
Workload Characterization and Optimization of
TPC-H Queries on Apache Spark

Tatsuhiro Chiba
IBM Research - Tokyo

19-21, Nihonbashi Hakozaki-cho
Chuo-ku, Tokyo, 103-8510, Japan

chiba@jp.ibm.com

Tamiya Onodera
IBM Research - Tokyo

19-21, Nihonbashi Hakozaki-cho
Chuo-ku, Tokyo, 103-8510, Japan

tonodera@jp.ibm.com

Abstract—Besides being an in-memory-oriented computing
framework, Spark runs on top of Java Virtual Machines
(JVMs), so JVM parameters must be tuned to improve Spark
application performance. Misconfigured parameters and set-
tings degrade performance. For example, using Java heaps
that are too large often causes a long garbage collection
pause time, which accounts for over 10–20% of application
execution time. Moreover, recent computing nodes have many
cores with simultaneous multi-threading technology and the
processors on the node are connected via NUMA, so it is
difficult to exploit best performance without taking into account
of these hardware features. Thus, optimization in a full stack
is also important. Not only JVM parameters but also OS
parameters, Spark configuration, and application code based on
CPU characteristics need to be optimized to take full advantage
of underlying computing resources. In this paper, we used
the TPC-H benchmark as our optimization case study and
gathered many perspective logs such as application, JVM (e.g.
GC and JIT), system utilization, and hardware events from
a performance monitoring unit. We discuss current problems
and introduce several JVM and OS parameter optimization
approaches for accelerating Spark performance. As a result,
our optimization exhibits 30–40% increase in speed on average
and is up to 5x faster than the naive configuration.

I. INTRODUCTION

As data volumes increase, distributed data parallel pro-
cessing on large clusters is useful to accelerate computing
speed for data analytics. Hadoop MapReduce is one of the
most popular and widely used distributed data processing
frameworks at scale and with fault tolerance. Since this
simple programming model enables us to implement dis-
tributed data-intensive applications more easily, various types
of analytics applications such as relational data processing,
machine learning, and graph algorithms have been built
on Hadoop and its related ecosystem. However, they do
not always work efficiently on the current Hadoop system
because the current framework is not suitable for iterative
and interactive analytics applications. As a result, multiple
alternatives to Hadoop systems [1][2][3] have been developed
to overcome this inefficiency.

Apache Spark [4][5] is an in-memory-oriented data pro-
cessing framework that supports various Hadoop compatible
data sources. Spark keeps as much data in memory as possi-

ble; therefore, it can drastically reduce disk I/O compared to
Hadoop. Spark provides many operators and useful libraries
for machine learning (MLLib), relational data processing
(SparkSQL [6]), and graph computation (GraphX). It also
provides APIs for parallel data collections in Scala, Java,
Python, and R. Spark retains scalability and resiliency as
well, so it has attracted much attention recently.

Although the new features are frequently applied to Spark,
characterizing Spark internal and gaining deep insight into
the tuning of Spark applications from the system side are im-
portant, because the knowledge is helpful to Spark users and
system researchers who try to apply their own optimization
to Spark. However, Spark’s core concept and design are dif-
ferent from those of Hadoop, and less is known about Spark’s
optimal performance, so how Spark applications perform on
recent hardware has not been investigated thoroughly. Fur-
thermore, various layers (OS, Java Virtual Machine (JVM),
runtime, etc.) have been used to achieve higher performance
in accordance with their own optimization policies, so high
performance is difficult to achieve unless these components
cooperate.

To achieve this cooperation, there are several challenges.
First, Spark application performance bottlenecks are more
complex to find than those of Hadoop. Hadoop MapReduce
is a disk I/O-intensive framework, and I/O throughput per-
formance directly affects its data processing performance. In
contrast, maximization of I/O throughput is still important
for Spark, but its performance bottlenecks are moved to the
CPU, memory, and network communication layer because of
Spark’s in-memory data processing policies. Second, Spark
runs on top of JVMs with many task executor threads and a
large Java heap, so JVM tuning is important for improving
performance. Spark creates many immutable and short-lived
objects in heaps, so garbage collection (GC) pause time,
which is often a dominant part of application execution time
with a large heap, may be insufferably long if we do not
provide suitable GC algorithms or JVM parameters for Spark.

To address these challenges, we investigated the charac-
teristics of Spark performance with multiple metrics through
running Spark applications. We used TPC-H queries on Spark

as reference applications and captured JVM logs such as
GC, just-in-time (JIT) compiled methods, hardware counter
events, and system resource monitor logs. From these logs,
we defined several problems on current Spark runtime,
and then described JVM and OS parameter optimization
approaches to solve them. Finally, we evaluated how these
optimizations help to improve TPC-H query performance.

We make the following contributions in this paper. (1)
We characterize TPC-H queries on Spark and analyze many
performance metrics to help our comprehension. (2) We
provide several Spark optimization methodologies from the
JVM side to reduce GC overhead without increasing heap
memory and also to increase the instructions per cycle
(IPC) by using non-uniform memory access (NUMA) and
simultaneous multi-threading (SMT). (3) We also discuss
potential problems we found through our experiments that
would be useful for designing or developing JVM and Spark
core runtime.

The rest of the paper is organized as follows. Section
2 describes the background of Apache Spark. Section 3
summarizes the TPC-H workload and breakdown measure-
ment results from many metrics. Section 4 considers what
is the current problems are for further accelerating Spark
performance and how we can optimize each layer. Then,
Section 5 describes the tuning results. Section 6 mentions
related work. Finally, Section 7 concludes this paper.

II. BACKGROUND

A. Apache Spark Overview

Apache Spark is an open source in-memory-oriented clus-
ter computing framework with APIs in Scala, Java, Python,
and R. It keeps as much intermediate data in memory as
possible to order reduce data loading latency; therefore, it
performs much better than Hadoop in iterative and interactive
workloads such as machine learning and data mining. It
also runs other workloads such as batch jobs and relational
queries efficiently. Spark has been used as a general-purpose
distributed computing engine [7].

Spark provides a functional programming API for the
abstraction of immutable distributed collections called re-
silient distributed datasets (RDDs) [4]. Each RDD contains
a collection of Java objects that is partitioned over multiple
nodes. RDDs are transformed into other RDDs by applying
operations (e.g. map, filter, reducebykey, count, etc.), and
this RDD transformation flow is represented as a directed
acyclic graph (DAG). The transformation tasks are processed
for each partitioned data and the data shuffling tasks are
launched if the transformation task requires the data to be
shuffled across these partitioned data. Resilient distributed
datasets are evaluated lazily, so computation tasks are not
launched before applying action types of operations such as
count. To process the divided tasks, Spark manages many
worker threads within an Executor JVM.

B. Spark Benchmarks and Applications
Spark benchmark suites [8][9][10] have been recently

developed that provide a comprehensive set of Spark work-
loads, such as machine learning, graph processing, and query
processing, together with synthetic data generators for each
workload. Among these workloads, query processing is the
most popular in the Spark community [11]. However, these
benchmark suites only support simple queries.

TPC-H [12] is a decision support benchmark consisting of
a suite of business-oriented ad-hoc queries and concurrent
data modifications, defined as 22 queries for 8 different
sized tables. The TPC-H benchmark was originally used for
evaluating database systems but has recently been used for
Hadoop-based query engines [13][14]. The TPC-H bench-
mark includes a wide variety of queries (e.g. simple data
selection, aggregation and multiple types of join operations).
Accordingly, when TPC-H is run on Spark, the generated
code has a wide variety of characteristics. TPC-H is thus one
of the ideal benchmarks to study the performance of query
processing on Spark.

C. Performance Measurement Tools
Spark provides statistical reports about multiple metrics

of executed jobs. For example, the report shows how many
stages are executed for a job and how many tasks are
executed for a task. It also shows the duration and the sizes
of input, output, shuffle read, and shuffle write for each task.
These metrics provide us with helpful information about the
execution of an application at the Spark level, guiding us
in tuning the application. However, to fully optimize it, we
need to understand the whole picture about the execution,
getting profiling information from the other layers. Thus,
we use various performance monitoring tools including IBM
Monitoring and Diagnostic Tools for Java [15] for tracking
Java-level performance, a statistical profiler for Linux, OPro-
file [16], for profiling all the running code, the Linux perf
command [17] for counting hardware events, and the Linux
sysstat utilities for tracking the system-level performance.

III. SPARK WORKLOAD ANALYSIS

A. Experimental Platform and Setup of TPC-H Workloads
We conducted all experiments on a single node of POWER

System S824L, which is equipped with two 3.3 GHz
POWER8 processors. Each processor has 12 cores, while
each core has a private 64 KB L1 cache, private 512 KB
L2 cache, and shared 96 MB L3 cache. This system has 1
TB of RAM and 1 TB RAID5 disk. The software stack of this
system consists of Ubuntu 14.10 (kernel: 3.16.0-31-generic),
Hadoop 2.6.0, and Spark 1.4.1, and the IBM J9 JVM (1.8.0
SR1 FP10).

Regarding a TPC-H dataset, we generated TPC-H table
data files using an official data generator with a 100 GB
scale factor then loaded them into Hive tables on Hadoop
Distributed File System (HDFS). The chunk size of HDFS is

TABLE I
CHARACTERIZATION OF ALL OF TPC-H QUERIES IN TERMS OF SQL AND SPARK METRICS

Key Characteristics of Queries Converted Spark Stage
input
(GB)

shuffle
(GB)

Stages/
Tasks

time
(sec)

Q1 1groupby, 1table 1load, 1Aggregate 4.8 0.002 2 / 793 48.7
Q2 1groupby, 4join, 5table 2load, 2HashJoin, 1BcastJoin 0.92 2.3 5 / 512 23.7
Q3 1groupby, 2join, 3table 3load, 2HashJoin, 1Aggregate 7.3 5.0 6/1345 64.6
Q4 1groupby, 1join, 2table 2load, 1HashJoin, 1Aggregate 4.2 1.0 4/1126 56.2
Q5 1groupby, 5join, 6table 3load, 3HashJoin, 1BcastJoin, 1Aggregate 8.8 14.1 8/1547 125
Q6 1select, 1where, 1table 1load, 1Aggregate 4.8 0 2/594 15.1
Q7 1groupby, 1unionall, 6join, 5table 4load, 1Unionall, 4HashJoin, 1Aggregate 9.3 16.5 10/1755 132
Q8 1groupby, 7join, 7table 4load, 4HashJoin, 1BcastJoin, 1Aggregate 11.7 14 10/1766 159
Q9 1groupby, 5join, 6table 4load, 4HashJoin, 1BcastJoin, 1Aggregate 11.8 34.4 10/1838 370
Q10 1groupby, 3join, 4table 3load, 2HashJoin, 1Aggregate 7.7 3.8 6/1345 49.1
Q11 1groupby, 2join, 3table, 1write 1load, 1HashJoin, 1BcastJoin, 1Aggregate 0.89 1.7 4/493 23.0
Q12 1groupby, 1join, 2table 2load, 1HashJoin, 1Aggregate 5.0 1.5 4/1126 44.5
Q13 1groupby, 1outer join, 2table 2load, 1HashOuterJoin, 1Aggregate 3.9 1.8 4/552 100
Q14 1join, 2table 2load, 1HashJoin, 1Aggregate 6.6 0.3 4/813 20.9
Q15 1groupby, 1table, 1write 1load, 1Aggregate, 1write 6.6 0.4 2/793 29.4
Q16 1groupby, 2join, 3table 2load, 1HashJoin, 1BcastJoin, 1Aggregate 0.65 0.8 4/510 132
Q17 1join, 1unionall, 2table 4load, 1HashJoin, 1BcastJoin, 1Union, 1Aggregate 16.7 7.1 8/3966 297
Q18 3join, 1unionall, 3table 6load, 3HashJoin, 1Union, 1Limit 7.7 13.8 11/3725 202
Q19 3join, 1unionall, 2table 6load, 1Union+3HashJoin, 1Aggregate 19.8 0.4 8/2437 80.8
Q20 1groupby, 4join, 5table 3load, 3HashJoin, 1BcastJoin 6.7 2.2 7/1305 88.7
Q21 1groupby, 4join, 1outer join, 4table 4load, 2HashJoin, 1BcastJoin, 1OuterJoin, 1Aggregate 15.5 13.9 9/2714 3145
Q22 1groupby, 1outer join, 3table 3load, 1OuterJoin+CartesianProduct, 1Aggregate 0.6 1 5/571 27.6

128 MB. The original data sizes of all tables are as follows:
lineitem is 75 GB, orders 17 GB, partsupp 12 GB, customer
2.3 GB, part 2.3 GB, supplier 137 MB, nation 2.2 KB, and
region 389 B. All tables are stored in the Parquet columnar
format [18] and compressed with Snappy [19].

We used TPC-H Hive queries published at github [20]
as a basis because SparkSQL has compatibility to directly
execute Hive queries on Spark runtime. However, since some
queries did not finish or take too long, we revised them as
follows. First, we eliminated temporary table creation since
it forces writing to HDFS and reduce opportunities for Spark
to generate a better execution plan. Second, we changed the
order for some joins, since the version of the Spark runtime
we used generated an inefficient execution plan from the
original order.

B. Queries Characterization at SQL and Spark Levels

Table I shows the query response time on a single Spark
Executor JVM with 48 worker threads and 192 GB heap.
It also lists key characteristic of queries, generated spark
operators, total input data size loaded from HDFS, total
shuffled data size between stages, and total number of stages
and tasks. We summarized only the key operations of each
query, together with the number of tables accessed, since they
will affect the Spark query execution plan. For example, Q5
performs a groupby operation and five inner join operations
with six tables. These operations are converted into an RDD-
based execution plan, which has three data loading stages,
three hash based shuffle join stages, one broadcast hash join
stage, and one aggregation stage, through the query optimizer

in SparkSQL. During execution, Q5 loaded a total of 8.8 GB
of data at three data loading stages, and shuffled 14.1 GB of
data between join stages. As a result, Q5 took 125 second
until 48 worker threads completed 8 stages with 1547 tasks.

From these results, we can find trends and characteristics
for these TPC-H queries. First, the queries Q1, Q6 and Q19,
which have little shuffling data, can finish early even if the
input size is large and there are multiple shuffle join stages.
Their performances depend more than others on the data
loading from the disk. Second, queries Q5, Q7, Q8, Q9,
and Q18 have huge shuffling data and also take over 100
sec. These have more shuffle data than input data, so their
performances depend on the data shuffling between stages.
Based on these observations, we could categorize the queries
into two, shuffle light and shuffle heavy.

C. Queries Characterization at JVM and OS Levels

Next we characterized more details about TPC-H queries
based on the results of OProfile. Figure 1 shows the break-
down of the profiling results of sampled methods into key
components. The java component represents application code
and Spark runtime code, while snappy does the native library
call for compression. The components of j9gc, j9jit, j9thr
and j9vm include JVM level methods related to GC, JIT,
multithreading, and others internal to JVM, respectively. The
kallsyms represents the overhead of using OProfile. Figure
2 focuses on Java-related methods, categorizing them into
four components. SparkSQL represents actual computation,
parquet related to I/O, such as data loading, and serialization

0
10
20
30
40
50
60
70
80
90
100

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

co
ns
um

ed
4C
PU

4c
yc
le
s4(
%
)

others444
libc44444
kallsyms4
j9thr4444
j9vm44444
j9jit4444
j9gc44444
snappy444
java

Fig. 1. CPU cycles of nine categorized components from Oprofile sampling results for all of queries

0
10
20
30
40
50
60
70
80
90

100

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

no
rm

al
ize

d6
CP
U6
cy
cle

s6o
f6J
av
a6
(%
)

deserializer

serializer

parquet

SparkSQL

Fig. 2. Normalized CPU cycles of details regarding Java-related processes

and deserialization concerns data shuffling. These results
were also collected on a single Spark Executor JVM.

We can observe distinctive characteristics between shuffle-
heavy and shuffle-light in these figures. The queries that have
large shuffle data such as Q5 and Q8 pay relatively higher GC
cost and (de)serialization than others. On the other hand, the
queries that have few shuffle data such as Q1 and Q19 spend
a lot of time consuming in computation or data load. We also
find unexpected j9thr and j9vm overhead in Q16, and j9vm
overhead in Q21. The further analysis showed that Q16 spent
much time on spin locks (thus high j9thr overhead), which
Q16 and Q21 executed many methods with the bytecode
interpreter.

In the following subsections, we describe the metrics
at the JVM and system levels in details, focusing on Q1
and Q5 as representatives of shuffle-light and shuffle-heavy,
respectively.

D. GC and JIT Behaviors

First, we analyzed the behaviors of garbage collection.
Figures 3 and 4 show heap usage and GC pause time while

executing Q1 and Q5, respectively. By default, the 192GB
heap was divided into the 48GB nursery space and the
144GB tenure space. For Q1, almost all the objects created
in the nursery space were collected after each nursery GC.
As a result, the pause times were quite small, less than
0.2 second. For Q5, on the other hand, GC behaviors were
completely different. Running out of nursery space, objects
were gradually promoted into the tenure space then collected
when the tenure space became full. We observe that the total
used heap in Q5 decreased when global GCs were happened
around 500 and 700 seconds. Most surprisingly, the pause
times by the nursery GCs were longer than the global GCs.
In summary, Q1 spent about 2% of the execution time for GC
and Q5 spent more than 34%, based on the profiling results
in Figure 1 and 2.

We then checked how many methods were compiled at
each optimization level by analyzing the JIT log. The total
number of compiled methods reached over 8,000. Almost all
the methods were compiled at the warm level, while a few
methods reached scorching, which is the highest optimization
level. We also confirmed that the compilation levels of the

0
0.5
1

1.5
2

2.5
3

3.5

0 50 100 150 200 250 300

GC
)p
au
se
)ti
m
e)
(s
ec
.)

nursery)gc
global)gc

0

10

20

30

40

50

0) 50) 100) 150) 200) 250) 300)

He
ap
)S
ize

)(G
B)

elapsed)time)(sec.)

nursery)size used)tenure)heap
used)nursery)heap) total)used)heap

Fig. 3. GC and heap statistics of default Q1: pause time (upper), heap usage
(lower)

top ten methods reached warm, hot, and scorching.
Next, we evaluated the actual query response time of Q1

and Q5 in each iteration. Figure 5 shows the results of Q1 and
Q5 through six iterations. The first iteration was about 1.5x–
2x slower than other iterations in both queries because the
JIT compilation for hot methods had not yet finished. To be
more precise, the first round of each stage took much longer.
For example, the Q1 execution plan consisted of two stages.
Data loading in the first and second stages were divided into
593 and 200 tasks, These tasks are assigned to 48 worker
threads in the Executor JVM. If evenly assigned, each worker
thread will process 12 or 13 tasks for the first stage, which
means the stage consists of 13 rounds. The threads in the
second round of a stage used more optimized code, so the
execution time was 1.5–2x faster than in the first round. A
similar observation can be made for all eight stages in Q5.

Finally, we often observed failures in both queries, such as
the fourth iteration of Q5 in Figure 5. The failure occurred on
the single JVM configuration, which launches many worker
threads. Java stack trace indicated the failure happened when
calling the native snappy compression library. Tracing the
cause of this is beyond the scope of our paper, but using one
large JVM brings performance fluctuation.

E. System Utilization

We evaluated system utilization including CPU, memory,
and I/O context switches. Figures 6 and 7 show CPU utiliza-
tion and memory usage for Q1, and Figures 8 and 9 show
them for Q5. Both queries ran six times continuously on the
same Executor JVM. We can see that 25% of CPU resources
were used for user time in both queries, and then I/O wait
time and system time are very few. Due to the use of only
48 worker threads for 192 logical cores, we confirm that
all worker threads fully consume CPU resources. In the Q5
CPU usage graph, we can see some spikes in the later part of
iteration. This spikes are caused by heavy GC activity in the
shuffle phase. From the perspective of memory usage, used

0

50

100

150

200

0 100 200 300 400 500 600 700 800 900

He
ap
/S
ize

/(G
B)

elapsed/time/(sec.)

used/tenure/heap used/nursery/heap total/used/heap

0
1
2
3
4
5
6

0 100 200 300 400 500 600 700 800 900

GC
/p
au
se
/ti
m
e/
(s
ec
.) global/gc nursery/gc

Fig. 4. GC and heap statistics of default Q5: pause time (upper), heap usage
(lower)

0

100

200

300

400

1 2 3 4 5 6

El
ap
se
d/
Ti
m
e/
(s
ec
.)/

experiment/ iterations

Q5

Q1

Fig. 5. Transition of Q1 and Q5 response time through six time iterations

TABLE II
PMU PROFILING RESULT FOR Q1 AND Q5

counters Q1 Q5
CPU cycles 6.8× 1012 2.2× 1013

stalled-cycles-frontend 2.1× 1011 (3.20%) 6.2× 1011 (2.76%)
stalled-cycles-backend 3.3× 1012 (49.0%) 1.3× 1013 (59.1%)
instructions 7.0× 1012 1.5× 1013

IPC 1.03 0.67
context-switches 407K 440K
cpu-migrations 11K 26K
page-faults 308K 1045K

memory and page cache increase after iterations start. The
total used memory in the system when running Q1 does not
exceed around 70 GB, while that in Q5 reaches 220 GB.

F. PMU Profiling
Finally, we captured performance counter events from

a performance monitoring unit (PMU). Table II lists the
”perf stat” command results. Both queries accounted for 50–
60% of wasteful CPU stall cycles on the backend pipeline.
Due to this large backend stall, the IPC rate remained low.
To determine from where this backend stall originated, we
gathered hardware counter events and analyzed them to the
CPI breakdown model described in [21]. As a result, we
found that the wasteful stall originated from L3 cache miss
and this cache miss caused by mainly distant memory access.

0

10

20

30

40

0 100 200 300 400 500

CP
U*
Ut
iliz
at
io
n*
(%
)

(sec.)

wai sys usr

Fig. 6. CPU utilization while running Q1 with default

0

50

100

150

200

0 100 200 300 400 500

M
em

or
y-
(G
B)

(sec.)

cache buff total-used-memory

Fig. 7. Memory utilization while running Q1 with default

Table II also shows that CPU migrations occur frequently,
especially in Q5.

IV. PROBLEM ASSESSMENT AND OPTIMIZATION
STRATEGY

In the previous section, we described several performance
metrics. In this section, we enumerate the current problems
in each layer on the basis of preliminary experiments then
discuss the optimization and performance improvement ap-
proaches.

A. How to Reduce GC Overhead

First, GC overhead affects application performance, as
shown in Figure 4. Choosing an optimal GC policy and
suitable heap size for application is the most important
factor to reduce GC overhead. In terms of GC strategies,
generational GC is generally used in the J9 JVM, though we
can use other GC strategies. Generational GC is also the
default GC policy in OpenJDK because it is suitable for
almost all kinds of applications, so we used generational
GC in this paper. In terms of heap sizing, a large heap
likely causes a long pause time when global GC occurs.
The small nursery space also could make pause time longer
due to heavy copying, as we observed in Q5 (Figure 4).
Consequently, we should search for the optimal combination
of the total heap and ratio of nursery space.

Although we used only a single Executor JVM, there
is no limit to using multiple Executor JVMs on the same
machine. This is another approach to change heap size.
Keeping each JVM heap small helps to directly reduce GC
cost, so we should evaluate the effect of changing the number
of JVMs. Moreover, we can apply many JVM options that are
also helpful to improve performance. For example, default
JVM manages up to 64 GC threads because there are 192

0

10

20

30

40

0 100 200 300 400 500 600 700 800 900 1000

CP
U.
Ut
iliz
at
io
n.
(%
)

(sec.)

wait sys usr

Fig. 8. CPU utilization while running Q5 with default

0

100

200

300

400

0 100 200 300 400 500 600 700 800 900 1000
M
em

or
y1
(G
B)

(sec.)

cache buff total1used1memory

Fig. 9. Memory utilization while running Q5 with default

cores virtually available from the OS. However, using too
many GC threads degrades performance due to contention,
many context switches, etc., so we may improve application
performance by reducing GC threads. These options affect
not only GC performance but also application performance.

Hence, we try to find the optimal settings for JVM perfor-
mance, especially for GC, to accelerate Spark application in
the following three evaluation metrics: (1) to change nursery
space size, (2) to sweep JVM options, and (3) to change the
number of Executor JVMs while maintaining the total heap
and working thread count.

B. How to Accelerate IPC and Reduce Stall Cycles
As shown in Table II, the IPC for TPC-H queries on

Spark was not very high. One approach to accelerate IPC
is to use more SMT features [22]. POWER8 supports up to
the SMT8 mode, and our POWER8 has 24 cores, so there
are 24, 48, 96 and 192 available hardware threads. In our
preliminary experiment, we only used 48 worker threads in
SMT8 mode. Of course, we can assign 192 worker threads
in the Executor JVM but cannot expect large improvements
by increasing worker threads up to 192 due to resource
contention between threads and other processes. It would be
excessive to have 192 worker threads, but performance may
be further improved by increasing worker threads to 96 in
total. In this case, we ideally expect four worker threads to
run on the same physical core.

The other problem that retards the increase in IPC is huge
stall in the backend pipeline. In our investigation into the
PMU counter, CPU migration and distant memory access
frequently occurred while queries were running on Spark.
To reduce such wasteful stall, setting NUMA-aware affinity
for tasks is one well known approach. Our machine has two
POWER8 processors that are connected via NUMA. More

!40.0%

!30.0%

!20.0%

!10.0%

0.0%

10.0%

0

100

200

300

400

Q1 Q5 Q6 Q8 Q9 Q16 Q19

Ex
ec
ut
io
n7
Ti
m
e7
(s
ec
.)

Xmn48g Xmn96g Xmn128g relative7 (%)

Fig. 10. Performance Comparison while changing nursery heap size

precisely, each POWER8 processor has two NUMA nodes,
so we could use four NUMA nodes. Therefore, we may
improve application performance by pinning NUMA-aware
affinity for Spark Executor JVMs.

Accordingly, we evaluated the following approaches to
increase the IPC for TPC-H on Spark: (1) changing the SMT
mode and number of worker threads and (2) applying NUMA
affinity for the Executor JVM.

V. PERFORMANCE EVALUATIONS

We applied several of the optimization ideas described
above then evaluated how application performance is im-
proved by better controlling JVM and OS behaviors. We
selected typical queries for evaluation: Q1, Q6 and Q19 are
representative of shuffle-light queries and Q5, Q8 and Q9
are shuffle-heavy ones. We also picked up Q16 since its
characteristics is unusual as described in Section III.

A. Heap Sizing
First, we changed the nursery-heap size from 48 to 96 or

128 GB, which are halves or three-fourths of the total heap.
The J9 JVM reserves one-fourth of the total heap as nursery
space by default, which is 48 GB in our setting. Figure 10
shows query execution time and its change ratio compared to
the default of 48 GB nursery heap. For instance, the execution
time of Q5 decreased by 20% or changed by -20%.

As seen in the figure, Shuffle-light queries are insensitive
because heap usage was basically small in these queries
and GC did not frequently occur. On the other hand, most
shuffle-heavy queries improved by 20–30%. By increasing
the nursery heap, we can lower the frequency of nursery GC.
In addition, this results in fewer objects being promoted from
the nursery to the tenure space, helping reduce the number of
global GC. Actually, there was no global GC for Q5 and Q8
while query execution ran six times. The performance of Q9
improved by only 10%, since the global GC still occurred
periodically.

B. JVM Option Sweep
Next, we changed several JVM options as listed in Table

III. While there are many selectable JVM options, we focused
on those which control the behaviors of the key components
such as GC and locks. To evaluate which JVM option
contributes to performance improvement, we appended one

!25.0%
!20.0%
!15.0%
!10.0%
!5.0%
0.0%
5.0%

0
20
40
60
80

100
120

option0 1 option0 2 option0 3 option0 4 option0 5 option0 6 option0 7

Ex
ec
ut
io
n0
Ti
m
e0
(s
ec
.)

Q1 Q5 relative0 Q10(%) relative0 Q50(%)

Fig. 11. Comparison of JVM options

TABLE III
TESTED JVM OPTION SET: BOLD DENOTES APPENDED OPTION

spark.executor.extraJavaOptions
1 -Xgcthreads48 -Xmn96g -Xdump:system:none -Xdump:heap:none

2
-Xtrace:none
-Xgcthreads48 -Xmn96g -Xdump:system:none -Xdump:heap:none

3
-Xnoloa -Xtrace:none
-Xgcthreads48 -Xmn96g -Xdump:system:none -Xdump:heap:none

4
-XlockReservation -Xnoloa -Xtrace:none
-Xgcthreads48 -Xmn96g -Xdump:system:none -Xdump:heap:none

5
-Xnocompactgc -XlockReservation -Xnoloa -Xtrace:none
-Xgcthreads48 -Xmn96g -Xdump:system:none -Xdump:heap:none

6

-XX:-RuntimeInstrumentation
-Xnocompactgc -XlockReservation -Xnoloa -Xtrace:none
-Xgcthreads48 -Xmn96g -Xdump:system:none -Xdump:heap:none

7

-Xdisableexplicitgc -XX:-RuntimeInstrumentation
-Xnocompactgc -XlockReservation -Xnoloa -Xtrace:none
-Xgcthreads48 -Xmn96g -Xdump:system:none -Xdump:heap:none

JVM option in each configuration starting from option set
1. The experiments were run six times per configuration for
Q1 and Q5, picking up one from each of shuffle-light and
shuffle-heavy. Figure 11 shows the query execution time as
well as its change ratio compared with option set 1. As shown
in the figure, while Q1 is relatively insensitive, most JVM
options helped improve query execution time for Q5. The
improvements were especially drastic when lock reservation
with ”-XlockReservation” (option set 4).

Lock reservation [23] enables a lock algorithm to be
optimized when a thread frequently acquires and releases a
lock. In lock reservation, when a lock is acquired by a thread
for the first time, it is reserved for the thread. In the reserved
mode, the thread acquires and releases the lock without any
atomic instruction. If a second thread attempts to acquire the
lock, the system cancels the reservation, falling back to the
bimodal locking algorithm [24]. In Spark, since many worker
threads are running for processing their respective RDD
partitions, performance will be improved if synchronized
methods are heavily called for RDD processing.

To further investigate why the lock reservation is so
effective, we analyzed method-call stacks via oprofile. Figure
12 shows the results with and without the lock reservation op-
tion, breaking down the execution time by major components
in Spark execution. The left graph presents the breakdown of
the whole cycles of the Executor JVM cycles. The ratio of the
java component changed from 66.8 to 73.6%. The right graph

66.8 73.6

0

10

20

30

40

50

60

70

80

90

100

w/.LR w/o.LR

Pe
rc
en
ta
ge
.o
f.c
om

su
m
ed
.m

et
ho
ds
.(%

)

others
libc
kallsyms
j9jit
j9gc
snappy
java

54.4
45.8

22.5

16.7

10.1

13.0

13.0
24.2

0

10

20

30

40

50

60

70

80

90

100

w/.LR w/o.LR

Pe
rc
en
ta
ge
.o
f.c
om

su
m
ed
.m

et
ho
ds
.(%

)

deserializer
serializer
parquet
SparkSQL

Fig. 12. Profiling method stack with and without lock reservation option.
Categorized all of related processes (left) and drill-down Java-related tasks
(right)

!80%

!60%

!40%

!20%

0%

20%

40%

60%

0

50

100

150

200

250

300

Q1 Q5 Q6 Q8 Q9 Q16 Q19

Ex
ec
ut
io
n6
Ti
m
e6
(s
ec
.)

1JVM 2JVM 4JVM
8JVM best6(%) worst6(%)

Fig. 13. Varying the number of JVMs between 1, 2, 4 and 8

shows the further breakdown for the java component. Without
the lock reservation option, the consumption by deserializer
increased from 13.0 to 24.2%, while that by serializer part
increased from 10.1 to 13.0%. As a result, we found that
the improvement in the lock reservation option is derived
from the serializer and deserializer. In Spark, Kryo is used
for this purpose as the default implementation. Objects are
serialized or deserialized when intermediate data are shuffled
between other Executor JVMs. The improvement ratio is thus
in proportion to the size of shuffle data.

C. Number of JVMs
We then evaluated multiple Executor JVMs on a single

node, as shown in Figure 13. We varied the number of JVMs
between 1, 2, 4, and 8. The total number of worker threads
and total aggregate heap size remained the same as those
for a single JVM; total worker threads equaled 48 and total
heap equaled 192 GB. By increasing the number of JVMs,
the assigned worker threads changed between 48, 24, 12, and
6. The total heap size also varied in the same manner.

We can make three observations from These results. First,
a single JVM is not always the best choice. Second, using
eight or more JVMs tends to degrade performance. This is
due to the communication overhead between JVMs. Finally,
using two or four JVMs mostly exhibit better performance
than using a single JVM.

!4.0%

!3.0%

!2.0%

!1.0%

0.0%

0

50

100

150

200

250

Q1 Q5 Q9 Q19

Ex
ec
ut
io
n5
Ti
m
e5
(s
ec
.)

NUMA5off NUMA5on speedup5(%)

Fig. 14. Average execution time with NUMA aware CPU bindings

Figure 13 also illustrates the best and the worst change
ratio against the single JVM configuration. We observe that
a smaller number of JVMs is suitable for a shuffle-light query
such as Q6. For shuffle-heavy ones, 2 or 4 JVMs achieves
better than other numbers of JVMs. The results for Q16 is
striking. Using multiple JVMs is 3x faster than the single
JVM. Our analysis showed that over 30% of time is spent in
spin lock for the single JVM. Because of many more threads
per JVM, the single thread is more vulnerable to this issue
of contention.

In addition, we often observed that, while executing
queries on the single JVM, tasks fail when calling the native
snappy compression library. Since Spark resubmit failed
tasks, the tasks often become 2x slower than in the no-failure
case. We have not yet found the fundamental reason why this
failure occurs while the native snappy compression library
run with many worker threads, but we suspect that there are
some non-thread safe codes in the library.

Finally, when we run a Spark application with multiple
JVMs on a node, the NUMA-aware CPU binding is critical,
which we describe in the next section.

D. NUMA Aware Affinity
We evaluated the efficiency of applying NUMA-aware

scheduling to Executor JVMs to reduce access to remote
NUMA nodes. Figure 14 shows the average query execution
time of six iterations. In this experiment, we used four JVMs,
each having six worker threads. We specified CPU affinity for
each JVM by the numactl command. As a result, they were
assigned to the corresponding NUMA node individually.
All queries improved by about 2–3% by considering CPU
affinity, but performance did not improve as much as we had
expected.

We also evaluated the scheduled CPU for worker threads
and memory access events of a PMU to estimate NUMA
efficiency. We periodically captured where worker threads
were running every 5 seconds and plotted them to the physi-
cal CPU cores. By setting CPU affinity, worker threads were
scheduled only on the corresponding NUMA node, which
means all worker threads benefited from memory locality.
On the other hand, in the results without NUMA affinity
shown in Figure 15, the worker threads were first scheduled
over NUMA then the threads seemed to gather into the same

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

ph
ys
ic
al
3C
PU

3c
or
e3
3m

ap
pi
ng

thread3dump/5sec

w/o3NUMA
WT1
WT2
WT3
WT4
WT5
WT6
WT7
WT8
WT9
WT10
WT11
WT12

Fig. 15. Transition of worker threads on where they are mapped to actual
CPU cores

!20.0%

!10.0%

0.0%

10.0%

20.0%

30.0%

40.0%

0

50

100

150

200

250

Q1 Q5 Q6 Q8 Q9 Q16 Q19

Ex
ec
ut
io
n7
Ti
m
e7
(s
ec
.)

2WT/core7 (192GB) 4WT/core7 (192GB) relative7 (%)

Fig. 16. Scalability comparison of 48 and 96 worker threads over 4 Executor
JVMs

NUMA node. However, several threads are often scheduled
to another domain NUMA node due to the OS scheduler’s
manner. The Linux completely fair scheduler (CFS) manages
load balancing across CPUs and attempts to schedule tasks
while taking NUMA nodes into account. However, it does not
always bind worker threads to the same NUMA node. As a
result, worker threads must access remote NUMA nodes at
that time. We also confirm that distant memory access events
of a PMU decreases from 66.5 to 58.9%, but efficiency is
very limited in this case.

E. Increasing Worker Threads and Summary Results

Finally, we increased the assigned worker threads from
48 to 96. From this change, the estimated running worker
threads per physical core also increased from 2 to 4. Figure
16 illustrates that many queries benefited from an increase
in hardware threads regardless of shuffle-data size. Although
Q5 and Q8 were the only two queries that had a drawback,
all other queries achieved 10–20% improvement.

Figure 17 shows a comparison summary of applying all
optimizations. Shuffle-light queries achieved 10–20% im-
provement. For shuffle-heavy queries, we achieved basically
30–40% improvement. Unusual characteristic queries such
as Q16 and Q21 were drastically improved by changing the
number of JVMs and choosing optimal JVM option set to
reduce GC. Although the Q21 result which took over 3,000
seconds with the default is not shown in Figure 17, it takes
about 543 seconds after tuning.

!90.0%
!80.0%
!70.0%
!60.0%
!50.0%
!40.0%
!30.0%
!20.0%
!10.0%
0.0%

0

50

100

150

200

250

300

350

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

Q
9

Q
10

Q
11

Q
12

Q
13

Q
14

Q
15

Q
16

Q
17

Q
18

Q
19

Q
20

Q
22

Ex
ec
ut
io
n8
Ti
m
e8
(s
ec
.)

default optimized relative8 (%)

Fig. 17. Performance comparison between default score and all optimization
applied score

VI. RELATED WORK

Several tuning guides and hints have been published on
Spark’s official site and developer blogs, but few research
papers have discussed Spark performance, and no paper
has done so from the perspective of JVM optimization
and system optimization, as far as we know. Kaczmarek
et al. discussed GC tuning on OpenJDK [25] and used a
G1GC-based algorithm instead of generational GC. Since
Spark was developed for running on computing clusters, data
shuffling over network is an important optimization topic.
Davidson et al. revealed that shuffle connections between
nodes increase due to the product of a mapper and reducer
and proposed an approach to consolidate shuffle data into one
per destination [26]. Lu et al. proposed a RDMA-based data
shuffling architecture for Spark [27] and showed that RDMA-
based shuffle outperformed current a NIO- or Netty-based
communication layer. Shi et al. compared Hadoop with Spark
in terms of performance and execution model and evaluated
several machine learning algorithms [28]. Their work is
similar to ours, but the target workload, profiling approach,
and knowledge about tuning strategies are different.

VII. CONCLUSION AND FUTURE WORK

We characterized TPC-H queries on Spark from many
aspects such as application log, GC log, system utilization,
method profiling, and performance counters to establish a
common optimization insight into and existing problems with
Spark. Our JVM and OS parameter optimization strategies
performed up to 5x faster than the default, and 30–40%
improvement in many queries on average. The GC cost is still
high because of Spark’s in-memory feature and generation
of a massive amount of immutable objects; however, we
reduced the GC overhead from 30 to 10% or less not by
increasing heap memory unnecessarily but by optimizing the
number of JVMs, options, and heap sizing even with a limited
heap. Then, NUMA-aware affinity is slightly advantageous in
preventing remote memory access, and SMT can potentially
increase IPC as long as Spark runtime can keep data in a
heap. Our analysis will help to improve Spark core runtime,

apply various system-side optimization approaches, and pro-
vide the opportunity to develop more advanced algorithms
regarding a JVM including GC, thread scheduler, cluster
scheduler, etc. For future work, we plan to evaluate how our
tuning is effective on other Spark workloads and focus more
on the JVM and OS.

REFERENCES

[1] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski, “Pregel: A system for large-scale graph
processing,” in Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’10, (New York, NY,
USA), pp. 135–146, ACM, 2010.

[2] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst, “Haloop: efficient
iterative data processing on large clusters,” Proceedings of the VLDB
Endowment, vol. 3, no. 1-2, pp. 285–296, 2010.

[3] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu, and
G. Fox, “Twister: a runtime for iterative mapreduce,” in Proceedings
of the 19th ACM International Symposium on High Performance
Distributed Computing, pp. 810–818, ACM, 2010.

[4] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing,” in
Proceedings of the 9th USENIX Conference on Networked Systems
Design and Implementation, NSDI’12, pp. 2–2, USENIX Association,
2012.

[5] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets,” in Proceedings of
the 2Nd USENIX Conference on Hot Topics in Cloud Computing,
HotCloud’10, pp. 10–10, USENIX Association, 2010.

[6] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley,
X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi, and M. Zaharia,
“Spark sql: Relational data processing in spark,” in Proceedings of
the 2015 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’15, (New York, NY, USA), pp. 1383–1394, ACM,
2015.

[7] M. Armbrust, T. Das, A. Davidson, A. Ghodsi, A. Or, J. Rosen,
I. Stoica, P. Wendell, R. Xin, and M. Zaharia, “Scaling spark in
the real world: performance and usability,” Proceedings of the VLDB
Endowment, vol. 8, no. 12, pp. 1840–1843, 2015.

[8] M. Li, J. Tan, Y. Wang, L. Zhang, and V. Salapura, “Sparkbench: a
comprehensive benchmarking suite for in memory data analytic plat-
form spark,” in Proceedings of the 12th ACM International Conference
on Computing Frontiers, p. 53, ACM, 2015.

[9] L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, W. Gao, Z. Jia,
Y. Shi, S. Zhang, et al., “Bigdatabench: A big data benchmark suite
from internet services,” in High Performance Computer Architecture
(HPCA), 2014 IEEE 20th International Symposium on, pp. 488–499,
IEEE, 2014.

[10] “Spark performance tests.” https://github.com/databricks/spark-perf/.
[11] M. Zaharia, “How spark usage is evolving in 2015,” Spark Summit

Europe 2015, 2015.
[12] “TPC-H benchmark.” http://www.tpc.org/tpch/.
[13] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden,

and M. Stonebraker, “A comparison of approaches to large-scale data
analysis,” in Proceedings of the 2009 ACM SIGMOD International
Conference on Management of data, pp. 165–178, ACM, 2009.

[14] A. Floratou, U. F. Minhas, and F. Özcan, “Sql-on-hadoop: Full circle
back to shared-nothing database architectures,” Proc. VLDB Endow.,
vol. 7, pp. 1295–1306, Aug. 2014.

[15] “IBM Monitoring and Diagnostic Tools for Java.”
https://www.ibm.com/developerworks/java/jdk/tools/.

[16] J. Levon and P. Elie, “Oprofile: A system profiler for linux,” 2004.
[17] A. C. de Melo, “The new linux’perf’tools,” in Slides from Linux

Kongress, 2010.
[18] “Apache Parquet.” http://parquet.apache.org/.
[19] “Snappy.” http://google.github.io/snappy/.
[20] “TPC-H-Hive.” https://github.com/rxin/TPC-H-Hive.

[21] “CPI events and metrics for POWER8.” https://www-01.ibm.com/
support/knowledgecenter/linuxonibm/liaal/iplsdkcpieventspower8.htm.

[22] D. M. Tullsen, S. J. Eggers, and H. M. Levy, “Simultaneous multi-
threading: Maximizing on-chip parallelism,” in ACM SIGARCH Com-
puter Architecture News, vol. 23, pp. 392–403, ACM, 1995.

[23] K. Kawachiya, A. Koseki, and T. Onodera, “Lock reservation: Java
locks can mostly do without atomic operations,” in ACM SIGPLAN
Notices, vol. 37, pp. 130–141, ACM, 2002.

[24] T. Onodera and K. Kawachiya, “A study of locking objects with
bimodal fields,” ACM SIGPLAN Notices, vol. 34, no. 10, pp. 223–237,
1999.

[25] E. Kaczmarek and L. Yi, “Taming gc pauses for humongous java heaps
in spark graph computing,” Spark Summit 2015, 2015.

[26] A. Davidson and A. Or, “Optimizing shuffle performance in spark,”
tech. rep., University of California, Berkeley - Department of Electrical
Engineer- ing and Computer Sciences, Tec Rep., 2013.

[27] X. Lu, M. W. U. Rahman, N. Islam, D. Shankar, and D. K. Panda,
“Accelerating spark with rdma for big data processing: Early experi-
ences,” in High-Performance Interconnects (HOTI), 2014 IEEE 22nd
Annual Symposium on, pp. 9–16, IEEE, 2014.

[28] J. Shi, Y. Qiu, U. F. Minhas, L. Jiao, C. Wang, B. Reinwald, and
F. Özcan, “Clash of the titans: Mapreduce vs. spark for large scale
data analytics,” Proceedings of the VLDB Endowment, vol. 8, no. 13,
pp. 2110–2121, 2015.

