
ConfAdvisor: A Performance-centric Configuration
Tuning Framework for Containers on Kubernetes

Tatsuhiro Chiba, Rina Nakazawa, Hiroshi Horii
IBM Research

19-21 Nihonbashi Hakozaki, Chuo-ku, Tokyo JAPAN
{chiba, rina, horii}@jp.ibm.com

Sahil Suneja, Seetharami Seelam
IBM T.J. Watson Research Center

1101 Kitchawan Rd, Yorktown Heights, NY USA
{suneja, seelam}@us.ibm.com

Abstract—Configuration tuning of software is often a good
option to improve application performance without any appli-
cation code modifications. Although we can casually change
configurations, it is not easy to apply optimal configurations, as
optimal configurations require deep knowledge of the underlying
system. This is problematic because applications with suboptimal
configuration result in poor performance. As container and
container management systems have emerged as an application
platform on the cloud, configuration tuning becomes even more
challenging because containers add more complexity to the appli-
cation performance. We need to consider not only fundamental
misconfiguration but also container image verification, deploy-
ment configuration, application characteristics awareness based
on metrics and logs. Although previous knowledge regarding how
we should tune configurations for a system software is sometimes
available, knowledge about performance tuning practices is
neither normalized nor reusable to expand on any advice for
misconfiguration to the containers. Even in the cloud-native
environment, there is no centralized service to deliver knowledge
continuously to application containers nor a framework to
develop a misconfiguration fix rule for a container throughout
its lifetime. In this paper, we propose a performance-centric
configuration tuning framework for containers on Kubernetes,
named ConfAdvisor, that enables containers to achieve a higher
performance by validating various misconfigurations adaptively.
ConfAdivsor gives config tuning advice to application containers,
images, and Kubernetes specs and also provides a development
framework to build configuration validation rules. We present
the design of ConfAdvisor and provide several case studies to
tune application containers in the real world.

Index Terms—cloud computing, containers, microservices, ku-
bernetes, configuration tuning, performance tuning

I. INTRODUCTION

Optimizing system software performance when the software
does not achieve the expected performance has long been a
challenging problem. Most modern software programs provide
a bundle of configurations (“configs” for short) that enable us
to change their internal processing without application code
modification, so most application developers, performance
engineers, and system administrators consider config tuning a
viable option to improve performance. The advantage of config
tuning is that we can improve the application performance
by ourselves, but unfortunately there is also the potential for
a huge performance drawback if an incorrect config (i.e., a
misconfig) occurs.

Numerous studies [1][2] have revealed that misconfigs are
very often the underlying cause of system outage and perfor-

mance degradation issues. For example, a previous study [2]
reported that the number of issues categorized as misconfig in
a Hadoop cluster was higher than that categorized as software
bugs, and fixing misconfigs is very time consuming. Another
study [1] reported that misconfigs exist everywhere in major
open source software applications and have been responsible
for severe performance problems.

Why does misconfig happen so many times in system
software? One reason is the increase of complexity, which now
numbers a hundred or more tunable parameters. As described
in an earlier study [3], several hundred configurable parameters
in recent system software applications are quite general, and
to make matters worse, these parameters increase with every
update. Since setting proper configs is essentially difficult
for almost all general users, a performance engineering task
requires expert knowledge about the system and workload
characteristics based on painstaking investigation such as
logging and monitoring. As a consequence, poor performance
resulting from misconfigs will create huge annoyance every
single time. Many studies have tackled the misconfig issue
with various approaches such as config anomalies detection
[4] and config validation tools [5]. Several studies [6][7]
have investigated how to improve performance via config
tuning. Still, it remains an open problem in containers and
microservices on the cloud.

Microservices architecture has recently gained popularity
as a software system to deploy applications and services on
the cloud [8]. Combining microservices with complementary
technologies such as DevOps and CI/CD can bring many
benefits, including scalability, portability, and reduced time-
to-market. For example, Facebook has deployed new code for
bug fixes, testing, and production twice a day by harnessing
the power of microservices [9]. Along with microservices,
containers and container orchestration systems, which work
behind the scenes as a microservices platform, have emerged.
System software programs are also containerized and can be
more easily distributed to different environments as a container
image than ever before.

This convenience of portability and extendibility has dra-
matically changed the software development cycle, but the
possibility of misconfigs sneaking into system software is
higher than ever due to several difficulties unique to containers
and microservices. First, a base image might contain a serious

misconfig that would then possibly be carried over to a
successor image without being fixed. Second, many versions
of software (e.g. Redis v4 or v5, MongoDB 3.6 or 4.0) will be
maintained in the same orchestration system, and since tuning
tips are different in each version, we need to keep upgrading
the proper configs for each container. Third, we need to
keep in mind not only software versions but also deployment
environments such as resource quota and architecture.

To address these challenges, in this paper, we propose a sus-
tainable performance-centric configuration tuning framework
for containers: ConfAdvisor. ConfAdvisor offers a pluggable
and programmable analysis framework to develop performance
improvement config advice for container images, containerized
applications, and Kubernetes deployment specs. By utilizing
various telemetry systems on Kubernetes, the ConfAdvisor
framework gives unified key-value data including configs and
metrics to analysis plugins. ConfAdvisor also provides a built-
in what-if rule engine for processing defined rules in analysis
plugins. The rules and advice in a plugin are written in a
declarative model, and config advice is generated when a
what-if rule is applied. The ConfAdvisor engine embraces
not only the declarative model but also an imperative model
to construct config advice and rules. Advice and rules are
also extended by adding user defined functions (UDFs) to
evaluate complex analytics, which makes it easy to incorporate
imperative models into analysis plugins. By introducing these
two styles, ConfAdvisor conveys simplicity and flexibility to
the performance engineers and domain experts who write
the rules and advice. Moreover, ConfAdvisor delivers config
advice as a service about user containers and images managed
on Kubernetes. With this advisor service, an application owner
who is dealing with misconfigured containers or images on
Kubernetes can easily acquire continuous personalized perfor-
mance improvement advice about an application’s whole life
that is based on its config and metrics.

We have designed ConfAdvisor for implementation on
Kubernetes. In addition to the ConfAdvisor framework, we
implement config crawling and integrate it with an existing
Kubernetes-native telemetry and data curation system. We
developed typical config tuning rules for several software
applications (Liberty, Nginx, Node.js, MongoDB, Redis, and
Cassandra) on ConfAdvisor and then conducted case studies to
determine how well ConfAdvisor works. The results showed
that ConfAdvisor achieved up to 2.5x, 1.1x, and 1.4x per-
formance improvement in Cassandra, Liberty, and MongoDB,
respectively, over the default config. The main contributions
of this paper are as follows.

• We propose a ConfAdvisor framework to write config
advices and rules in a declarative model based on the
config and metrics of image and container.

• We build a ConfAdvisor service on this framework, which
delivers an optimal config for images, containers, and
Kubernetes specs to user and system.

• We demonstrate that the ConfAdvisor service helps to im-
prove the performance of several containers with optimal
config over default config.

II. BACKGROUND

A. Linux Containers and Images

Linux-based container technology has been generating a lot
of interest among users and these days is widely utilized as an
application deployment platform in various environments from
laptops to the cloud. A container is made up of a process-
level virtualization that isolates applications by encapsulating
application binary, libraries, and configs into a small package.
The core concept of Linux container technologies is based
on kernel-level features such as control groups (cgroups) and
namespace, which give information about resource limitation
and resource isolation, respectively. Thus, using containers
results in a system that is more lightweight, has a lower
footprint, and is much more efficient than hypervisor-based
virtualized systems [10].

A container image is a standalone executable package that
includes everything needed to run a container. An image
consists of multiple immutable layers based on a copy-on-
write (CoW) union mount filesystem such as OverlayFS [11].
A container image makes applications portable and copiable,
and thus it is easy to distribute containers to a different
environment. Moreover, they enable a new image to be built
on top of the base image. This image extendibility produces a
big container ecosystem: anyone can publish a custom image
on an image registry service, and then anyone can download
that image and of course reuse it for further extension. In
DockerHub, which is a major container image registry, more
than one million public images are available [12]. Prebuilt sys-
tem software containers such as MongoDB, Redis, Cassandra,
etc., which we focus upon in this paper, are also available in
DockerHub.

B. Container Orchestration System

The increased usage of containers has prompted the emer-
gence of container orchestration systems such as Kubernetes
[13] and Apache Mesos [14]. A container orchestration system
provides scalability and maintainability for containers running
on a cloud, essentially acting as a cloud scale operating system
for containers.

At present, Kubernetes has become a de facto container
orchestration system and is continuously being updated by
the open source community. Originally developed by Google
[15], Kubernetes has adopted many units of knowledge from
the predecessor scheduling system, namely, Borg [16]. With
its utilization of features to container scheduling, auto scaling,
and self-healing after failure, Kubernetes contributes not only
to the reliability of container applications but also to the
ease of building cloud-native applications on the cloud. As a
consequence, many cloud-native systems (monitoring, logging,
service discovery, etc.) have been released as a part of the
Kubernetes ecosystem.

Among the many concepts and features of Kubernetes, the
pod is a key abstraction in the Kubernetes object model. A pod
is the minimal deployable unit that enables collocating con-
tainers with the same network namespace and shared storages.

<server description="new server">
<featureManager>
<feature>microProfile-2.0</feature>

</featureManager>
<!-- optimal thread size depends on env or workload -->
<executor coreThreads="1" maxThreads="10"/>

</server>

worker_processes 100; # depends on env
events {
worker_connections 1024; # depends on env

}
http {
sendfile off; # better set on
tcp_nopush off; # better set on
keepalive_timeout 60; # depends on role

}

Fig. 1. Performance-sensitive config examples: server.xml in Liberty (top)
and nginx.conf in Nginx (bottom).

As shown in an earlier work [17], multi-container application
patterns are beneficial for maintaining an application container
nearby, so we also adopt the ambassador pattern for monitoring
application metrics in this paper. Besides, Kubernetes provides
a volume to retain data beyond the container life cycle. A
volume is mounted to a directory and then containers in a
pod can access new files in the volume transparently even
though they are bound to a specified directory. This feature
also enables a new config to be attached over the existing
contents in an image at the time of deployment.

C. Configurations

Application Configs: Most applications externalize their
configs to a config file and change the internal parameters
later. The config format, which is different for each software
(e.g., yaml, json, xml, conf, or the original schema), is loaded
when the application is initialized or automatically reloaded
when a change is detected.

Examples of config files in Open Liberty (Liberty for short)
and Nginx are given in Fig. 1. Liberty is a Java application
server that loads configs from server.xml, and Nginx is a
Web server that loads configs from nginx.conf. In Liberty, we
might have an opportunity to set the bound of an auto thread
tuning range between coreThreads and maxThreads. Since too
few maxThreads may limit the application performance, we
should increase the value before deployment. The optimal
value depends on the execution environment (e.g., how many
hardware threads are available), so it needs to be tuned on
the basis of the environment. In the Nginx case, keepalive is
known as an important parameter to improve response time,
but we should carefully choose the value or turn off the
feature because it may be harmful when Nginx handles many
lightweight connections.

Deployment Configs: A deployment spec should be care-
fully set to improve application performance in Kubernetes.
The spec includes several important statements, such as the
number of replicas, network service type, volume mount type,
resource quota, and so on. Since Kubernetes provides a self-
healing from failure mechanism, users may not notice that
their container is terminating again and again due to an out-of-
resource error (e.g., out-of-memory error). This unintentional

restart may be harmful because the container will require an
additional ramp-up, which takes time. Moreover, we should
apply auto scaling options adaptively to a deployment spec
when an application container runs out of resources.

Other Configs: This paper focuses on the above two types
of configs, but ConfAdvisor is not limited to them. For exam-
ple, the host-level config (e.g., /etc/sysctl.conf) has candidate
tunable parameters that affect container performance. This and
certain other configs are beyond the scope of this work.

D. Metrics

Metrics are always important when it comes to evaluating
resource usage and performance data from running containers.
Below, we discuss which types of container metrics are
available in Kubernetes.

Basic Metrics: Basic metrics such as those related to CPU,
memory, network, and disk usage represent the raw measure-
ment of resource usage, and knowing these can be helpful to
determine whether a container utilizes the appropriate amount
of resources in its workload. Since monitoring these metrics
is always taken into consideration, a per-container metric
collecting tool (e.g., cAdvisor) is utilized in the Kubernetes
ecosystem.

Application Metrics: Application metrics represent the
internal statistics of applications, such as the number of active
or failure connections, summary of request or response size,
performed cache entry hit or miss ratio, precise memory usage,
total number of performed garbage collections (GC), and so
on. Many systems provide an endpoint to extract these metrics,
so they are more helpful than basic metrics for understanding
application characteristics. Currently, Prometheus [18] stores
and gather these metrics in the Kubernetes ecosystem.

Utilizing Metrics: After collecting metrics, some of them
are utilized in visualization dashboard tools, which are helpful
for understanding when an anomaly happens and for intuitively
knowing which anomaly events are likely to happen frequently.
However, when a system detects an anomaly that has been
caused by an injected misconfig, most tools do not care about
why it happens or which config should be fixed. Grafana,
which is a widely used metrics dashboard tool, shows the
metrics in various ways, but it does not provide any action
plans about what to do next.

III. CHALLENGES AND MOTIVATIONS

In this section, we take a look at several existing approaches
and tools and then clarify what we can learn from them and
what we need to consider in cloud-native applications.

A. Existing Approaches: What should we learn from?

Config management tool: System config management tools
such as Ansible, Chef, and Puppet have been developed to
validate software installation and configs in the infrastructures.
These tools are helpful to keep the system stable and idempo-
tent automatically.

However, these tools are basically designed to manage not
containers but servers; at least the SSH capability is required to

TABLE I
THE NUMBER OF CONFIGS IN OFFICIAL DOCKER IMAGES

No. of tuning knobs
Software & Config default available image name

Nginx (nginx.conf) 20 732 nginx:1.15
Apache2 (httpd.conf) 72 1011 httpd:2.4.37

Redis (redis.conf) 0 103 redis:5.0
MongoDB (mongod.conf) 8 127 mongo:4.1.4

Open Liberty (jvm.options) 0 146 open-liberty:javaee8
Cassandra (jvm.options) 32 763 cassandra:3.3.1

deliver configs to the system. This is a huge disadvantage for
containers, as containers may not always permit SSH access
[19]. Moreover, it is difficult to reflect container metrics or
logs adaptively in their management model since they are not
intended to improve performance.

Performance sensitive config tuning system: A wide va-
riety of config optimization systems have been developed
for application and cloud resource allocation to maximize
performance with various approaches, including those based
on heuristics [20][21], on machine learning [22], on building
a performance model with white-box [23], and on black-
box Bayesian optimization [24]. For example, Starfish [20]
provides an optimized Hadoop config based on profiling and
its heuristics. OtterTune [22] is a config auto-tuning system
for DBMS that identifies the importance of tuning knobs on
the basis of workload characteristics and then finds the best
config by means of a Gaussian process regression model.

These specialized tuning systems are useful for finding out
the best config, but they may not be well suited to container
workloads. One big concern is that containers are casually
torn down and then cannot always dedicate resources. Noisy
neighbors may reside in the same host, or the container
orchestration system may kill and reschedule its container to
free up host resources. That means the tuning system may
not have enough time to determine the best parameters, and
it also may need to rebuild the models. Moreover, we might
need to keep maintaining each tuning system independently
because they are specialized and do not rely on a generalized
framework.

Misconfiguration validation language: Many frameworks
have recently been proposed to fix and validate misconfigs in
advance in order to avoid system outage. Some of the works
in this vein [5][6][25][26] have also provided domain specific
language (DSL) to describe the specifications or rules for
config validation. Their declarative specifications can simplify
our config validation tasks compared to imperative ones, and
they can correspond to a wide range of config errors due to
their completeness. However, a specialized DSL and grammar
make it difficult to write new specifications due to the huge
learning curve involved. Moreover, they are not designed for
performance improvement tasks.

B. Motivations: What should we consider in cloud-native
applications?

Since applications are containerized and their execution
environments are rapidly moving from a dedicated bare metal

system to a container cloud, performance engineering for
containers is essential to achieve faster performance, even on
the cloud. However, typical performance engineering tasks and
procedures are neither standardized or open. As such, we also
need to change the performance engineering methodology,
tools, and our mentality so as to be more in alignment
with the cloud-native way. In this section, we summarize the
perspectives we need to consider more for containers.

Validating default config in image: A huge number of
software images are available, and some of them are published
as official images. However, the quality of the configs inside
these images is unknown. Table I lists how many configs
are preset as default and how many tuning knobs exist in
each image. The table includes six representative official
containerized images that we picked up from DockerHub. In
the case of the Nginx and Apache2 containers, preset config
accounted for just 2–7 % of the total number of directives. The
Redis container has no default config, so it delegates all config
setting to users. The MongoDB container has a config inside
the image, but only a few parameters are preset. For Liberty
and Cassandra, we compared not application configs but a
runtime config, which is a Java Virtual Machine (JVM) option.
Since these use different JVMs (Liberty uses OpenJ9 and
Cassandra uses OpenJDK), the number of available options
is also different. For the Liberty case, there are no preset
JVM options. In contrast, Cassandra already includes some
performance-aware JVM options, but it is not clear whether
all configs are effective.

Of course, not all configs are related to performance,
and some default configs are loaded without having explicit
directives. Even so, there is a huge gap between default config
and optimal config, even in containers.

Throughout entire container life cycle: From the viewpoint
of container life cycle, we have three chances to tune configs
in the application container. First, we can validate configs in
the images. Most images do not include essential configs (as
shown in the above example), even if they are official. Thus,
image inspections are required before container deployment.

Second, we can notice misconfig in a container and de-
ployment spec when it is launched. This type of misconfig
is caused by the deployment environment (such as resource
quotas pertaining to CPU and memory) or by underlying
architecture differences (such as x86 64 or ppc64le). They
become apparent after the containers have been scheduled or
at the time of deployment. This type of inconsistent config
must be fixed in order to avoid unexpected container stopping
and performance degradation.

Third, we can improve configs after the application con-
tainer has been running for a while. This is known as
workload-aware config tuning. Since it is difficult to predict
what kind of workloads are running, the optimal config settings
change along with the application characteristics [27]. There-
fore, it is important to build optimal config advice adaptively
on the basis of metrics or logs in order to drive running
container performance up to the next level.

Figure 2 shows an abstraction of these three config tuning

w/ default config

w/ ideal config

container life cycle

app throughput

after deploybefore deploy

L1 analysis

L2 analysis

L3 analysis

Fig. 2. Conceptual diagram of tuning timings throughout container lifetime.

timings to achieve ideal performance if the config tuning
affects application throughput. These timings require different
levels of information, so we respectively define them as L1,
L2, and L3. As a result, a config tuning system should cover
the entire lifespan of a container in order to apply sustainable
config tuning in a cloud-native environment.

Advisor Service - From what happens to why it happens:
Application diagnostic tools such as Prometheus and Grafana
are helpful to understand metrics in a system through a
rich dashboard or query-able interface. Monitoring dashborad
provides a good summary or performance anomaly and then
reveals what happened in the system intuitively, but the user
still needs to investigate why something happened or what
config should be changed through multi-dimensional analysis.
For those users who do not have sufficient knowledge about
the target application, there is a risk that they will wander
around the config tuning forest aimlessly.

Moreover, although a vast amount of knowledge and tuning
information is available on public sites like Stack Overflow
or official document, the predecessor’s knowledge has been
opened but not returned to the tuning. To achieve continuous
config tuning, we should build a service to deliver optimal
config to the containers by standardizing the knowledge.

IV. DESIGN

A. Principles and Overview of Architecture

Here, we summarize the required properties in the config
tuning system on the basis of the discussion in the previous
section. Our objective is to build a sustainable config tuning
framework for container performance on the cloud, so the
following five properties need to be taken into consideration.

• Scalable: low monitoring overhead and fast advice
• Descriptive: writing rules easily and minimizing learning

curve as much as possible
• Extendable: the capability to add new tuning analytics
• Unchanged: no modification in containers and images
• Affinitive: utilizing existing cloud-native ecosystem
In general, there are three basic building blocks for a

config tuning system: extracting, accumulating, and analyzing
configs. They are common pieces even in containers and
microservices on the cloud. Figure 3 provides an overview
of how these three components collectively work and how

Extractor

Container
Container

Container

Image
Image

Image

Accumulator Analyzer

Service

Rules

Kubernetes

config, log, metrics

environment

Fig. 3. Design overview for config advice flow.

the verified config tuning advice is delivered to users. In the
following sections, we discuss design options for involving the
above properties in each part.

B. Extracting Configs, Metrics, and Logs

Scalability is a mandatory feature in a config and metric
extractor on the cloud. The extractor has to find out what
config exists in containers and images and keep tracking the
config evolution while the container is running because the
config will probably be updated at some point either manually
or by the system. As new images are continuously registered
in a registry service and new containers are launched in any
Kubernetes-managed node, the extractor should detect new
images and containers immediately. Moreover, the extractor
should not require any user-side modifications in containers
and images, as code changes (such as instrumenting an agent
into a container) impose a burden on users.

In terms of metrics and logs, both scalability and no user-
side modification are important. Since not all containers ex-
pose an endpoint to extract metrics, the extractor should make
sure which container opens the endpoint and then periodically
crawl all available metrics from them in a scalable way.

C. Accumulating Configs, Metrics, and Logs

After extracting the data, the accumulator has to index it
in order to identify where it came from, and of course it
needs to keep it for a while. In terms of container image
indexing, registry services typically require unique attributes
such as namespace, image name, and tag to register an
image, so the accumulator can append these as an index.
To run containers on Kubernetes, all containers must include
namespace, deployment type, pod name, and container name.
Moreover, each container has a unique container ID assigned
by container runtime (e.g., Docker). By attaching these names
to the index, configs and metrics should be searchable in the
accumulator.

D. Config Tuning Approach

Config tuning approaches are roughly divided into two
types: black-box and white-box. Black-box approaches based
on a well-structured search algorithm [28] or Bayesian op-
timization (BO) [29] are powerful in terms of determining
the best config without special knowledge, and they may
achieve better performance than predefined heuristics rules.
One drawback of black-box approaches is that the search task

Registry

Prometheus

What-If Engine

Advisor Service

Rules

pull

Image
Crawler

Config
Crawler

Elasticsearch

Metrics
Exporter

Plugin
Plugin

Plugin

Advisor Framework

Image
Image

Image

App Container
App Container

App Container

k8s API

Docker

push
ConfAdvisor

Extractors Daemons

refined config
w/ reason

Sec. V - A

Sec. V - B

Sec. V - C

Fig. 4. Overall architecture of end-to-end config advice in ConfAdvisor.

is time-consuming. White-box approaches based on expert
validation rules [5][6] are practical and applicable in many
types of config tuning with well-known heuristics. While not
completely opposite, both types have a complementary style
of config tuning. We will take the black-box approach into
consideration in the future, but as it is excessive for validating
configs of images and containers, especially in the ramp-up
phase, we limit ourselves to the white-box approach here.

E. Imperative or Declarative

When describing our heuristics for a config tuning rule,
there are two potential paradigms for writing the rule: imper-
ative or declarative. The imperative style provides flexibility
to a rule in terms of allowing it to express complex analytics
algorithms directly, while the declarative style lends a rule a
simplicity that makes it easy to understand. The performance
engineers who write the rules have different levels of skill, so
the tuning framework should enable a paradigm that achieves
both simplicity and flexibility.

V. IMPLEMENTATION

On the basis of the design considerations discussed above,
we implement a config advisor framework and service on
Kubernetes that integrates data extractors and a data curator
system. An overview of the end-to-end config advice archi-
tecture in ConfAdvisor is provided in Fig. 4. In the following
section, we describe the details of each component.

A. Crawling Configs and Metrics

Image and Config Crawler: We utilize an open-source
crawling tool called an agentless system crawler (crawler
for short) to inspect configs and other information including
packages, files, and environments [30]. The crawler resides
in each host as a daemon process, and it automatically and
periodically captures a specified set of entities from active
containers without enforcing guest cooperation.

To inspect configs inside an image, we implement an image
crawling feature on the original crawler. The image crawler
keeps watching the image registry to see when new images are
registered. Once a new image is registered, the image crawler
launches a new container in a sand box space. By mounting
a sleep binary in a container and overwriting an entry point,
the image crawler can capture configs in any image without
unexpected container halt.

"jvm.options": [
{
"key": "mx",
"what-if": "current.mx > current.limits_memory",
"advice": "current.limits_memory * 0.75",
"order": 0,
"message": "should keep mx less than memory limits"

},
{
"key": "ms",
"what-if": "current.ms != advice.mx",
"advice": "current.limits_memory * 0.75",
"order": 1,
"message": "should keep ms same as mx"

}]
"server.xml": [
{
"key": "maxThreads",
"what-if": "current.maxThreads < (current.cpu * 5)",
"advice" : "current.cpu * 5",
"order": 0,
"message": "should start with 5 * vcpu"

}],
"k8s": [
{
"key": "scale_pod",
"what-if": "rate_cpu_usage(vars.interval) > 0.8"
"advice": "current.replica += 1",
"order": 0,
"message": "check average cpu usage in last interval"

}]

Fig. 5. Example rules used in Liberty plugin (JSON format).

In terms of the config crawler, we also extend the original
crawler, which can detect a newly launched container immedi-
ately, by monitoring container creation events through a Unix
domain socket in a host Docker runtime, since the original
crawler checks the configs of containers only periodically.

Finally, the retrieved configs are normalized and then stored
in Elasticsearch with an index and timestamp. We leverage
an open-source config parser called the Augeas tool [31] to
convert configs into a tree format and then normalize the tree
format to a simple flatten dictionary. With this normalization
step, an advice rule and analytics routine can access each
config value uniformly in a key-value manner.

Metrics Exporter: For collecting application metrics, we
use Prometheus and a Prometheus exporter. Prometheus is
an open-source monitoring system and time-series database
that is tightly integrated with Kubernetes. Various exporters
that can expose metrics as a Prometheus format are main-
tained officially. An exporter basically works as an adapter
container style [17] beside a target container, so we introduce
a corresponding exporter into an application pod. Although we
also introduce a raw log file extractor (e.g., logstash), we do
not utilize the raw log in the framework at this time because
the metrics summarize application statistics and the available
data would be duplicated. The exposed application metrics are
automatically pulled by Prometheus and then consumed in the
ConfAdvisor framework.

B. ConfAdvisor Service and Framework

ConfAdvisor consists of three building blocks: an advisor
service, an advisor framework, and an advisor rule engine. All
components are implemented in Python. We introduce these
components one by one.

Advisor Service: The advisor service is a frontend to handle
an advice request between users and a backend analytics
engine. Users specify a target container and have the option of

setting the config advice type, application type, etc. in a query.
Once it receives an advice request from a user, the advisor
service loads a corresponding plugin to build personalized
config advice for the image or container. After processing
all config verification rules and analytics in the plugin, the
advisor service returns verified config advice to the user. We
used gRPC to implement the APIs so that the advisor service
could be run as part of the microservices.

Advisor Framework: The advisor framework exposes nor-
malized configs and metrics to the analytics plugins. On the
basis of the query, the advisor framework collects all related
topics from data sinks such as Elasticsearch, Prometheus, and
Kubernetes. Then it provides a unified key-value dataset or ma-
terialized time-series dataset to be utilized in the plugins. The
advisor framework also introduces APIs or utility functions
that enable us to easily write rules or analytics code. According
to the rule specs in Fig. 5, for example, the scale pod
rule uses a predefined function named rate cpu usage() that
computes the average CPU usage in a specified interval. The
advisor framework introduces statistical functions similar to
the Prometheus functions.

Analytics Plugin: ConfAdvisor utilizes a plugin system
to introduce flexibility and extendibility to config analyt-
ics. When a request is made, a corresponding plugin (e.g.,
mongodb plugin or redis plugin) is selected automatically in
ConfAdvisor and then it loads declarative config validation
rules (showing them later) for each application. A plugin also
functions as a placeholder to enhance UDFs written in Python,
which enables us to write complex analytics imperatively.

Config Advice Rule Spec: Here, we define the config advice
rule spec for writing declarative rules. Figure 5 shows example
rules that are used in the Liberty plugin. This rule contains four
rules in total: two in jvm.options, one in server.xml, and one
in the Kubernetes environment. Developers can append any
rules here on the basis of the following format. The important
predicates exist in the what-if and advice elements. Once a
predicate in what-if returns true, the rule engine evaluates
a predicate in advice, which is a candidate validated config
value for a specified config (e.g., mx, ms, or maxThreads).
We can apply any Python code in these predicates, and can
also call predefined functions such as rate cpu usage() in a
scale pod rule example or UDFs loaded in a plugin. All of
the current configs and metrics for the target container are
accessible through the current object, so we can minimize
the evaluation code to make it as simple as possible. Using
raw Python code for the predicate reduces the rule writing
difficulty compared to using a specialized external DSL, so
this constraint in the spec makes it easy to understand for
both users and developers.

What-if Rule Engine: The rule engine is a core processor
designed to consume the above rules on the fly. We implement
it on jinja2, which is a powerful and widely used template
engine in Python. Upon receiving a query, the rule engine tries
to apply all related rules one by one for each config in a target
container and then generates config advice through advice
predicate evaluation with other entities on the basis of defined

0

0.1

0.2

0.3

0.4

0.5

0 100 200 300 400 500 600 700

cp
u

us
ag

e
(%

)

elapsed time (min)

redis elasticsearch mongo nginx node

0

20

40

60

80

0 2 4 6 8 10 12 14 16 18

cp
u

us
ag

e
(%

)

elapsed time (min)

crawler (node 1)
crawler (node 2)
crawler (node 3)
crawler (node 4)

Fig. 6. 3-mins moving average of CPU usage: config crawler (top) and metrics
exporter (bottom).

rule specs such as message, reason, reference, and so on. The
rule engine also computes the dependencies between each rule
so that any advice that has been generated is purified by all
related rules. All components in ConfAdvisor are stateless in
order to achieve high scalability.

C. Advisor Rules and Plugins

We are currently in the midst of developing various per-
formance improvement config rules and analytics as a plu-
gin in ConfAdvisor. We implemented many rules on top of
ConfigAdvisor, and at this moment, it supports the following
six software applications: Liberty, Nginx, Node.js, MongoDB,
Redis, and Cassandra. Table II shows examples of config
advice rules and advice picked up from the ConfAdvisor
plugins. Since the rules are written in the declarative style,
they can be easily understood when evaluated. ConfAdvisor
also gives revised configs as a key-value format with reference,
so the user or system can take over the knowledge about which
configs need to be fixed and why they should be fixed.

VI. EVALUATION

We ran two Kubernetes cluster systems on individual IaaS
clouds via IBM Cloud Private CE, which is a package to set up
Kubernetes and related ecosystems easily on our infrastructure.
The first Kubernetes cluster (cluster A) has four nodes on a
Xen-based x86 64 architecture, where each node is equipped
with eight vCPU cores, 16 GB RAM, and a 400-GB disk. The
second cluster (cluster B) has four nodes on a KVM-based
ppc64le architecture, where each node is equipped with 32
vCPU cores, 16 GB RAM, and a 200-GB disk. All systems run
on Ubuntu 16.04.5 (kernel: 4.15.0-33-generic) and are installed
with Docker 18.06.1-ce, Kubernetes 1.11.1, Prometheus 2.3.1,
and Elasticsearch 5.5.1.

A. Runtime Overhead

Config and metrics crawling: Figure 6 shows the 3-min
moving average of CPU usage for two extractor processes on

TABLE II
EXAMPLE OF CONFIG ADVICE PSEUDO RULES AND ADVICE AVAILABLE IN CONFADVISOR

software config level what-if rule description advice description
Liberty server.xml 1 maxPoolSize != coreThreads start with 1:1 mapping to the coreThreads for database connections [32]

Redis redis.conf 1 maxmemory == None maxmemory = memory limit * 0.8, maxmemory-policy = allkeys-lru [33]
Node.js k8s spec 3 rate cpu usage(1h) > 0.9 Increasing replica since Node.js is bound on a single CPU core [34]

MongoDB mongod.conf 2 cacheSizeGB > memory limit storage.wiredTiger.engineConfig.cacheSizeGB = memory limit / 2
Cassandra jvm.options 2 -XX:MaxHeapSize > 16GB -XX:+UseG1GC [35]
Cassandra jvm.options 1 openjdk vesion < 1.8.0 192-b01 -XX:+UseCGroupMemoryLimitForHeap [36]
Cassandra k8s spec 2 isParsisted(/var/lib/cassandra/data) Using Persistent Volumes

TABLE III
CONFIG CRAWLER PERFORMANCE

node 1 node 2 node 3 node 4
No. of containers 89 65 74 23

Elapsed time (sec) 326 130 282 75

TABLE IV
CONFADVISOR QUERY PROCESSING THROUGHPUT

Rule throughput (query/sec)
category avg stdev min max median

L1/L2 25.6 1.93 20.1 29.7 25.7
L3 3.32 1.92 0.56 5.55 4.39

cluster A: config crawler (top) and metrics exporter (bottom).
Config crawlers are running on all four nodes. In our Kuber-
netes cluster A, 89, 65, 74, and 23 containers were respectively
running on each of the four nodes; the results are also shown in
Table III. Since the config crawler works sequentially, crawling
performance depends on the number of running containers.
Moreover, the config crawler captures not only config files
but also other data (such as the installed package list) in
the container, so crawling performance also depends on the
content size of each container. As shown at the top of Fig. 6,
config crawler spent 20–60% of the CPU in a short time (1–5
min). After calculating crawling throughput, we found that the
config crawler achieved around 0.3 container/sec on average.

For container metrics, we used several Prometheus exporters
(redis expoter, node exporter, etc.). Prometheus pulled met-
rics from each endpoint once per minute. As shown at the
bottom of Fig. 6, metrics exporter overheads were quite small.
Compared with exporters for system software, a node exporter
eats up more of the CPU, but it still requires less than 1% in
3 mins on average.

ConfAdvisor query performance: Next, we investigated the
end-to-end ConfAdvisor performance. Table IV lists the rule
query processing throughput and statistics in each analysis
category. While processing L1 and L2 analysis, ConfAdvisor
accesses the Elasticsearch and Kubernetes APIs. In addition
to those APIs, for L3 analysis, ConfAdvisor needs to access
the Prometheus API to run complex queries. Prometheus query
response time fluctuated with the number of tasks. As a result,
L3 analysis performed about 5x worse than the L1/L2 analysis.

B. Case Study: Config Advice with L1/L2 analysis

As indicated in Table I, the Cassandra container image
already includes several performance tuning JVM options.

0
1,000
2,000
3,000
4,000
5,000
6,000

LIMIT
(Xmx256m)

LIMIT+RAM
(Xmx1g)

LIMIT
(Xmx256m)

LIMIT+RAM
(Xmx1g)

workload A (read: 50% update:50%) workload B (read: 95% update:5%)

el
ap

se
d

ti
m

e
(s

ec
.)

LOAD RUN

Fig. 7. Comparison of config tuning for Cassandra container on Kubernetes
using YSCB benchmark.

Unfortunately, however, the included config does not consider
that Cassandra runs as a container.

In the previous OpenJDK, JVM runtime did not recognize
whether it runs on a container or not, so the runtime estimated
available CPU or memory not from the cgroup limit but from
the available host capacity [36]. The more recent OpenJDK
considers the cgroup limitation, but we need to append several
options explicitly if the underlying runtime is not the latest or
is over a specified version (i.e., 1.8.0 192-b01 in Table II)
because the options are backported from Java 10.

Fig. 7 shows the summarized performance of the YCSB
benchmark (workloads A and B) for Cassandra on Kubernetes
cluster A. We put a 1-GB memory limit on the Cassan-
dra pod and loaded 1.5 M records (i.e., 1.5-GB dataset
in total) with zipfian distribution, and the JVM runtime
version was 1.8.0 181-b13. The default config could not
run to the end due to a memory error, so we omitted
the result. This occurred because the default config au-
tomatically set a 4-GB heap size that is computed from
the host available 16-GB memory even in the 1-GB limit.
LIMIT denotes adding -XX:+UnlockExperimentalVMOptions
and -XX:+UseCGroupMemoryLimitForHeap options and
LIMIT+RAM does -XX:MaxRAMFraction=1 option in ad-
dition. In the LIMIT case, JVM reserves a quarter size of
the limit memory (i.e., 256 MB) for the max heap size,
whereas it reserves up to the limit memory (i.e., 1 GB) in
the LIMIT+RAM case.

As shown in the result, LIMIT was always faster than
LIMIT+RAM in both workloads, and it achieved 1.7x and
2.5x improvement, respectively. This is because Cassandra
also utilizes not only Java heap memory but also OS page

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

default tuned default tuned default tuned

DayTrader YCSB workload A YCSB workload B

Liberty MongoDB

re
la

tiv
e

th
ro

ug
hp

ut

ga
in

Fig. 8. Summary of performance improvement with memory config tuning.

cache, so we should keep a half size of available memory
for the Java heap to maximize the performance. To build this
optimal config, we need knowledge about JVM, the container,
Kubernetes, and Cassandra. In this case, ConfAdvisor not only
prevents the unintentional memory error due to the default
config but also provides the optimal config options (i.e.,
LIMIT) immediately to the container.

C. Case Study: Config Advice with L3 analysis

Here we introduce several case studies involving memory
sizing based on workload, which is referred to as the L3 anal-
ysis in this paper. Then we discuss how much improvement
we can achieve by setting the optimal config on a Kubernetes
Cluster B.

Liberty: First, we introduce a memory sizing rule based on
GC statistics for Liberty. We can utilize JVM internal metrics,
including GC, which are exposed as the Prometheus format.
To evaluate the Liberty performance, we used a DayTrader
benchmark that emulates an online stock trading system for a
Java EE application server and ran JMeter against the Liberty
as a driver program of the DayTrader benchmark.

The left side of Fig. 8 shows a summarized result of relative
throughput, comparing the default config with a tuned one.
The default config reserved 512 MB of heap memory, which
consisted of a 128-MB nursery heap and 384-MB tenured
heap. The ratio (1:3) is regularly used unless we explicitly
change it. By sliding the optimal ratio of nursery and tenured
heap, we achieved a 10% throughput improvement over the
default config.

Fig. 9 shows the details for throughput and global GC
interval metrics while varying the ratio. When the nursery heap
increased, throughput was improved over the default, whereas
the global GC interval gradually became longer. Huge nursery
space contributes to application throughput improvement when
the heap is used effectively. However, if the heap is not tenured
enough, many global GCs occur, which requires stop-the-
world pause. In this result, global GC occurred four times
more often with the 96-MB tenured heap than with the 128-
MB one. In order to improve throughput within a resource
quota constraint, the Liberty plugin can give advice to increase
the nursery heap until a dramatic change occurs in the global
GC interval metric, such as a shorter global GC interval event.

0
10
20
30
40
50
60
70
80
90

0
500

1,000
1,500
2,000
2,500
3,000
3,500

448 432 416 384 384 320 256 192 128 96 92 88 80 64

64 80 96 128 128 192 256 320 384 416 420 424 432 448

512 512 512 512 512 512 512 512 512 512 512 512 512 512

gl
ob

al
 G

C
in

te
rv

al
 (s

ec
)

th
ro

ug
hp

ut
 (

re
q/

se
c)

throughput (req/sec)
global gc interval (sec)

nursery
tenured

total

Fig. 9. Comparison of throughput and global GC interval while changing the
ratio of nursery and tenured heap.

MongoDB: Next, we evaluate an in-memory cache sizing
rule based on workload characteristics for MongoDB. By
using mongodb exporter, we can obtain internal statistics
such as read/write operation counts and in-memory cache
usage. We used a YCSB benchmark and evaluated throughput
when utilizing an in-memory cache feature in MongoDB (i.e.,
WiredTiger) while changing the cache size. We deployed a
MongoDB on Kubernetes with a 1-GB memory resource limit.
For the YCSB setting, we ran workload A (50% reads and 50%
updates) and workload B (95% reads and 5% updates) with
one million uniform distribution records utilizing eight client
threads.

The middle and right side of Fig. 8 show a summarized
result of the improvement ratio in each workload comparing
a default config with a tuned one. As shown, we were able
to achieve a 40% improvement in workload A and a 20%
improvement in workload B. Unfortunately, MongoDB does
not consider the cgroups resource constraint when deciding the
size of in-memory cache, so it tries to assign 7.5-GB memory,
which is around half of the host equipped memory (i.e., 16
GB), for the internal cache as a default. This causes frequent
memory thrashing because the memory usage is capped up
to the specified limit. As a consequence, we cannot achieve
expected performance in a containerized MongoDB with a
resource limit. This example case shows that ConfAdvisor can
give advice for resolving default misconfig depending on the
environment.

Next, we investigate how much the cache size affects
performance in order to determine the workload aware config
advice when performing L3 analysis. The throughput of each
workload while changing the cache size is shown in Fig.
10. In read-mostly workloads (i.e., workload B), the cache
size did not affect performance improvement as long as the
size was not over the resource limit. In contrast, it achieved
the best throughput while setting 50% or 75% of available
limit memory for the write-heavy workload (workload A).
WiredTiger utilizes OS filesystem cache (page cache) as well
as its internal memory cache. Too much internal memory
cache leads to an inefficiency while running a write-heavy
workload. Thus, ConfAdvisor can give advice to set half the
size of available memory as a WiredTiger cache based on the
read/write operation metrics if the config does not have that
setting.

0

5,000

10,000

15,000

20,000

25,000

256MB 512MB 768MB 1GB 7.5GB
(default)

Th
ro

ug
hp

ut
 (

op
s/

se
c)

WiredTiger Cache

workload A workload B

Fig. 10. Comparison of YCSB throughput on MongoDB container while
changing wiredTiger cache size.

VII. RELATED WORK

Performance anomaly analysis: X-ray [37] is a perfor-
mance summarization system that utilizes binary instrumenta-
tion to track application execution. X-ray analyzes application
flow and estimated performance costs coming from the metrics
to the events in order to compute the likelihood of the root
cause. Then it identifies which config made the performance
worse. Roots [38] is application monitoring and diagnostic
system for Web applications on a PaaS cloud. Roots runs a
performance anomaly detector based on the analysis of the
previous workload characteristics and then tries to identify a
root caused component among candidate application pieces
through a regression model and change point analysis.

These works determine the root cause of a performance
anomaly on the basis of offline analysis with precise ap-
plication trace data, while ConfAdvisor does all analysis at
runtime. Online analysis is still effective for our objective at
this time because the cost to analyze a target image, container,
and spec is low. The trace analysis featured in the other
studies will become more important in complex microservices,
which consist of frontend Nginx and backend MongoDB,
for example. We also intend to analyze trace data by taking
inspiration from their works and distributed tracing techniques
in the cloud.

Cloud scale config validation: Tang et al. [39] provide an
end-to-end configuration management stack that runs on Face-
book. Their system takes a configuration-as-code approach to
compile a config from high-level source code. By integrating it
with other systems such as code repository and the canary test
framework, cloud scale config distribution systems for many of
their services can be enabled. With ConfAdvisor, we also aim
to offer a service that makes continuous config improvements
in the DevOps cycle. However, their primary focus is config
validation and compilation, whereas ConfAdvisor makes not
only a config validation but also focuses on performance
relying on metrics.

ConfValley [6] is a config verification system for cloud
applications. It provides a verification DSL for writing val-
idating specifications to apply expert heuristics. Similar to
ConfValley, several works [5][26] have tried to detect incorrect
configs before the occurrence of a fatal error with a special
validation language. ConfValidator [26] has declarative syntax,

but it does not have a tuning engine for config optimization.
In contrast, while ConfAdvisor also provides the capability to
write rules with the declarative format, it does not implement
language itself but rather utilizes the existing template engine
and Python grammar as much as possible.

Rule learning and parameter searching: Machine
learning-based misconfig detection systems such as EnCore
[40] and ConfigV [25] have been proposed. These systems
learn config check rules or specifications from a training
set of config files or rule templates. They then refer to the
learned model to detect various types of errors (missing
entry error, type error, etc.). BestConfig [28] finds the best
config for various systems with a scalable sampling method
and an optimized recursive bound search algorithm. Bayesian
optimization-based approaches such as CherryPick [24] and
BOAT [29] are also evolving in terms of config tuning because
they can achieve near optimal performance with few samples.
In future work, we plan to combine our heuristic rule-based
approach with the essence of these works in the ConfAdvisor
framework by rule upgrading and parameter searching. As a
result, the coverage of ConfAdvisor will be expanded to long
running container performance.

VIII. CONCLUSION

We proposed a sustainable performance-aware config tuning
framework named ConfAdvisor for container images, running
containers, and deployment specs on the cloud. Using declara-
tive rules written by domain experts or general users as a basis,
ConfAdvisor provides adaptive config advice for container
workloads from beginning to end. We built this framework
on Kubernetes and integrated it with telemetry systems on the
Kubernetes ecosystem. Several case studies demonstrated that
ConfAdvisor can achieve up to 2.5x improvement in Cassandra
over default config, and also 1.1x and 1.4x improvement in
Liberty and MongoDB, respectively.

REFERENCES

[1] Z. Yin, X. Ma, J. Zheng, Y. Zhou, L. N. Bairavasundaram, and
S. Pasupathy, “An empirical study on configuration errors in commercial
and open source systems,” in Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles, ser. SOSP ’11. New
York, NY, USA: ACM, 2011, pp. 159–172. [Online]. Available:
http://doi.acm.org/10.1145/2043556.2043572

[2] A. Rabkin and R. H. Katz, “How hadoop clusters break,” IEEE Software,
vol. 30, no. 4, pp. 88–94, July 2013.

[3] T. Xu, L. Jin, X. Fan, Y. Zhou, S. Pasupathy, and R. Talwadker, “Hey,
you have given me too many knobs!: Understanding and dealing with
over-designed configuration in system software,” in Proceedings of the
2015 10th Joint Meeting on Foundations of Software Engineering, ser.
ESEC/FSE 2015. New York, NY, USA: ACM, 2015, pp. 307–319.
[Online]. Available: http://doi.acm.org/10.1145/2786805.2786852

[4] T. Xu, X. Jin, P. Huang, Y. Zhou, S. Lu, L. Jin, and S. Pasupathy, “Early
detection of configuration errors to reduce failure damage,” in 12th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16). Savannah, GA: USENIX Association, 2016, pp. 619–
634. [Online]. Available: https://www.usenix.org/conference/osdi16/
technical-sessions/presentation/xu

[5] R. Shambaugh, A. Weiss, and A. Guha, “Rehearsal: A configuration
verification tool for puppet,” in Proceedings of the 37th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
ser. PLDI ’16. New York, NY, USA: ACM, 2016, pp. 416–430.
[Online]. Available: http://doi.acm.org/10.1145/2908080.2908083

http://doi.acm.org/10.1145/2043556.2043572
http://doi.acm.org/10.1145/2786805.2786852
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/xu
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/xu
http://doi.acm.org/10.1145/2908080.2908083

[6] P. Huang, W. J. Bolosky, A. Singh, and Y. Zhou, “Confvalley: A
systematic configuration validation framework for cloud services,” in
Proceedings of the Tenth European Conference on Computer Systems,
ser. EuroSys ’15. New York, NY, USA: ACM, 2015, pp. 19:1–19:16.
[Online]. Available: http://doi.acm.org/10.1145/2741948.2741963

[7] S. Wang, C. Li, H. Hoffmann, S. Lu, W. Sentosa, and A. I.
Kistijantoro, “Understanding and auto-adjusting performance-sensitive
configurations,” in Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and
Operating Systems, ser. ASPLOS ’18. New York, NY, USA: ACM,
2018, pp. 154–168. [Online]. Available: http://doi.acm.org/10.1145/
3173162.3173206

[8] A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Microservices architec-
ture enables devops: Migration to a cloud-native architecture,” IEEE
Software, vol. 33, no. 3, pp. 42–52, May 2016.

[9] D. G. Feitelson, E. Frachtenberg, and K. L. Beck, “Development and
deployment at facebook,” IEEE Internet Computing, vol. 17, no. 4, pp.
8–17, July 2013.

[10] S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. Bavier, and L. Peterson,
“Container-based operating system virtualization: A scalable, high-
performance alternative to hypervisors,” in Proceedings of the 2Nd ACM
SIGOPS/EuroSys European Conference on Computer Systems 2007,
ser. EuroSys ’07. New York, NY, USA: ACM, 2007, pp. 275–287.
[Online]. Available: http://doi.acm.org/10.1145/1272996.1273025

[11] “Overlay Filesystem,” https://www.kernel.org/doc/Documentation/
filesystems/overlayfs.txt.

[12] S. Singh, “Dockercon SF 18 Keynote,” https://blog.docker.com/2018/06/
day-1-keynote-highlights-dockercon-san-francisco-2018, 2018.

[13] “Kubernetes,” https://kubernetes.io/.
[14] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph,

R. Katz, S. Shenker, and I. Stoica, “Mesos: A platform for fine-grained
resource sharing in the data center,” in Proceedings of the 8th USENIX
Conference on Networked Systems Design and Implementation, ser.
NSDI’11. Berkeley, CA, USA: USENIX Association, 2011, pp. 295–
308. [Online]. Available: http://dl.acm.org/citation.cfm?id=1972457.
1972488

[15] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes,
“Borg, omega, and kubernetes,” ACM Queue, vol. 14, pp. 70–93, 2016.
[Online]. Available: http://queue.acm.org/detail.cfm?id=2898444

[16] A. Verma, L. Pedrosa, M. R. Korupolu, D. Oppenheimer, E. Tune,
and J. Wilkes, “Large-scale cluster management at Google with Borg,”
in Proceedings of the European Conference on Computer Systems
(EuroSys), Bordeaux, France, 2015.

[17] B. Burns and D. Oppenheimer, “Design patterns for container-
based distributed systems,” in 8th USENIX Workshop on Hot
Topics in Cloud Computing (HotCloud 16). Denver, CO:
USENIX Association, 2016. [Online]. Available: https://www.usenix.
org/conference/hotcloud16/workshop-program/presentation/burns

[18] “Prometheus - monitoring system & time series database,” https://
prometheus.io/.

[19] B. Tak, C. Isci, S. Duri, N. Bila, S. Nadgowda, and J. Doran,
“Understanding security implications of using containers in the
cloud,” in 2017 USENIX Annual Technical Conference (USENIX ATC
17). Santa Clara, CA: USENIX Association, 2017, pp. 313–319.
[Online]. Available: https://www.usenix.org/conference/atc17/technical-
sessions/presentation/tak

[20] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. B. Cetin, and
S. Babu, “Starfish: A self-tuning system for big data analytics,” in In
CIDR, 2011, pp. 261–272.

[21] C. Steinbach and S. King, “Dr. elephant for monitoring
and tuning apache spark jobs on hadoop,” Spark Summit
2017. [Online]. Available: https://databricks.com/session/dr-elephant-
for-monitoring-and-tuning-apache-spark-jobs-on-hadoop

[22] D. Van Aken, A. Pavlo, G. J. Gordon, and B. Zhang, “Automatic
database management system tuning through large-scale machine
learning,” in Proceedings of the 2017 ACM International Conference
on Management of Data, ser. SIGMOD ’17. New York, NY,
USA: ACM, 2017, pp. 1009–1024. [Online]. Available: http:
//doi.acm.org/10.1145/3035918.3064029

[23] S. Venkataraman, Z. Yang, M. Franklin, B. Recht, and I. Stoica, “Ernest:
Efficient performance prediction for large-scale advanced analytics,”
in 13th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 16). Santa Clara, CA: USENIX Association,

2016, pp. 363–378. [Online]. Available: https://www.usenix.org/
conference/nsdi16/technical-sessions/presentation/venkataraman

[24] O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman, M. Yu,
and M. Zhang, “Cherrypick: Adaptively unearthing the best cloud
configurations for big data analytics,” in 14th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 17).
Boston, MA: USENIX Association, 2017, pp. 469–482. [Online].
Available: https://www.usenix.org/conference/nsdi17/technical-sessions/
presentation/alipourfard

[25] M. Santolucito, E. Zhai, R. Dhodapkar, A. Shim, and R. Piskac,
“Synthesizing configuration file specifications with association rule
learning,” Proc. ACM Program. Lang., vol. 1, no. OOPSLA, pp.
64:1–64:20, Oct. 2017. [Online]. Available: http://doi.acm.org/10.1145/
3133888

[26] S. Baset, S. Suneja, N. Bila, O. Tuncer, and C. Isci, “Usable
declarative configuration specification and validation for applications,
systems, and cloud,” in Proceedings of the 18th ACM/IFIP/USENIX
Middleware Conference: Industrial Track, ser. Middleware ’17. New
York, NY, USA: ACM, 2017, pp. 29–35. [Online]. Available:
http://doi.acm.org/10.1145/3154448.3154453

[27] S. Suneja, R. Koller, C. Isci, E. de Lara, A. Hashemi, A. Bhattacharyya,
and C. Amza, “Safe inspection of live virtual machines,” in
Proceedings of the 13th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments, ser. VEE ’17. New
York, NY, USA: ACM, 2017, pp. 97–111. [Online]. Available:
http://doi.acm.org/10.1145/3050748.3050766

[28] Y. Zhu, J. Liu, M. Guo, Y. Bao, W. Ma, Z. Liu, K. Song,
and Y. Yang, “Bestconfig: Tapping the performance potential of
systems via automatic configuration tuning,” in Proceedings of
the 2017 Symposium on Cloud Computing, ser. SoCC ’17. New
York, NY, USA: ACM, 2017, pp. 338–350. [Online]. Available:
http://doi.acm.org/10.1145/3127479.3128605

[29] V. Dalibard, M. Schaarschmidt, and E. Yoneki, “BOAT: Building
auto-tuners with structured bayesian optimization,” in Proceedings of
the 26th International Conference on World Wide Web, ser. WWW ’17.
Republic and Canton of Geneva, Switzerland: International World Wide
Web Conferences Steering Committee, 2017, pp. 479–488. [Online].
Available: https://doi.org/10.1145/3038912.3052662

[30] “Agentless system crawler,” https://github.com/cloudviz/agentless-
system-crawler.

[31] “Augeas,” http://augeas.net.
[32] “Tuning liberty,” https://www.ibm.com/support/knowledgecenter/en/

SSEQTP liberty/com.ibm.websphere.wlp.doc/ae/twlp tun.html.
[33] “Using redis as an LRU cache,” https://redis.io/topics/lru-cache.
[34] “Node.js docs,” https://nodejs.org/api/cluster.html#cluster cluster.
[35] “Tuning java resources - choosing a java garbage collector,” https://docs.

datastax.com/en/cassandra/3.0/cassandra/operations/opsTuneJVM.html.
[36] “Improve docker container detection and resource configuration usage,”

https://bugs.openjdk.java.net/browse/JDK-8146115.
[37] M. Attariyan, M. Chow, and J. Flinn, “X-ray: Automating root-cause

diagnosis of performance anomalies in production software,” in
Presented as part of the 10th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 12). Hollywood, CA:
USENIX, 2012, pp. 307–320. [Online]. Available: https://www.usenix.
org/conference/osdi12/technical-sessions/presentation/attariyan

[38] H. Jayathilaka, C. Krintz, and R. Wolski, “Performance monitoring and
root cause analysis for cloud-hosted web applications,” in Proceedings
of the 26th International Conference on World Wide Web, ser. WWW
’17. Republic and Canton of Geneva, Switzerland: International
World Wide Web Conferences Steering Committee, 2017, pp. 469–478.
[Online]. Available: https://doi.org/10.1145/3038912.3052649

[39] C. Tang, T. Kooburat, P. Venkatachalam, A. Chander, Z. Wen,
A. Narayanan, P. Dowell, and R. Karl, “Holistic configuration
management at facebook,” in Proceedings of the 25th Symposium
on Operating Systems Principles, ser. SOSP ’15. New York,
NY, USA: ACM, 2015, pp. 328–343. [Online]. Available: http:
//doi.acm.org/10.1145/2815400.2815401

[40] J. Zhang, L. Renganarayana, X. Zhang, N. Ge, V. Bala, T. Xu, and
Y. Zhou, “EnCore: Exploiting system environment and correlation
information for misconfiguration detection,” in Proceedings of the 19th
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’14. New York,
NY, USA: ACM, 2014, pp. 687–700. [Online]. Available: http:
//doi.acm.org/10.1145/2541940.2541983

http://doi.acm.org/10.1145/2741948.2741963
http://doi.acm.org/10.1145/3173162.3173206
http://doi.acm.org/10.1145/3173162.3173206
http://doi.acm.org/10.1145/1272996.1273025
https://www.kernel.org/doc/Documentation/filesystems/overlayfs.txt
https://www.kernel.org/doc/Documentation/filesystems/overlayfs.txt
https://blog.docker.com/2018/06/day-1-keynote-highlights-dockercon-san-francisco-2018
https://blog.docker.com/2018/06/day-1-keynote-highlights-dockercon-san-francisco-2018
http://dl.acm.org/citation.cfm?id=1972457.1972488
http://dl.acm.org/citation.cfm?id=1972457.1972488
http://queue.acm.org/detail.cfm?id=2898444
https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/burns
https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/burns
https://prometheus.io/
https://prometheus.io/
https://www.usenix.org/conference/atc17/technical-sessions/presentation/tak
https://www.usenix.org/conference/atc17/technical-sessions/presentation/tak
https://databricks.com/session/dr-elephant-for-monitoring-and-tuning-apache-spark-jobs-on-hadoop
https://databricks.com/session/dr-elephant-for-monitoring-and-tuning-apache-spark-jobs-on-hadoop
http://doi.acm.org/10.1145/3035918.3064029
http://doi.acm.org/10.1145/3035918.3064029
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/venkataraman
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/venkataraman
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/alipourfard
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/alipourfard
http://doi.acm.org/10.1145/3133888
http://doi.acm.org/10.1145/3133888
http://doi.acm.org/10.1145/3154448.3154453
http://doi.acm.org/10.1145/3050748.3050766
http://doi.acm.org/10.1145/3127479.3128605
https://doi.org/10.1145/3038912.3052662
https://github.com/cloudviz/agentless-system-crawler
https://github.com/cloudviz/agentless-system-crawler
http://augeas.net
https://www.ibm.com/support/knowledgecenter/en/SSEQTP_liberty/com.ibm.websphere.wlp.doc/ae/twlp_tun.html
https://www.ibm.com/support/knowledgecenter/en/SSEQTP_liberty/com.ibm.websphere.wlp.doc/ae/twlp_tun.html
https://redis.io/topics/lru-cache
https://nodejs.org/api/cluster.html#cluster_cluster
https://docs.datastax.com/en/cassandra/3.0/cassandra/operations/opsTuneJVM.html
https://docs.datastax.com/en/cassandra/3.0/cassandra/operations/opsTuneJVM.html
https://bugs.openjdk.java.net/browse/JDK-8146115
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/attariyan
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/attariyan
https://doi.org/10.1145/3038912.3052649
http://doi.acm.org/10.1145/2815400.2815401
http://doi.acm.org/10.1145/2815400.2815401
http://doi.acm.org/10.1145/2541940.2541983
http://doi.acm.org/10.1145/2541940.2541983

	Introduction
	Background
	Linux Containers and Images
	Container Orchestration System
	Configurations
	Metrics

	Challenges and Motivations
	Existing Approaches: What should we learn from?
	Motivations: What should we consider in cloud-native applications?

	Design
	Principles and Overview of Architecture
	Extracting Configs, Metrics, and Logs
	Accumulating Configs, Metrics, and Logs
	Config Tuning Approach
	Imperative or Declarative

	Implementation
	Crawling Configs and Metrics
	ConfAdvisor Service and Framework
	Advisor Rules and Plugins

	Evaluation
	Runtime Overhead
	Case Study: Config Advice with L1/L2 analysis
	Case Study: Config Advice with L3 analysis

	Related Work
	Conclusion
	References

