storage (GCS) provides
high capacity, reliable, and cost effective managed service to
users and applications. Cloud object storage was basically
suitable for the purpose of storing large amount of data,
so it was not supposed to be a replacement file system for
applications, because disk bandwidth was always higher than
network capacity, and also disk access latency is lower than
network latency. By enabling high network capacity in a

cloud, however, instances and services within a cloud can
achieve higher throughput than ever before. This capability
makes us rethink system architectural design regarding how
much performance impact we can achieve in analytics platform
[7]. In terms of storage scalability, object storage will be an
essential piece of modern cloud which can help to decouple
compute and storage while maintaining or improving perfor-
mance. Of course, object storage is not a POSIX file system,
but a storage service that can be accessible through RESTful
API; therefore, applications must take into consideration the
difference between object storage and file storage.

C. Related Works

A couple of earlier works have been studied before to
address scalability problems and workload characterization
of genome analysis pipeline. SparkGA [8] is an Apache
Spark based framework for a DNA analysis pipeline, which
introduces an optimal parallel implementation of the analysis
with input load balancing and maximizing resource usage.
A successor of the work, SparkGA2 [9] improves the effi-
ciency of data access on HDFS and reduces memory footprint
with an optimized compression method for intermediate data.
CloudGT [10] proposes a Parquet columnar based optimiza-
tion to improve IO performance in several genome analysis
pipelines using Spark. Costa et al. [11] investigate performance
characteristics of genome analysis pipeline on GATK using
Spark, and introduce JVM and Spark configuration level
tuning to accelerate performance. Doppio [12] proposes a disk
IO aware Spark analytical model to estimate Spark application
behavior. It utilizes GATK analysis pipeline as a representative
workload of this work. However, all of the previous works
assume HDFS as an underlying primary storage.

Several works have investigated how big data analytics
platforms can utilize object store for their workloads. Swif-
tAnalytics [13] provides a system that considers data access
locality with placement control to leverage OpenStack Swift
object storage system for Spark. To easily and transparently
access data in object store from Spark application, many
storage connectors are available in Spark, such as AWS S3A
connector, IBM COS connector (i.e. Stocator [14]), OpenStack
Swift Connector, and so on. Since they ensure their connectors
over Hadoop File System APIs, application can transparently
access objects without any modifications. However, Hadoop
File System APIs are originally designed for HDFS, so some
APIs do not work well with object storage.

III. PERFORMANCE ANALYSIS AT SCALE

In this section, we first evaluate genome analysis pipeline
performance on GATK4 using Spark with HDFS (GATK with
HDFS, in short) to get a better understanding of the issues
on a typical Spark Hadoop analytics framework in a cloud.
We also reveal its performance characteristics and scalability
with detailed Spark application and system metrics. Based on
the results, we identity what challenges are remaining when
we run genome analysis pipeline to leverage modern cloud
scalability as much as possible.

Driver
VM

up to 12 worker nodes

spark-submit

hdfs -put
Worker VM

1TB (20K-IOPS) 1TB (3K-IOPS)

HDFS (3K-IOPS)
Spark (20K-IOPS) Spark (3K-IOPS)

GATK (ReadsSparkPipeline)

HDFS (20K-IOPS)

run dstat on all nodes

Fig. 2. Architectural overview of GATK-Spark with HDFS on Cloud

A. Experiment Settings

Cloud Environment: We set up a Spark and Hadoop cluster
on IBM Cloud Virtual Private Cloud (VPC) environment. Ac-
cording to the cluster virtual server configuration, we launched
up to twelve mx2-32x256 instances on the same availability
zone, each equipped with 32 vCPU cores and 256 GB RAM.
We choose Ubuntu 18.04.1 LTS (kernel: 4.15.0-42-generic) for
the operating system. These instances are connected with up to
16 Gbps network. We also attached two 1-TB block storages
with different IOPS profiles for each node: 3-IOPS/GB and
10-IOPS/GB. As for the storage profile, we can select several
storage IOPS profiles based on our workload requirements.
Actual storage performance with storage IOPS profiles depend
on volume size and profile limitation, so that a 1-TB volume
with 3-IOPS/GB has up to 3,000 IOPS (3K-IOPS) and a 1-
TB volume with 10-IOPS/GB has up to 20,000 IOPS (20K-
IOPS) respectively. We formatted the volumes with XFS.
These disks are utilized by not only HDFS, but also Spark
executors, because Spark requires local temporary storage to
store intermediate data for shuffling over nodes. Virtual server
settings and specifictions are summarized in Table I.

Software Stack: We installed GATK 4.1.4.1, Spark 2.4.5,
Hadoop 2.7.7, and OpenJ9 JVM 1.8.0 242-b08 on the cluster.
Software configuration tuning is always crucial to leverage
application performance as much as possible. In terms of
Spark, Hadoop, and underlying JVM parameter tuning, several
works have been already studied best configuration practice
[15][11]. Configuration tuning itself is out-of-scope in this
paper, so we borrowed knowledge on tuning from references.
As discussed in those papers, we managed multiple Spark
executors in each node; we launched four executors with 8
vCPUs, 35 GB heap, and 15 GB off-heap in each. Thus,
almost all compute and memory resources are reserved by
Spark executors. We applied default configurations to HDFS,
like three replicas, 128 MB block size, and so on.

Genome Dataset and GATK Pipeline with Spark: We
prepare an open whole genome (WGS) dataset obtained from
GATK, originally coming from the 1,000 genome project
[16]. We used WGS-G94982-NA12878-no-NC 007605.bam
as input, which has 154 GB in total. GATK also pro-
vides a reference benchmarking pipeline from aligned reads
to variant calling for Spark, named ReadsPipelineSpark,
in their repository. Based on the reference runner scripts
for the WGS dataset, we upgraded pairHMM option to
AVX LOGLESS CACHING OMP to accelerate Haplotype

TABLE I
CLUSTER AND NODE CONFIGURATION ON CLOUD

Region Nodes OS Profile vCPUs Memory Network Block Storage (IOPS)
London (eu-gb) 12 Ubuntu 18.04.1 mx2-32x256 32 256 GiB 16 Gbps 1TB (3K-IOPS) and 1TB (20K-IOPS)

373

176
118 93 80 68

241

123
83 64 54 46

0

2

4

6

0
50

100
150
200
250
300
350
400

64 (2) 128 (4) 192 (6) 256 (8) 320 (10) 384 (12)

Sc
al

eu
p

Ra
tio

Ex
ec

ut
io

n
Ti

m
e

(m
in

.)

Total Executor Cores (Worker Nodes)

HDFS (3K-IOPS) HDFS (20K-IOPS)
Ratio (HDFS,3K-IOPS) Ratio (HDFS,20K-IOPS)

Fig. 3. Weak Scaling Performance on GATK with HDFS

Caller more with SIMD instructions and OpenMP multi-
threading.

Figure 2 shows an overall architecture of GATK benchmark-
ing environment on a cloud. We prepared a driver node used
to submit GATK jobs and load data into HDFS. In addition,
the driver node manages dstat based monitoring tool to capture
various kind of system-wide metrics such as CPU, memory,
network, and disk usage while running benchmark pipeline on
all nodes. To evaluate how disk speed impacts performance,
we manage two set of Spark and HDFS which can utilize
those two types of disks separately as mentioned in the
Cloud Environment section. Therefore, 3K-IOPS or 20K-IOPS
annotation mean that both Spark and HDFS only manipulate
1TB 3K-IOPS or 20K-IOPS disk respectively while running
a benchmark.

B. GATK Workload Scalability

First we evaluate scalability of the ReadSparkPipeline work-
load while changing the number of nodes and total cores.
Figure 3 shows a weak scaling result with two to twelve
nodes. As shown in Figure 3, GATK ReadsSparkPipeline has
good scalability and achieved around 5.5x speedup in twelve
nodes compared to the performance in two nodes as a whole.
Focusing on the result in twelve nodes that have 384 vCPUs
and 3TB RAM in total, we finally achieved 68 minutes and
46 minutes to complete a full analytics pipeline with 3K-IOPS
and 20K-IOPS disk respectively.

Next we perform breakdown analysis on the GATK pipeline.
Table II describes characteristics of each Spark job, including
input/output data size, shuffle read/write size, and the cat-
egory this job corresponds to in GATK pipeline. Although
it depends on the version of GATK and Spark, the version
of GATK we used in this paper translates an entire pipeline
shown in the Figure 1 into eight spark jobs. Each job has
different characteristics: read IO heavy, network heavy, shuffle
read/write heavy, and so on. The first four jobs represent Mark
Duplicate with Aligned Reads. WGS genome data is loaded
from HDFS in the first job, then the data is consumed in the

following three jobs with shuffling. The fifth job represents
BQSR in the pipeline. It performs a significant amount of
shuffle read and write in the computation. The last three jobs
represent HaplotypeCaller, which finally writes variant result
into HDFS with many data shuffles. (a) and (b) in Figure 4
show a breakdown analysis of how much time is spent in
each job. Both represent the result on two and twelve nodes
with 3K-IOPS and 20K-IOPS disk. We can observe several
characteristics with the breakdown analysis. First, disk IO
performance of jobs 0 and 1 are dominant. Although job 1
also reads the same data that job 0 has read, job 1 benefits
from Spark in-memory architecture; job 1 finishes quite faster
than job 0 because data is cached in memory as a file cache.
Moreover, job 7 is dominant in all of the entire pipelines with
the increase of nodes.

As for (c) and (d) in Figure 4, they describe how much
each job scales when increasing nodes and cores. We can
observe here that the scaling characteristics are also different
in each job and analytics pipeline stage. Regarding the first two
jobs related to MarkDuplicate, their scalabilities are bounded
by performance of disk IO and memory respectively. The
following two jobs, jobs 2 and 3 have good scaling because
they are network and memory intensive. Job 4, BQSR in a
pipeline, has also great scalability; it achieved 10x and 6x
scaling with 3K and 20K IOPS HDFS respectively. Job 7,
which is the last stage in HaplotypeCaller, accounts for half
of the time in the pipeline when relaxing a disk performance
constraint with higher throughput disk.

Then we study pipeline characteristics from resource usage
perspective. Figures 5 show each resource usage (i.e. CPU,
Disk, Memory, and Network) focusing on a node when
running benchmark over twelve nodes. (a) of the figures
represents the metrics in 3K-IOPS and (b) in 20K-IOPS
respectively. Each resource usage graph also has a map onto
the Spark jobs where they run. In 3K-IOPS case while running
jobs 0 and 1, disk read/write bandwidth reached up to the
limit, around 45 MB/sec in total. In contrast, the 20K-IOPS
case utilized around 300 MB/sec and it still has a bandwidth
capacity up to the 20K-IOPS limitation. We can see the
limitation from how much wait time accounts for in CPU
usage graph as well; Utilizing 3K-IOPS accounts for 20-40%
in wait while running jobs 0 and 1, but 20K-IOPS does not. We
can also observe an interesting characteristics in disk usage;
read operation happens only in job 0 and 1. In other words, the
later jobs do not read data from HDFS, but read from shuffle
write data stored in memory as a file cache. As shown in the
memory usage graphs, file cache occupies over half of memory
in both scenarios. Job 3, the final phase in MarkDuplicate,
starts utilizing all resources evenly, but especially consumes
a huge amount of heap memory and network for shuffling

0

5

10

15

20

25

30

64 (2) 128 (4) 192 (6) 256 (8) 320 (10) 384 (12)

sp
ee

du
p

ra
tio

Total Executor Cores (Worker Nodes)

Job 0 Job 1 Job 2
Job 3 Job 4 Job 5
Job 6 Job 7

0
1
2
3
4
5
6
7
8

64 (2) 128 (4) 192 (6) 256 (8) 320 (10) 384 (12)

Sp
pe

du
p

ra
tio

Total Executor Cores (Worker Nodes)

Job 0 Job 1
Job 2 Job 3
Job 4 Job 5
Job 6 Job 7

0

20

40

60

80

HDFS (3K-IOPS) HDFS (20K-IOPS)

384 Cores / 12 Worker Nodes

Ex
ec

ut
io

n
Ti

m
e

(m
in

.) Job 0 Job 1 Job 2
Job 3 Job 4 Job 5
Job 6 Job 7

0

100

200

300

400

HDFS (3K-IOPS) HDFS (20K-IOPS)

64 Cores / 2 Worker Nodes

Ex
ec

ut
io

n
Ti

m
e

(m
in

.) Job 0 Job 1 Job 2
Job 3 Job 4 Job 5
Job 6 Job 7

(b) breakdown analysis for 12 nodes(a) breakdown analysis for 2 nodes (c) speedup in each job (3K-IOPS) (d) speedup in each job (20K-IOPS)

Fig. 4. Breakdown analysis of job execution time (a and b) and speedup ratio in each job (c and d)

TABLE II
BREAKDOWN ANALYSIS AND CHARACTERISTICS OF SPARK JOB

HDFS HDFS shuffle shuffle GATK
Job input output read write pipeline

0 154GB - - - Read+MarkDup
1 154GB - 12.8MB 226GB Read+MarkDup
2 - - - 226GB Read+MarkDup
3 - - 498GB 45.8GB Read+MarkDup
4 - - 522GB 283GB BQSR
5 - - 262GB - HaplotypeCaller
6 - - 14.2MB 14.2MB HaplotypeCaller
7 104MB 995MB 524GB - HaplotypeCaller

data between executors. Job 4 has similar characteristics to
job 3. Job 7, the last pipeline in HaplotypeCaller, does not
read/write data from/to disk but highly utilizes CPU and
network instead. In summary, MarkDuplicate is categorized
as disk I/O intensive, BQSR as disk and network intensive,
and HaplotypeCaller as CPU and network intensive.

C. Analytics Infrastructure at Rutime

Next we evaluate performance from a different angle; we
investigate how much time is required to set up a genome
analysis system on a cloud, such as instance start-up, software
installation, and genome data loading time to HDFS. Most
previous works assume that Spark and Hadoop are already
available, but it is important to keep minimizing resource usage
on a cloud in terms of cost reduction [6]. An ideal situation is
that we construct genome analysis pipeline at runtime, and
then deallocate the system after finishing all pipelines. So
we evaluate an analytics system setup time from scratch to
understand how practical it is.

Table III shows how much time is spent in each phase.
We used Terraform to set up infrastructure, which can help
provisioning volumes and instances easily on a cloud. We
also prepared a VM image that has already included Spark
and Hadoop jars. The data loaded into HDFS is stored in
local on the driver node. As shown in the table, provisioning
infrastructure does not take so much time, so it is trivial
compared to the entire pipeline computation time. However,
data loading time is quite large. It takes about 30 minutes in
our test. This cost is dominant in the entire pipeline, since
it takes 45 minutes to finish the computation pipeline on a
twelve node cluster with 20K-IOPS disk as shown in figure
3. Although the transfer time and speed depend on the disk
or network bandwidth, it might not be negligible if we copy

TABLE III
SYSTEM SETUP TIME

create create load data
volumes instances into HDFS

elapsed time 56 sec 2.5 mins 30 mins

vast mounts of genome data into HDFS every time when we
deploy a new system at runtime.

IV. CHALLENGES AND APPROACHES

In this section, we summarize what challenges still remain
to be optimized in genome analysis pipeline on a cloud,
based on the results and workload characteristics shown in the
previous section. We also explain what approaches we can use
do tackle those remaining challenges, especially for relying on
a strategy of decoupling compute and storage.

A. Storage Elasticity

Challenge: As shown in the figure 4 and table II, each
pipeline has different resource usage patterns and characteris-
tics, such as CPU-intensive or data-intensive, and this tendency
often causes resource waste. We hypothoesize that by model-
ing the pipelines we can flexibly utilize resources. But with
the current analytics system, it would be difficult to achieve
this degree of elasticity, because a typical analytics system
(i.e. Spark with HDFS) requires tightly coupled compute with
storage. This collocation concept is always effective to achieve
the best performance with an on-premise system, however, it is
difficult to scale compute and storage independently. To take
full advantage of modern cloud elasticity, genome analysis
pipeline should be also decoupled from compute and storage
to reduce cost and achieve high scalability.

Moreover, data copying is another potential overhead as
shown in the table III. If we continuously execute genome
analysis pipelines on an analytics system for an extended
period, data loading time to HDFS might be negligible. How-
ever, HDFS architecture does not expect to scale or descale
underlying nodes frequently so we cannot avoid restructuring
HDFS. Otherwise we might accept consuming unnecessary
resources if workload size and demands are changing.

Approach: Object storage architecture can overcome the
limit of storage scalability. In addition, we can delegate storage
durability and availability to cloud. Even though object storage
is not a file system, it would be applicable if it can reduce cost
and achieve sufficient performance compared to HDFS.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600
Di

sk
 R

/W
 (G

B/
se

c)

read writ

300 600 900 1200 1500 1800 2100 2400 2700
0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 100012001400160018002000220024002600

Ne
tw

or
k

R/
W

 (G
B/

se
c) recv send

300 600 900 1200 1500 1800 2100 2400 2700
0

50

100

150

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600

M
Em

or
y

Us
ag

e
(G

B)

used buff cach

300 600 900 1200 1500 1800 2100 2400 2700

0

20

40

60

80

100

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600

CP
U

Us
ag

e
(%

)

usr sys wai

300 600 900 1200 1500 1800 2100 2400 2700

job 0,1,2 job 3 job 4 job 5,6 job 7 job 0,1,2 job 3 job 4 job 5,6 job 7 job 0,1,2 job 3 job 4 job 5,6 job 7 job 0,1,2 job 3 job 4 job 5,6 job 7

0

20

40

60

80

100
0

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

22
00

24
00

26
00

28
00

30
00

32
00

34
00

36
00

38
00

40
00

CP
U

Us
ag

e
(%

)

usr sys wai

0

0.02

0.04

0.06

0.08

0.1

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00
16

00
18

00
20

00
22

00
24

00
26

00
28

00
30

00
32

00
34

00
36

00
38

00
40

00

Di
sk

 R
/W

 (G
B/

se
c) read writ

0

50

100

150

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00
16

00
18

00
20

00
22

00
24

00
26

00
28

00
30

00
32

00
34

00
36

00
38

00
40

00

M
em

or
y

Us
ag

e
(G

B)

used buff cach
0

0.2

0.4

0.6

0.8

1

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00
16

00
18

00
20

00
22

00
24

00
26

00
28

00
30

00
32

00
34

00
36

00
38

00
40

00

Ne
tw

or
k

R/
W

 (G
B/

se
c) recv send

job 0 job 3 job 4 job 5,6 job 7job 1 job 2 job 0 job 3 job 4 job 5,6 job 7job 1 job 2 job 0 job 3 job 4 job 5,6 job 7job 1 job 2 job 0 job 3 job 4 job 5,6 job 7job 1 job 2

(a) Resource Usage on GATK with HDFS (3K-IOPS)

(b) Resource Usage on GATK with HDFS (20K-IOPS)

Fig. 5. CPU, Disk, Network, and Memory Resource Usage. (a): on GATK with HDFS (3K-IOPS) and (b): on GATK with HDFS (20K-IOPS)

AWS S3, IBM COS, etc.

Driver
Node

Hadoop FileSystem API

Spark

Object Storage Connector
(S3A, Stocator, etc.)

Local Disk

GATK (ReadsPipelineSpark)

shuffle
data

Hadoop
NN/DN

HDFS

Genome Data Input/Output

Data Loading
into HDFS or Object Storage

submit

REST API

Fig. 6. Overall Design for GATK with Cloud Object Storage

B. Compute Elasticity

Challenge: Besides storage elasticity, compute elasticity
might help to dynamically adjust the resource usage to our
genome workloads. As shown in the Figure 4, required re-
sources and core scalability characteristics are different in
each job. Similar to the storage elasticity, we might be able
to reduce unnecessary compute resource as well. This result
indicates that GATK pipelines have a potential capability to
accept different size of resources for each execution stage.

Approach: Execution runtime and framework supports are
mandatory to schedule resource dynamically. Spark provides
a dynamic resource allocation feature to adjust resource usage
that our workloads consume. Based on resource request or re-
move policy, Spark scheduler increases or decreases additional
executors. On the other hand, many applications including
GATK are containerized recently, so it is natural to consider
running on an orchestration framework such as Kubernetes.
Cloud workflow engines (such as Kubeflow and Argo) are
intended to manage data pipeline in a Kubernetes native way.
Thus, it is important to redesign an overall pipeline and
think how we can accelerate pipeline performance on these
systems with minimal resources. We do not have enough space
to discuss compute elasticity, so we only focus on storage
elasticity here, but we plan to integrate it with GATK as a
future work.

0

2

4

6

0
50

100
150
200
250
300
350
400

64 (2) 128 (4) 192 (6) 256 (8) 320 (10) 384 (12)

Sc
al

eu
p

Ra
tio

Ex
ec

ut
io

n
Ti

m
e

(m
in

.)

Total Executor Cores (Worker Nodes)

COS (3K-IOPS) COS (20K-IOPS)
HDFS (3K-IOPS) HDFS (20K-IOPS)
Ratio (COS,3K-IOPS) Ratio (COS,20K-IOPS)
Ratio (HDFS,3K-IOPS) Ratio (HDFS,20K-IOPS)

68 4663 57

373

241

340

252

Fig. 7. GATK Scalability Comparison: COS vs. HDFS

C. Design and Implementation

Figure 6 describes a new overall design for GATK integrat-
ing with COS to achieve cloud elasticity. Instead of HDFS, we
enhanced GATK to read/write genome dataset from/to COS.
To realize this design, we enable Stocator [14] in Spark. Since
GATK and required libraries that heavily depend on HDFS,
we modified them to access objects from the GATK analysis
pipeline.

V. PERFORMANCE EVALUATION

A. Scalability: GATK with Cloud Object Storage

First we evaluate performance scalability of GATK with
COS while changing the number of nodes and cores similar
to GATK with HDFS. As we discussed in the section III-A,
we still need to utilize local disk even in a COS scenario
because Spark requires it to manage shuffle data. Thus, we
prepare two evaluation scenarios in COS as well as in HDFS;
COS (3K-IOPS) utilizing 3K-IOPS disk for Spark shuffle and
COS (20K-IOPS) utilizing 20K-IOPS disk. Unlike previous
experiment where disk bandwidth is shared between Spark
shuffle and HDFS I/O, the disk bandwidth is almost entirely
used by Spark shuffle.

Figure 7 shows core scalability on COS and HDFS, and
plots speedup ratio with twelve nodes. In the case of two
nodes, the entire pipeline takes 340 minutes, 373 minutes, 252
minutes, and 241 minutes on COS (3K-IOPS), HDFS (3K-
IOPS), COS (20K-IOPS) and HDFS (20K-IOPS) respectively.
In the 3K-IOPS scenario, COS is always around 10% faster
than HDFS, and the execution time with twelve nodes was 63

0

20

40

60

80

100
0

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

22
00

24
00

26
00

28
00

30
00

32
00

34
00

36
00

38
00

CP
U

Us
ag

e
(%

)

usr sys wai

0

0.02

0.04

0.06

0.08

0.1

0

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

22
00

24
00

26
00

28
00

30
00

32
00

34
00

36
00

38
00

Di
sk

 R
/W

 (G
B/

se
c) read writ

0

50

100

150

0

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

22
00

24
00

26
00

28
00

30
00

32
00

34
00

36
00

38
00

M
em

or
y

Us
ag

e
(G

B)

used buff cach0

0.2

0.4

0.6

0.8

1

0

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

22
00

24
00

26
00

28
00

30
00

32
00

34
00

36
00

38
00Ne

tw
or

k
R/

W
 (G

B/
se

c) recv send

job 0 job1 job 2,3 job 4 job 7job5,6 write to COS job 0 job1 job 2,3 job 4 job 7job5,6 write to COS job 0 job1 job 2,3 job 4 job 7job5,6 write to COS job 0 job1 job 2,3 job 4 job 7job5,6 write to COS

Fig. 8. CPU, Disk, Network, and Memory Resource Usage on GATK with COS (3K-IOPS)

0

50

100

150

200

250

HDFS
(20K)

COS
(20K)

HDFS
(20K)

COS
(20K)

HDFS
(20K)

COS
(20K)

HDFS
(20K)

COS
(20K)

HDFS
(20K)

COS
(20K)

HDFS
(20K)

COS
(20K)

64 (2) 128 (4) 192 (6) 256 (8) 320 (10) 384 (12)

El
ap

se
d

Ti
m

e
(m

in
.)

Job 0 Job 1 Job 2 Job 3 Job 4 Job 5 Job 6 Job 7 Write to COS

additional constant overhead after Job 7

Fig. 9. Comparison of Job Breakdown analysis in GATK with HDFS (20K-
IOPS) and COS (20K-IOPS)

and 68 minutes in COS and HDFS. On the other hand, COS is
always slightly worse than HDFS in the 20K-IOPS scenario;
the performance gap between them was 5% in two nodes test,
but it accounted for 24% in twelve nodes test, and the elapsed
time in COS and HDFS were 57 and 46 minutes. We will
discuss why this drawback exists later.

As for the resource usage shown in Figure 8, we can see
several notable characteristics compared to the result with
HDFS. For example, disk bandwidth is consumed only by
shuffle write. Additionally, jobs 0 and 1 finished within 7
minutes even though it took 28 minutes with 3K-IOPS HDFS.
That is because network throughput is much larger than disk
IO throughput.

B. Optimization for GATK with Cloud Object Storage

Next, we investigate why this slowness is noticeable with
COS (20K-IOPS). Figure 9 shows the breakdown analysis
that shows how much time each job spends on the scaling
test with a 20K IOPS disk. As shown in the graph, Spark
job performance is almost the same between HDFS and COS,
but COS has an additional part, writing to COS phase. This
additional overhead takes around 10 minutes to save a final
VCF file output into COS. This is a constant that does not
depend on the node scale but on the finalized data size. As a
result, the speedup ratio becomes gradually worse in the twelve
node test since this constant cost is relatively dominant in the
full computation, even though the pipeline computation part
itself is competitive with HDFS.

Why does COS have this overhead when HDFS does
not? The reason comes from the difference in the supported
Hadoop FileSystem API between HDFS and COS. Figure 10
shows a diagram and operational flow of the final phase in
a variant searching pipeline. Blue, orange, and green lines
represent original flow using HDFS, original flow using COS,
and optimized flow using COS without any concat operation
respectively. The last stage of job 7 manages a large number

Reducer
Task

...

r-0001.part
(VCF)

GATK Driver

Concat

job 7 finished Driver runs finalizer

Reducer
Task

Reducer
Task

r-0002.part
(VCF)

r-1000.part
(VCF) HDFS

COS Concat

Variant
Result
(VCF)

gather all pieces

COS

concat here
push back to COS

O(1)

O(n)O(1)

original path in HDFS original path in COS optimized path in COS

Fig. 10. Comparison of Concat Operation Flow After Finishing Job 7

of reducer tasks that generate a piece of the final VCF file,
and then persist them into HDFS or COS. After finishing job
7, the GATK main driver explicitly calls a concat operation
in Hadoop FileSystem API which merges them into a single
file. HDFS implements all operations including concat, which
can complete the concat operation without any copies inside
or outside the cluster. An HDFS client has the capability to
read these pieces as a file at runtime, so it does not need
to physically merge them into one. As a consequence, this
concat operation finishes immediately in HDFS. On the other
hand, an object storage connector to COS does not implement
the concat operation in its Hadoop compatible file system.
Although the object storage connector imitates a Hadoop
FileSystem, it is essentially not easy to support all APIs due
to the difference of backend storage implementation and a
general limitation existing in S3 compatible object storage
system. As a result, the GATK main driver performs error
handling; it copies all pieces into the local driver first, merges
them into a final VCF file, then pushes it back to an object in
COS. Thus, this additional constant data copying overhead in
the finalization phase always exists in GATK with COS.

We have several possible approaches to eliminate this over-
head. One approach is to modify GATK internal code to stop
calling concat. Another approach is for the object storage
connector to simply pass through concat operations without
raising errors. In both approaches, a client must understand
how to read these pieces, but it can suppress unnecessary data
copy. We also implemented code to skip this file merge process
to demonstrate how to reduce this overhead. As a result, by
using all of these techniques, the performance of COS tests can
be uniformly reduced by 10 minutes in the final sink phase;
COS (3K-IOPS) is 28% faster than HDFS (3K-IOPS), and
COS (20K-IOPS) shows almost same performance in HDFS
(20K-IOPS).

C. Cost: Price Per Performance

Finally, we compare actual costs between COS and HDFS
in our scenarios. Figure 11 compares costs while changing

Fig. 11. Price/Performance Comparison: COS vs. HDFS

node scaling and disk configurations. We calculate total cost
based on a public price list and then divide it by elapsed time.
The First scenario focuses on pipeline computation time only,
represented with solid lines. COS always achieves better cost
performance than HDFS with 3K-IOPS disk. While utilizing
20K-IOPS disk, HDFS outperforms COS due to the difference
in elapsed time for entire pipeline execution. Comparing 3K-
IOPS with 20K-IOPS, cost performance in 3K-IOPS is 15 -
60% better than 20K-IOPS. This is because 20K-IOPS is 10x
more expensive than 3K-IOPS.

The Next scenario compares COS with HDFS when elim-
inating a concat overhead in OCS and loading all data into
HDFS, represented with dotted lines. If we start from data
loading phase into HDFS, analytics pipeline must wait to
complete all data transfer. Moreover, we cannot load data
before starting the cluster. Therefore, we appended the ad-
ditional transfer time (i.e. 30 minutes) to the elapsed time
in HDFS result. In COS result, we can manage data transfer
task independently, so we do not account the cost here. In
addition, COS results include the optimization which removes
an additional data sink overhead (i.e. 10 minutes). In a such
situation, as a result, it can achieve up to 67% cost savings
with 3K-IOPS disk, and up to 61% cost savings with 20K-
IOPS disk on twelve nodes.

VI. CONCLUSION

In this paper we investigate the performance characteristics
of GATK using Spark with HDFS and identify scalability
issues on a modern cloud. Based on a quantitative analysis,
we introduce a new approach to utilize cloud object storage
in GATK instead of HDFS, which helps decouple compute
and storage. We demonstrate how this approach contributes to
performance scalability and cost saving in a cloud. We also
reveal an existing overhead when utilizing cloud object storage
in current GATK. By mitigating this performance issue, we
finally confirm GATK using COS can achieve a 28% perfor-
mance improvement over than HDFS while using a slower but
inexpensive disk, and completely the same performance with
HDFS using a faster but more expensive disk. Moreover, we
show that it can achieve up to 67% cost savings to complete
all genome analysis pipeline including data loading time into
HDFS.

REFERENCES

[1] A. McKenna, M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis,
A. Kernytsky, K. Garimella, D. Altshuler, S. Gabriel, M. Daly, and M. A.
DePristo, “The genome analysis toolkit: A MapReduce framework for
analyzing next-generation DNA sequencing data,” Genome Research,
vol. 20, no. 9, pp. 1297–1303, Jul. 2010.

[2] G. A. Auwera, M. O. Carneiro, C. Hartl, R. Poplin, G. del Angel,
A. Levy-Moonshine, T. Jordan, K. Shakir, D. Roazen, J. Thibault,
E. Banks, K. V. Garimella, D. Altshuler, S. Gabriel, and M. A. DePristo,
“From FastQ data to high-confidence variant calls: The genome analysis
toolkit best practices pipeline,” Current Protocols in Bioinformatics,
vol. 43, no. 1, Oct. 2013.

[3] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets,” in Proceedings of the
2Nd USENIX Conference on Hot Topics in Cloud Computing (HotCloud
’10). USENIX Association, 2010, pp. 10–10.

[4] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in 2010 IEEE 26th Symposium on Mass Storage
Systems and Technologies (MSST), 2010, pp. 1–10.

[5] Jiong Xie, Shu Yin, Xiaojun Ruan, Zhiyang Ding, Yun Tian, J. Majors,
A. Manzanares, and Xiao Qin, “Improving mapreduce performance
through data placement in heterogeneous hadoop clusters,” in 2010 IEEE
International Symposium on Parallel Distributed Processing, Workshops
and Phd Forum (IPDPSW), 2010, pp. 1–9.

[6] S. Chaisiri, R. Kaewpuang, B. Lee, and D. Niyato, “Cost minimization
for provisioning virtual servers in amazon elastic compute cloud,”
in 2011 IEEE 19th Annual International Symposium on Modelling,
Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS), 2011, pp. 85–95.

[7] A. Trivedi, P. Stuedi, J. Pfefferle, R. Stoica, B. Metzler, I. Koltsidas,
and N. Ioannou, “On the [ir]relevance of network performance for
data processing,” in 8th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud 16). USENIX Association, Jun. 2016.

[8] H. Mushtaq, F. Liu, C. Costa, G. Liu, P. Hofstee, and Z. Al-Ars,
“SparkGA: A spark framework for cost effective, fast and accurate
DNA analysis at scale,” in Proceedings of the 8th ACM International
Conference on Bioinformatics, Computational Biology,and Health
Informatics, ser. ACM-BCB ’17. New York, NY, USA: Association
for Computing Machinery, 2017, p. 148–157. [Online]. Available:
https://doi.org/10.1145/3107411.3107438

[9] H. Mushtaq, N. Ahmed, and Z. Al-Ars, “SparkGA2: Production-quality
memory-efficient apache spark based genome analysis framework,”
PLOS ONE, vol. 14, no. 12, p. e0224784, Dec. 2019.

[10] A. Xiao, S. Dong, C. Liu, L. Zhang, and Z. Wu, “Cloudgt: A high
performance genome analysis toolkit leveraging pipeline optimization
on spark,” in 2018 IEEE International Conference on Bioinformatics
and Biomedicine (BIBM), 2018, pp. 1343–1350.

[11] C. H. A. Costa, C. Misale, F. Liu, M. Silva, H. Franke, P. Crumley, and
B. D’Amora, “Optimization of genomics analysis pipeline for scalable
performance in a cloud environment,” in 2018 IEEE International
Conference on Bioinformatics and Biomedicine (BIBM), 2018, pp. 1147–
1154.

[12] P. Zhou, Z. Ruan, Z. Fang, M. Shand, D. Roazen, and J. Cong, “Doppio:
I/o-aware performance analysis, modeling and optimization for in-
memory computing framework,” in 2018 IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS), 2018, pp.
22–32.

[13] L. Rupprecht, R. Zhang, B. Owen, P. Pietzuch, and D. Hildebrand,
“SwiftAnalytics: Optimizing object storage for big data analytics,” in
2017 IEEE International Conference on Cloud Engineering (IC2E).
IEEE, Apr. 2017.

[14] G. Vernik, M. Factor, E. K. Kolodner, P. Michiardi, E. Ofer, and
F. Pace, “Stocator: Providing high performance and fault tolerance for
apache spark over object storage,” in 2018 18th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGRID), 2018, pp.
462–471.

[15] T. Chiba and T. Onodera, “Workload characterization and optimization
of tpc-h queries on apache spark,” in 2016 IEEE International Sympo-
sium on Performance Analysis of Systems and Software (ISPASS), 2016,
pp. 112–121.

[16] “A global reference for human genetic variation,” Nature, vol. 526, no.
7571, pp. 68–74, Sep. 2015.

https://doi.org/10.1145/3107411.3107438

	Introduction
	Background and Related Works
	Genome Analysis Pipelines
	Analytics Engine and Storage on Cloud
	Related Works

	Performance Analysis at Scale
	Experiment Settings
	GATK Workload Scalability
	Analytics Infrastructure at Rutime

	Challenges and Approaches
	Storage Elasticity
	Compute Elasticity
	Design and Implementation

	Performance Evaluation
	Scalability: GATK with Cloud Object Storage
	Optimization for GATK with Cloud Object Storage
	Cost: Price Per Performance

	Conclusion
	References

