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Abstract—While Hadoop is the de facto standard big-data
middleware, many frameworks have been developed on top of
it. Since many SQL-on-Hadoop systems are available, we often
consider which engine is best for our queries. We can choose
not only query engines but also Java virtual machines (JVMs)
as well. As their systems become more complex, however, it
is not always true that a single system performs best at any
time. Moreover, the performance of a mismatched system may
degrade greatly. To exploit the best performance, it is important
to know what type of queries are suitable for a system and then
to schedule queries for the appropriate system. In this paper, we
evaluated the TPC-DS benchmark on a combination of query
engines (Spark and Tez) and JVMs (J9 and OpenJDK). We found
that using different engines lead to a drawback of over 10 times
and that using different JVMs leads to a drawback of 3 times. We
also analyzed the characteristics of each combination and then
proposed classification models for selecting the best combination
of systems with a generated query plan. As a result, we achieved
a performance improvement of up to two times in total with the
classifier.

I. INTRODUCTION

As data volumes have increased, large-scale distributed data
processing frameworks have been developed and widely used
in many applications. Hadoop [1] is the most popular open-
source framework for enabling scale-out data processing with
fault tolerance. Consequently, many data-centric applications,
such as extract-transform-load (ETL), relational query process-
ing, and machine learning, have been recently built on top of
the Hadoop eco-system. Although various frameworks have
been proposed for effectively processing massive amounts of
data in Hadoop, relational processing on Hadoop, i.e., SQL-
on-Hadooop, still remains a hot topic of user interest [2].
Thus, many SQL-on-Hadoop systems, such as Hive [3], Spark
SQL [4], Impara [5] and Presto [6], have been developed.

Users often consider which system is suitable for their
queries on the basis of a performance comparison or research
papers [7], [8]. Once they have decided which system to
select from among the candidates, they may never consider
whether another candidate system could perform better with
newly integrated features. There are several reasons users do
not move to other systems. First, system migration is very
time-consuming. In addition to the fact that extensive expert
knowledge on the characteristics and the details of system
implementation is sometimes required to achieve the optimal
performance, users need to take into consideration the details

of a new system again and re-implement a suitable SQL.
Second, the complexity of systems is growing. Even when
a simple query is being performed, computation depends on
many libraries, frameworks, runtimes, the operating system,
and so on. Moreover, a fair head-to-head comparison is quite
difficult since surrounding libraries and assumptions differ.
Hence, this diversity of systems often locks us into a single
system.

Meanwhile, many frameworks on top of Hadoop are written
in Java or Scala; therefore, their performance significantly
depends on runtime, i.e., Java virtual machines (JVMs). Since
JVMs have also been developed in open-source communities,
we can choose a suitable JVM from multiple implementations
such as OpenJDK and J9. As JVM specifications are strictly
defined, we can run any Java bytecode on a selected JVM
without there being a difference in execution result. However,
each JVM has differently implemented core components. For
example, the garbage collection (GC) algorithm, heuristics of
the just-in-time (JIT) compiler, and internal memory layout
of JVMs often differ from each other. Consequently, the
performance characteristics also differ depending on the appli-
cation as well as query engine. Since performance bottlenecks
have been moving to the CPU and memory layer due to the
recent trend in in-memory processing, the differences in JVMs
influence application performance more than ever before.
Therefore, it is also important to consider these differences
and select an adequate JVM to achieve better performance by
exploiting the advantages.

To exploit the advantages of underlying middleware, i.e.,
query engines and JVMs, in this paper, we argue that query
execution should be decoupled from systems once and an
adequate coupling of systems should be conducted again at
runtime. This interoperability would help to greatly improve
not only query performance but also resource utilization, e.g.,
a cloud computing model that decouples physical resources
from logical services. One of the advantages of a system that
performs in the Hadoop eco-system is that data can be shared
over the Hadoop Distributed File System (HDFS). Without
data modification, users can get query results as quickly
as possible by scheduling queries on adequate systems. At
the same time, minimizing processing time introduces great
benefits regarding higher resource utilization on the whole.

There are several challenges with scheduling a query for the



best suitable system. First, we need to characterize the target
system with a detailed analysis. Identifying the performance
trade-offs in query engines and JVMs is mandatory for taking
full advantage of every system. Second is making a decision
model on the basis of machine learning. If the execution
environment changes, the decision model may change as well.
Thus, the change in model should rely on the observation
of actual system performance. Third is updating the model
periodically when a new version of a system is available.
Rebuilding a model from scratch is sometimes very time
consuming when a new version is deployed on a system, so it
is important to update the model without breaking the current
model as much as possible.

In this paper, we addressed the first two challenges: system
characterization and machine-learning-based decision model.
We are also currently considering leveraging Bayesian opti-
mization [9], [10] and reinforcement learning for addressing
the third challenge, but we want to confirm that our approach
here is correct. To address the challenges, we first evaluated
the query performance of TPC-DS on multiple mixed query
engines (Spark and Tez) and JVMs (OpenJDK and J9). On the
basis of benchmark results, we found that unsuitable systems
lead to a drawback of over 10 times. Then, we analyzed where
the drawback comes from with system profiling. Finally, we
propose a classification model for making the best combination
of systems on the basis of the analysis. The model utilizes
generated query plan (DAG) information generated by Spark
and Tez. We examined several machine learning algorithms
and then confirmed that the proposed classifier can reduce the
execution time by 50% in total. In summary, we make the
following contributions in this paper.

• We characterize the query performance of TPC-DS with
a combination of SQL-on-Hadoop systems and JVMs.

• We analyze the fundamental causes of performance gain
and drawback found through our experiments that would
be helpful for not only making a classification model but
also improving the core of JVMs and SQL-on-Hadoop
systems.

• We provide a classification model based on DAG charac-
teristics generated by both query engines and determine
the classifier performance with all TPC-DS queries.

II. BACKGROUND

A. Spark SQL and Spark

Apache Spark is an open source in-memory-oriented data
processing framework for big data processing, and it has been
widely used as a general-purpose distributed engine [11]. By
keeping as much data in-memory as possible without writing
intermediate data, Spark performs much better than Hadoop.

Spark SQL [4] is a runtime for query processing on top of
Spark, and it introduces a query optimizer called “Catalyst.”
Catalyst makes an optimized physical task execution plan
(DAG) and generates optimized Java bytecode to speed up
execution. By exploiting hardware performance with SIMD in-
structions and building a more efficient memory management

model and serialization format, Spark SQL lets applications
run at the speed offered by the bare metal. Spark SQL has
the compatibility to run Hive Query, i.e., HiveQL, which is
shown in a later section, so the same HiveQL runs on Spark
SQL without modification. Spark SQL is highly optimized
for utilizing the Parquet file, which is a columnar format.
Columnar data representation has many advantages over the
row-based format, for example, column pruning and vectorized
processing.

B. Hive/LLAP and Tez

Apache Hive is one of the most widely used query en-
gines built on top of Hadoop and provides a SQL-like query
language called “HiveQL.” Hive was designed for batch-style
large data processing with a MapReduce job, which is com-
piled from HiveQL. Apache Tez [12] is a data-flow-oriented
distributed-processing framework, and it was developed as a
successor to the MapReduce engine. The data processing flow
is described as a DAG similar to Spark.

Recently, there have been attempts to make Hive effective in
supporting executing-latency aware interactive ad-hoc queries
with many features such as cost-based optimization (CBO),
columnar storage, vectorization, and asynchronous I/O threads.
The Optimized Row Columnar (ORC) is a highly efficient
file format for Hive. Hive introduces Calcite into its CBO
engine. Calcite is an open-source CBO, and it has more than
50 query optimization rules. Moreover, Hive introduces low
latency analytical processing (LLAP), which is a key feature
for using these optimizations in the latest Hive. LLAP resides
in each node as a long-lived daemon, and it provides an in-
memory columnar table cache and well-optimized operator
pipeline exploiting SIMD instructions.

C. Java Virtual Machines

As Hadoop is the de facto middleware in big-data pro-
cessing, JVM takes an important role as a runtime of these
eco-systems because Hadoop itself and related frameworks
are written in Java or Scala. Due to the recent in-memory
processing shift on these frameworks, JVM tuning is even
more necessary to exhibit optimum performance. Similar to
the other Java workloads, it is well known that GC greatly
affects application performance on big-data middleware in-
cluding Spark [13]. Besides GC being important in terms
of memory management, optimizing execution code by using
a JIT compiler is becoming even more important to enable
higher performance for in-memory query processing on recent
SQL-on-Hadoop systems.

First, JIT generally optimizes bytecode on the basis of two
different goals; one is to minimize startup time, and the other
is to maximize the performance of JIT compiled code with
method profiling. Since JIT compilation itself and hot method
profiling require CPU resources, it is important to choose an
adequate compilation policy that takes into consideration the
balance between compilation cost and execution time. Recent
JVMs offer tiered compilation, which makes it possible to
balance compilations at runtime. OpenJDK introduces two
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Fig. 1. Performance comparison on TPC-DS (SF = 500) of OpenJDK and J9 on Spark

tiered compilation, called “C1” and “C2,” and J9 does six
tiered compilation [14].

Second, vectorized code generation may further improve
query processing by exploiting hardware performance with
SIMD instructions. As some studies [15], [16] have shown
the benefits of vectorization in query processing, recent SQL-
on-Hadoop systems are also aimed at utilizing the auto-
vectorization feature of a JIT compiler. The columnar data
format also encourages systems to move into vectorization be-
cause it helps the JIT to perform vectorization more effectively
by loading the same type of values in a memory array.

Third, a JIT compiler offers intrinsics for several Java meth-
ods such as System.arraycopy(). Without having a compilation,
JIT compiler can replace these methods with architecture-
optimized code. Both OpenJDK and J9 offers intrinsics for
performance improvement.

III. PERFORMANCE EVALUATION

In this section, we will identify potential gains in modifying
all of four combinations of execution frameworks (Spark and
Tez) and JVMs (OpenJDK and J9) in TPC-DS queries.

We conducted all experiments on a single node of Power
System S824L, which is equipped with two 3.3-GHz POWER8
processors, 1 TB of RAM, and 5 TB of flash storage. Each
processor has 12 cores, while each core has 64 KB of L1
cache, 512 KB of L2 cache, and shares 96 MB of L3 cache.
The system manages a total of 192 hardware threads with 8
hardware threads per core and runs on Ubuntu 16.04 (kernel:
4.4.0-31-generic). We used Hadoop 2.7.2, Spark 2.1.0, Tez
0.9.0, and Hive 2.2.0 and prepared two JVMs, IBM J9 JVM
(1.8.0 SR4 FP2) and OpenJDK8, which are based on the same
Java class libraries (jdk8u121-b13).

Regarding the dataset, we generated 500-GB TPC-DS (scale
factor = 500) raw table data using hive-testbench1, which were
loaded in Parquet and ORC formats with gzip compression on
HDFS. Spark SQL and Hive/LLAP can process Parquet and
ORC format tables, but Spark SQL is optimized for Parquet
and Hive/LLAP for ORC, respectively. To not be biased toward

1https://github.com/hortonworks/hive-testbench

one system, we conducted a query-performance evaluation
with Parquet for Spark SQL and with ORC for Hive/LLAP.
We tested all 68 TPC-DS queries that are available in hive-
testbench.

Due to the framework difference between Spark and Tez, we
could not apply the same configuration for both frameworks,
but we used the same amount of resources as possible for
fair comparison. We prepared 12 worker threads and a 192-
GB heap for Spark SQL/Spark and 12 worker threads, 12 I/O
threads, a 96-GB heap, and 96-GB LLAP cache for Hive/L-
LAP/Tez. To simplify the terminologies for the runtimes, we
denote Spark SQL/Spark as Spark and Hive/LLAP/Tez as Tez.

A. J9 or OpenJDK - Spark Case

First, we will show the potential gain for different JVMs on
Spark. Figure 1 shows the query-response time (shown with
bars) and the performance gap (shown with a line) between
OpenJDK and J9 on Spark. The ratio means that OpenJDK
was faster than J9 when it was smaller than 1. This result
includes 62 out of 68 queries, while the remaining 6 queries
failed due to a query-format error. Focusing on both ends, Q72
finished 2.7 times faster with OpenJDK, and Q95 finished 1.5
times faster with J9. In summary, OpenJDK ran faster for 35
queries, and J9 ran faster for the remaining 27 queries.

B. J9 or OpenJDK - Tez Case

Next, we conducted the same experiments on Tez while
changing JVMs. A total of 65 queries successfully ran, except
the remaining 3 queries. Similar to the Spark results in
Figure 1, the query performance varied with the query, but the
slow queries on Spark were not always slow on Tez, which
we discuss later. Since the graph characteristics were almost
the same, we omitted the graph of the performance results for
Tez due to page limitations. OpenJDK was 1.56 times faster
for Q87 than J9, and J9 also was up to 1.74 times faster for
Q84 than OpenJDK.

C. Spark or Tez

We then evaluated the query performance for different
frameworks (Spark and Tez) with OpenJDK or J9. Figure 2
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Fig. 2. Performance comparison on TPC-DS (SF = 500) of Spark and Tez on OpenJDK

TABLE I
OPTIMAL COMBINATIONS OF QUERY ENGINE AND JVM

J9 OpenJDK total
Spark 13 6 19

Tez 22 19 41
total 35 25 60

shows the results of all 60 successfully finished queries with
OpenJDK. Since using J9 had a similar tendency, a graph
of the performance results is not shown to save space. Tez
performed better for around 40 queries than Spark, and Spark
performed better for around 20 queries. Compared with a
change in JVMs, as shown in previous sections, selecting
the wrong framework leads to a larger drawback; a suitable
framework is up to 10 times faster than Spark or Tez.

Finally, we compared the query response time for all
combinations (Spark, Tez, OpenJDK, and J9) and summarized
what combination is best for all 60 queries. Table I shows
how many queries were categorized into each combination.
Focusing on the Q13 response time, for example, Q13 finished
in 73.5 sec, 81.9 sec, 29.7 sec, and 25.1 sec on Spark with
OpenJDK, Spark with J9, Tez with OpenJDK, and Tez with
J9, respectively. Thus, we concluded that Tez with J9 is the
best combination for Q13.

IV. PERFORMANCE ANALYSIS

As shown in the previous section, we can improve query
performance by selecting the best combination of execution
framework and JVM for a query. However, we still do not
understand where the performance gain comes from, what
characteristics make the difference, and when to choose a
different framework or JVM. In terms of making a model
for selecting the best combination, it is important to identify
reasonable features from many characteristics including frame-
works, JVMs, and queries. In this section, we will analyze the
details of the performance difference in frameworks and JVMs
on the basis of various metrics, such as Java and JVM method
profiling and generated query plan (DAG) analysis, and then
determine which features impact performance.

Fig. 3. Comparison of target queries on mixed frameworks and JVMs
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There is not enough space to show the analysis results for
all TPC-DS queries, so we focused on several representa-
tive queries that have interesting characteristics. The selected
queries were Q50, Q51, Q58, and Q82. Figure 3 shows the
performance for these queries with different combinations of
framework and JVM. For example, Spark(J9) denotes the
query response time running on Spark as a framework and
using J9 as a JVM. Q51 is a representative example to show
that J9 has a 30-40% advantage over OpenJDK for both query
engines and that Spark is 3.5 times faster than Tez. Q50 and
Q82 indicate that OpenJDK is 30-35% faster than J9 on Tez
and Spark, respectively. Q50, Q58, and Q82 indicate that Tez
is 2-10 times faster than Spark.

A. Analyzing Differences in JVMs on Spark

First, we analyzed the performance difference between J9
and OpenJDK on Spark. Table II describes the characteris-
tics of executing the DAGs of Q51 and Q82 generated by
Spark. These characteristics are also candidate features for a
classification model that we will discuss later. Reduce stages
have shuffling for join operations, and the stages also write
intermediate data for shuffling. Comparing the DAGs of the
two queries, we conclude that Q51 is characterized as being
input-data heavy, shuffle-data-light, and having many shuffle



TABLE II
DAG ANALYSIS OF Q51 AND Q82 ON SPARK

Q51 Q82
# of map stages 2 2

# of reduce stages 6 2
# of bcast hash joins 2 2
# of sort-merge joins 1 1

# of grpby/sort 5 1
input read size (parquet,zlib) 6.0GB 2.5GB

shuffle output size (lz4) 1.0GB 5.6GB

stages, and Q82 is characterized as being input-data-light,
shuffle-data heavy, and having a few shuffle-stages.

We then analyzed hot methods for Java, JVM, and a native
library while running Q51 and Q82, profiled by Oprofile.
Table III represents the overall profile of each category (top
half) and a breakdown of the profiles in the Java category
(bottom half). JVM includes JVM managed methods like GC
and JIT, nativelib includes mainly compression libraries like
zlib and lz4, and Java includes application and framework
methods. In the top half, one notable difference exists in JVM;
OpenJDK spent much more CPU for JVM than J9 because
GC threads in OpenJDK waited for GC tasks in a spin loop.
However, spin wait does not affect performance as long as
CPU resources remain.

Moving to the bottom half of the breakdown of Java, each
of the categories (catalyst, java and spark lib, crc32c, lz4-
java, and unsafe) corresponds to query processing, framework
and I/O processing, crc32c validation for input data, de-
compression, and memory management with sun.misc.Unsafe,
respectively. One notable difference here is the unsafe ratio.
sun.misc.Unsafe.copyMemory() is frequently used in Spark
shuffle; however, there exists a constant overhead due to
calling this method compared with J9 because OpenJDK does
not provide an optimized intrinsic for Unsafe.CopyMemory.
Furthermore, the overhead of JNI calls was not negligible
when many tasks and stages existed. Q51 had many reduce
tasks consisting of 200 tasks for shuffling, but the total amount
of shuffling was relatively smaller than that of Q82, so a
JVM-management overhead accumulated between stages. In
comparison, J9 spent around 10% more CPU cycles for java
and spark lib while running Q82. As can be seen in the detailed
profile, J9 spent much more time while writing data to an
intermediate file for a later shuffle.

In summary, for SQL workloads on Spark with J9 and
OpenJDK, J9 has an advantage in complex multi-tier queries
that have many stages including shuffle, and OpenJDK has
an advantage in simple stage-less queries that write a shuffle-
output file larger than the input-file size. This tendency was
common for Q50 and Q58.

B. Analyzing Differences in JVMs on Tez

Next, we compared the difference between J9 and OpenJDK
on Tez for Q50 and Q51. Table IV summarizes the overall
profile result. Compared with the MapTask in Tez, J9 always
performed better than OpenJDK. MapTask in Tez consists of
several phases like data loading, sorting, and writing in a

TABLE III
BREAKDOWN OF OVERALL AND JAVA CPU CYCLES ON SPARK

Q51 Q82
category J9 OpenJDK J9 OpenJDK

O
ve

ra
ll others 18.3% 15.4% 16.3% 9.77%

nativelib 15.6% 11.8% 4.43% 5.53%
JVM 15.7% 28.3% 5.49% 10.5%
Java 50.4% 44.5% 73.8% 74.2%

Ja
va

de
ta

il

catalyst 25.6% 13.8% 15.7% 13.0%
java io 11.8% 14.6% 12.5% 20.0%

spark lib 6.71% 7.67% 35.4% 19.5%
crc32c 2.49% 1.95% 0.58% 0.9%

lz4-java 3.75% 4.66% 9.59% 18.5%
Unsafe 0.0001% 1.78% 0.0003% 2.2%

TABLE IV
BREAKDOWN OF OVERALL AND JAVA CPU CYCLES ON TEZ

Q50 Q51
category J9 OpenJDK J9 OpenJDK

O
ve

ra
ll others 18.4% 8.82% 4.30% 3.90%

nativelib 2.83% 4.18% 2.20% 2.04%
JVM 10.0% 25.9% 12.0% 7.06%
Java 68.7% 61.1% 81.5% 87.0%

Ja
va

de
ta

il

hive ql 28.0% 22.2% 15.2% 8.97%
tez lib 3.37% 2.81% 29.2% 12.0%

orc 21.7% 17.1% 0.92% 0.89%
hadoop 8.25% 5.49% 26.2% 44.5%

java 7.24% 13.3% 9.46% 20.6%

pipeline fashion. In the MapTask for Q51, for example, J9 took
7 sec on average, whereas OpenJDK took 21 sec on average.
Focusing on the details of Java methods, a hotspot does not
exist in applications but in data copy and serialization. The
ratio for OpenJDK was higher than that for J9.

Moving on to the best case of OpenJDK for Q50, OpenJDK
was also behind for MapTask as well as Q51, but this
drawback did not result in a difference in performance because
the input data were not that large. Instead, ReduceTasks spent
a lot of time for Q51, which took 106 sec with J9 and about
60 sec with OpenJDK. As shown in the method-profile results
in Table IV, J9 spent three times the CPU cycles for kallsyms
compared with OpenJDK. Comparing CPU cycles, J9 spent
three times more system CPU time and used only half of the
CPU time compared with OpenJDK. For Tez, many threads
were managed in each vertex of the computational DAG for
handling various tasks. Most of these threads were related to
shuffle tasks such as merge, sort, file writing, and file fetching.
Runtime automatically prepares threads corresponding to the
logical CPU cores of a system. By checking the system utiliza-
tion, J9 caused much more context switches than OpenJDK.

In summary, for SQL workloads on Tez with J9 and
OpenJDK, J9 has an advantage in executing MapTask-heavy
workloads, and OpenJDK has an advantage in ReduceTask-
heavy workloads.

C. Spark or Tez - Analyzing Differences in Framework

Finally, we analyzed the difference in performance between
Spark and Tez. As shown in Figure 3, Spark was faster than
Tez for Q51, and Tez was faster for the other three queries.
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We will look at the Q51 case in more detail. In terms of the
form of the query plan, the formation was almost the same,
but one difference came from the implementation of map-side
join. Map-side join is a technique for reducing shuffling data
in order to combine a small table with a big table. In Spark, the
driver program loads small tables and then pushes them to the
executor JVMs. In Tez, instead, executor JVMs directly pull
the small tables. At this point, the DAG is slightly different,
but this does not impact performance.

Comparing the query plan inside, the filtering rule for a big
table was different. Spark was more aggressively optimized
for pruning unused rows, and the total number of loaded
lines was 366; however, that for Tez was 8116. As a result,
the intermediate data size for shuffling for the successor
ReduceTask was quite different; 687 MB for Spark and 3.6 GB
for Tez. In contrast, Tez performed better than Spark for Q50,
Q58, and Q82 with another filter optimization, i.e., Bloom
filter. Since a Bloom-filter-based filter rule is implemented in
Tez only, it is effective in data pruning if the feature is enabled.
Back to Q51 again, Spark performed better than Tez because
the rule does not work in Tez. In summary, the filtering rule
in the first data loading map phase makes a difference in
performance.

V. CLASSIFIER FOR ENGINE AND RUNTIME SELECTION

A. Training Methodology

As discussed in Section IV, we characterized what features
make a difference in performance by analyzing observation
results and comparing the details of implementation for each
query engine and JVM. To utilize these features for classifier
training and prediction, we propose using a generated DAG
from Spark and Tez as a training data set because a DAG
already contains the candidate features, e.g., the number of
stages, maps, and reduces, input and shuffle data size, and
filtering rules, we listed in Section IV.

Figure 4 represents an overview of the training and pre-
diction steps of our classifier. Since each CBO generates an
optimized physical plan (DAG) on the basis of table statistics
and their own strategies, we can extract the key features
from them and then make a training feature vector per each
query. As shown in Table I, we already had training labels
for all queries, so we can perform supervised learning for this
classifier problem. For the prediction phase, we execute the

TABLE V
ACCURACY SCORES OF THE CLASSIFIERS

binary classifier multinomial classifier
mean stddev (+/-) mean stddev (+/-)

kNN 0.65 0.08 0.43 0.04
Decision Tree 0.69 0.17 0.34 0.16

SVM 0.72 0.10 0.39 0.08
Random Forest 0.72 0.02 0.46 0.06

explain command for a query. By using explain, we can get
an optimized DAG without having to actually execute a query.
By passing the feature vector to a classifier, we can predict the
best suitable combination of engine and runtime for a query.

B. Evaluating Classification Model

We generated our classification model on the basis of the
TPC-DS results shown in Section III. We extracted a total of
69 features from 2 DAGs, that is, 34 features from Spark DAG
and 35 features from Tez DAG. We prepared two classifier
models in this experiment. The binary classifier focused on
selecting the query engines: Spark or Tez. The multinomial
classifier focused on selecting the best combination of engine
and JVM from four patterns.

Table V shows the accuracy scores of the classifiers with
four different machine learning algorithms: k-nearest neighbor
(kNN), decision tree, support vector machine (SVM), and
Random Forest. To prevent overfitting, we conducted k-fold
cross validation for all four algorithms by dividing the dataset
into 80:20 for training and testing. In our experiments, random
forest achieved a higher accuracy score than the other three
algorithms; the score was 0.72 for the binary classifier and
0.46 for the multinomial classifier. Compared with the simple
decision tree, random forest performed better with ensemble
methods. We can improve accuracy scores more by searching
for well-suited hyperparameters. In the case of Random Forest,
the accuracy score was improved up to 0.82 for the binary
classifier and up to 0.54 for the multinomial classifier by
changing the number of tree depth and ensemble trees. The
accuracy score of the multinomial classifier seemed to be not
that high compared with the score of the binary classifier
because it included a slight mis-prediction in JVM selection.
However, this mis-prediction would not cause a big perfor-
mance difference in practice compared with the query engine.
As a consequence, we adopt Random Forest for our classifier.

To inspect which features actually contribute to our Random
Forest based classifier, we then evaluated the feature impor-
tances of the classifier, which is shown in Figure 5. We only
listed up the top 15 features. The prefix “S” means the feature
comes from Spark, and prefix “T” means the feature comes
from Tez. As we expected, the basic DAG features, e.g., the
number of stages, were more important than others. Map-side
join related features, i.e., S BcastExch and T MapjoinM, and
the features of the used tables, e.g., store sales and item, are
also affected the classifier. In contrast, some features, e.g.,
using bloom filter or outer join, were not so important because
they are already covered by the basic DAG features.
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Fig. 5. Feature importances of our Random Forest based classifier

Finally, we evaluated how much performance improvement
we can achieve if these classification models are used. Figure
6 compares the total accumulated execution time through all
TPC-DS queries. The baseline represents the query response
time with a fixed combination, that is, Spark/J9. The data
are sorted in ascending order. The “ideal” lines represent
the performance with the best selection, and the subscript,
e.g., 2 or 4, means the number of classification classes.
The “predict” lines also represent the performance with our
classification models. Comparing the baseline with the ideal,
the baseline took about 12,000 sec until all query executions
were finished, while the ideal took 4,600 sec. There was not
that much of a difference between ideal(2) and ideal(4). In
terms of prediction, predict(2) made big mistaken decisions
for two queries. However, it made good predictions for several
heavy queries such as Q93, Q24, and Q64, so it reduced
execution time by 35% in total compared with the baseline.
Predict(4) achieved more of a performance improvement than
did predict(2), and it reduced the execution time by 50% in
total.

VI. RELATED WORK

Performance Characterization: Analyzing performance
characteristics with typical benchmarks is always important
because such knowledge helps in determining what system is
best and where the fundamental system bottleneck is. Thus,
several studies have attempted to characterize SQL-on-Hadoop
systems [7], [17], [8], and few studies have characterized
systems from a JVM perspective [18], [19]. Floratou et al.
[7] compared three systems (Hive on MapReduce, Hive on
Tez, and Impala) and summarized their performances by
conducting the TPC-H benchmark. Shi et al. [17] compared
MapReduce and Spark by using various typical workloads
such as word count, page rank, sort, and k-means. Qin et
al. [8] evaluated five recent systems (Hive, Spark, Presto,
Imparam and Drill). From the JVM point of view, in papers
[18], [19], Spark-performance optimization was characterized
and discussed, especially with heap sizing and GC improve-
ment. Almost all studies focused on Hive and SparkSQL, but
there has been no study addressing the recent Hive LLAP
feature. Moreover, there has been no comparison of multiple
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Fig. 6. Performance of Classification Models (baseline=Spark/J9, pre-
dict(2)=binary classifier, predict(4)=multinomial classifier)

JVM implementations, though their differences result in large
performance gaps.

Performance Model: Cost-based performance models have
been widely investigated for the Hadoop eco-system [20],
[21], and these models are helpful in accurately predicting
performance. One drawback of this approach is that precise
knowledge on a system is required to construct a concrete
model. Thus, machine-learning-based models have also been
investigated. Luo et al. [22] used a support vector machine
(SVM) and artificial neural network (ANN) to construct a
performance model for Spark. Gibilisco et al. [23] proposed
a mixed approach for a Spark-performance model, which
is based on training with multiple polynomial regression
models and considering per-stage characteristics of a Spark
DAG. Kewen et al. [24] constructed an analytical model to
estimate the effort of interference among multiple Spark jobs,
and Nhan et al. [25] demonstrated an analytical model for
understanding the effect of Spark configurations on several
Spark applications.

Combination of Multiple Engines: Several studies have
proposed mixing engine/library approaches recently to exploit
the advantage of different engines for big-data-analytics plat-
forms. Musketeer [26] decouples frontend frameworks from
backend engines, translates a workflow into an intermediate
representation (IR), and then generates code for the best
suitable backend by applying several optimizations to the
Musketeer IR DAG. By expressing an application as an IR
and facilitating cross-library optimization, Weld [27] performs
competitively with hand-tuned state-of-the-art code on various
systems such as Spark and TensorFlow. Hybrid query-engine
approaches, such as MISO [28], Octopus [29], and MuSQLE
[30], have been extensively investigated and determined to
perform best for queries. On the basis of analytical or heuristic
approaches, they adaptively select the best or multiple query
engines from Spark, Hadoop, PostgreSQL, MySQL, and so
on. These studies had a similar motivation to ours in terms of
exploiting the power of backend engines. In addition to con-
sidering multiple query engines, we addressed the combination
of query engine and JVM runtime.



VII. CONCLUSION

We evaluated the performance of TPC-DS on several com-
binations of SQL-on-Hadoop systems (Spark and Tez) and
JVMs (OpenJDK and J9) and analyzed the performance char-
acteristics of each system through method profiling and DAG
analysis. We demonstrated that system mismatch leads to a
huge drawback depending on the query characteristics; using
a different query engine would be up to 10 times worse,
and using a different JVM would be up to 3 times worse.
Then, we discussed classification models based on a DAG
generated by each query engine. By executing several machine
learning algorithms, it was found that random forest can make
a prediction more correctly than others. As a consequence, the
proposed random forest based classifier reduced the execution
time by 50% in total while running all TPC-DS queries by
selecting better combinations of query engine and JVM.
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