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Motivation

Apache Spark is an in-memory data processing framework, runs on JVM
Spark executes Hadoop similar workloads, but optimization points are not same

= Complexity to find a fundamental Bottlenecks
— 1/O bottleneck > CPU, Memory, Network bottleneck

— JVM handles many worker threads
= What is a best practice to achieve high performance?

= Managing large Java heap causes high GC overhead
— Keeps as much data in memory as possible Spark Application

— Generates short-lived immutable Java objects

Spark Runtime

= How we can reduce garbage collection overhead?

= From Scale-out to Scale-up -

— Utilizes many worker threads w/ SMT on multiple NUMA nodes
— Need to know micro architectural efforts

= How we can exploit underlying Hardware features?
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Goal and Result

= Goal
— To characterize Spark Performance through SQL workloads
— To find optimization best practice for Spark

— To investigate potential problem in current Spark and JVM for
scaling up

= Result
— Achieved up to 30% improvement by reducing GC overhead
— Achieved up to 10% improvement by utilizing more SMT
— Achieved up to 3% improvement by NUMA awareness

— Achieved 30 — 40% improvement on average with applying all
optimization
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How Spark and Spark SQL work

= Spark
— Job is described as a data transformation chain and divided into

multiple stages
Each stage includes multiple tasks

— Tasks are concurrently proceeded by worker threads on JVMs

Data shuffling occurs between stages

= Spark SQL

Catalyst, a query optimization framework for Spark, generates an
optimized code

It has a compatibility for HIVE query

: Logical Physical Code
s Optimization Planning Generation
SQL Query = § ——
Unresolved Optimized Il[ ical F s o
Logical Plan [T | -09'cal Plan =1, odical Plan Pgm 3 P'I‘?);:ﬁal RDDs
DataFrame &)
Catalog

Cited from Michael et al., Spark SQL: Relational Data Processing in Spark , SIGMOD’15
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How SQL code translates into Spark TPC-

= stage 0 : Load CUSTOMER table named as 'c’

= stage 1 : Load ORDERS table named as ‘o’

= stage 2 : Join c and o where c.custkey = o.custkey
= stage 3 : Select c_count, count(1) groupby c_count

select c_count, count(l) as custdist

from |
' select c_custkey, count(o_orderkey) as c_count
) from

customer ¢ left outer join (
select o_custkey, o_orderkey
from orders where not o_comment like '%s
) 0 on c.c_custkey = 0.0_custkey
group by c_custkey
) c_orders
group by c¢_count
order by custdist desc, c_count desc;

pec

Completed Stages (4)

Stage

Id Description

3 select c_count, count(1) as custdist from ( select c_custkey, count(o_orderkey) as c_count from...
Spark JDBC Server Query +details

2 select c_count, count(1) as custdist from ( select c_custkey, count(o_orderkey) as c_count from...
Spark JDBC Server Query +details

1 select c_count, count(1) as custdist from ( select c_custkey, count(o_orderkey) as c_count from...
Spark JDBC Server Query +details

0 select c_count, count(1) as custdist from ( select c_custkey, count(o_orderkey) as c_count from...
Spark JDBC Server Query +details
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Tasks: Shuffle
Submitted Duration Succeeded/Total Input  Output Read
2015/06/24 04s (G000 693.4 KB
04:35:34
2015/06/24 47s [ 200200 15.0 GB
04:34:47
2015/06/24 somn  (NEEAENN 333
04:31:48 GB
2015/06/24 125 EEAsE 4001
04:31:48 MB

Shuffle

Write

693.5 KB

142GB

817.6 MB
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Machine & Software Spec and Spark Settings
‘___

POWERS 24 cores Ubuntu
3.30GHz*2 (2 sockets * 12 cores) (total 192 hardware threads) 14.10 (kernel 3.16.0-31)
. softwae | _veson
Spark 141
Hadoop (HDFS) 26.0
Java 1.8.0 (IBM J9 VM SR1 FP10)
Scala 2104

= Baseline Spark settings
— # of Executor JVMs: 1
— # of worker threads: 48
— Executor heap size: 192GB (nursery = 48g, tenure = 144q)

= Other picked up Spark configurations (spark-defaults.conf)
— spark.suffle.compress = true
— spark.sql.parquet.compression.codec = Snappy
— spark.sqgl.parquet.fileterPushdown = true
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Workload Characterization — Spark job level

* Picked up several queries
Shuffle Stages / Tasks

SQL Characteristics Converted Spark Operation

(# of stages) (total, GB)
1o 1 GroupBy 1 Load 4.8 0.002 2/793 487 |
I Load 1 Table 1 Aggregate i
Q3 1 GroupBYy, 2 Join 3 Load 7.3 5.0 6/1345 64.6
1 Q5 1 GroupBYy, 5 Join 3 Load, 3 HashJoin 8.8 14.1 8/1547 125 [
[ Load 6 Table 1 BeastJoin, 1 Aggregate i
Q6 1 Select, 1 Where 1 Load 4.8 0 2/5% 15.1
Load 1 Table 1 Aggregate

@ 1 GroupBYy, 5 Join 4 Load, 4 HashJoin 11.8 344 10/ 1838 370
Load 6 Table 1 BeastJoin, 1 Aggregate

Q18 3 Jain, 1 UnionAll 6 Load, 3 HashJoin 7.7 13.8 11/3725 202
Load 3 Table 1 Union, 1 Limit

Q19 3 Jain, 1UnionAll 6 Load, 3 HashJoin 19.8 04 812437 80.8
Load 2 Table 1 Union, 1 Aggregate

Shuffle-light queries Shuffle-heavy queries

Q1, Q6, Q19 Q5, Q9, Q18
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Workload Characterization — oprofile

= Shuffle-heavy queries (e.g. Q5 and Q8) : over 30% cycles are spent in GC
= Shuffle-light queries (e.g. Q1 and Q6) : low SerDes cost

= Unexpected JIT and_Threac'i_ S_Ein Lock overheads exists in Q16 and Q21
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Workload Characterization — garbage collection

= GC = GC
— Many nursery GC ab — Many nursery GC
— Small Pause time (0.02 sec) — Big pause time (3 - 5 sec)
— Few global GC — Global GC while execution
= Java Heap = Java Heap
— Low usage level ( within nursery space) — Objects are flowed into tenure space
6
33'5 S ¢ globalgc  © nursery gc
bl 3 O-GIOE000C00 0~ 00000000 - 00000000~ -0000 00000 ~ 00000000 ~O00 00000 g 5
=25 < 4 COCOMIITIND. COCTUIIIDAD
g 5 O nursery gc g
'g 15 © global gc g 3
é 1 g 2 4
o ©
o 05 o )
3% 3
0 50 100 150 200 250 300 0
0 100 200 300 400 500 600 700 800 900
50 o 200
= .« =ysedtenureheap cccccce used nursery heap total used heap
= 40 @150
Qo nursery size = . =usedtenureheap o
é 30 oo used nursery heap total used heap élOO
Q_ZO - o
(50 ©
T 10 | \ £ 50
0
0 >0 100 150 200 250 300 0 100 200 300 400 500 600 700 800 900
elapsed time (sec.) elapsed time (sec.)
Shuffle-Light Query (Q1) Shuffle-Heavy Query (Q5)
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Workload Characterization — PMU profile

= Approach

— Observed performance counters by perf
— Categorized them based on the CPI breakdown model [*]

= Result

— Backend stalls are quite big
— Lots of L3 miss which comes from distant memory access

— CPU Migration occurs frequently

counters Ql Q5

CPU cycles 6.8 x 10'4 2.2 x 10*°
stalled-cycles-frontend | 2.1 x 10} (3.20%) | 6.2 x 10'! (2.76%)
stalled-cycles-backend | 3.3 x 1012 (49.0%) | 1.3 x 10'3 (59.1%)
instructions 7.0 x 1012 1.5 x 1013

IPC 1.03 0.67
context-switches 407K 440K
cpu-migrations 11K 26K

page-faults 308K 1045K
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Problem Assessments and Optimization Strategies

= How we can reduce GC overhead?
—1). Heap sizing

—2). JVM Option tuning
—3). Changing # of Spark Executor JVMs
—4). GC algorithm tuning

= How we can reduce backend stall cycles?
—1). NUMA awareness

— 2). Adding more hardware threads to Executor JVMs
—3). Changing SMT level (SMT2, SMT4, SMTS8)
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Efforts of Heap Space Sizing

= Heap sizing efforts
— Bigger nursery space

achieves up t0 30% mm Xmn48g s Xmn96g  mmmm Xmn128g relative (%)
improvement 350 5.0%
'S 300 0.0%
= Small tenure space may 8 e ©.0%
be harmful 2 200 -10.0%
[ -15.0%
— Run out of tenure space ' 150 20.0%
by caching RDDs in £ 100 s 0%
memory g 50 30.0%
_ “ 0 -35.0%
— Leaked objects from Q1 Q5 Qo Q8 Q9 Q16 Q19

nursery space

Nursery Space Execution Time GC ratio (%) Nursery GC Avg. Nursery GC
(-Xmn) (sec) pause time
48g (default) 316s 20 % 21s 39 1
969 310s 18 % 34s 22 1
1449 292s 14 % 36s 14 0

Workload Characterization and Optimization for TPC-H Queries on Apache Spark © 2016 IBM Corporation




IBM Research — Tokyo

Efforts of Other JVM Opt

mam Ql mmm Q5 -O--relative Q1 (%)

120

= JVM options

lons

— Monitor threads tuning g 100
—#of GC threads tuning ¢ *°
— Java thread tuning '
— JIT tuning, etc. i
L%’ 20
= Result 0
— Improved over 20%
GC Threads 2>
Monitor Threads =

Disable Large Object Area 2
Reduce thread lock cost >

Stop compaction 2>

Stop JIT feature >

Stop System.gc() 2>

option loption 2option 3option 4option 5option 6option 7

relative Q5 (%)

5.0%
0.0%
-5.0%
-10.0%
-15.0%
-20.0%
-25.0%

L* 1

spark.executor.extraJavaOptions

1 | -Xgcthreadsd8 -Xmn96g -Xdump:system:none -Xdump heap:none

-Xtrace:none

2 | -Xgcthreads48 -Xmn96g -Xdump:system:none -Xdump:heap:none

-Xnoloa -Xtrace:none

3 | -Xgcthreads48 -Xmn96g -Xdump:system:none -Xdump:heap:none

-XlockReservation -Xnoloa -Xtrace:none

4 | -Xgcthreadsd8 -Xmn96g -Xdump:system:none -Xdump:heap:none

~Xnocompacige -XlockReservation -Xnoloa -Xtrace none

5 -X;cthrcads'“ -XmnY6g -Xdump:system:none -Xdump:heap:none

untimelnstrumentation
-Xnocompactge -XlockReservation -Xnoloa -Xtrace:none

6 | -Xgcthreadsd8 -XmnY6g -Xdump:system:none -Xdump:heap:none

-Xdisableexplicitge -XX:-Runtimelnstrumentation
-Xnocompactge -XlockReservation -Xnoloa -Xtrace:none

7 | -Xgcthreads48 -Xmn9Y6g -Xdump:system:none -Xdump:heap:none

© 2016 IBM Corporation




IBM Research — Tokyo

Efforts of changing JVM Counts

s 1JVM s 2J)VM 4)VM  mmmmm 8JVM e« &« best (%) = O=-worst (%)

300 ~

250

200

150

100

Execution TIme (sec.)

50

0

Q1 Q5 Q6 Q8 Q9 Qil6 Q19
= Result

Q19

60%
40%
20%
0%
-20%
-40%
-60%

-80%

— Up to 70% improvement in Q16 (by avoiding unexpected threads

lock activity)

— Reduced heavy GC overhead
— Has a drawback a little for shuffle-light queries

— Using 1 JVM frequently occurs task execution failure than 4 JVMs

Workload Characterization and Optimization for TPC-H Queries on Apache Spark
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Efforts of NUMA aware process affinity

numactl -c [0-7],[8-15],[16-23],[24-31],[32-39],[40-47]

............. Spark Executor JVMs. - - - ____
s NUMA off  mmmsss NUMAon = O= =speedup (%)
JVM 0 JVM 1 JVM 2 JVM 3
250 1 0(‘)00/:/ 12threads 12threads 12threads | 12threads
-0.5%

-1.0%
-1.5%

Execution TIme (sec.)

2.0% | S| BNULAG NUMA1 NUMA2 NUMA3
o wn

100 25%| o | Nu[m[mll Nu]=]s] ooo B ooo
50 A g 30% 8 ooa ooo ooag oog

3.5% | o Socket 0 Socket 1
0 - -4.0%

Q1 Qs Q9 Q19 I —1
\_ - DRAM )

= Setting NUMA aware process affinity to each Executor JVM helps to speed-
up

— By reducing scheduling overhead

){ reducing cache miss and stall cycles
= esu

— Achieved 3 — 3.5 % improvement in all benchmarks without any bad effects
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Efforts of Increasing worker threads
mmm 2WT/core (192GB) mmmm 4WT/core (192GB) =e- -relative (%)

250 40.0%
$200 30.0%
o 20.0%
£150
= 10.0%
5100 .
é 0.0%
£ 50 -10.0%

0 -20.0%
Q1 Q5 Q6 Q8 Q9 Ql6 Q19
= Settings

— 2WT/core : handles 12 worker threads on 6 cores (in total, 48 worker threads)
— 4WT/core : handles 24 worker threads on 6 cores (in total, 96 worker threads)

= Result
— Some queries gain over 10% improvement regardless of shuffle data size
— @5 and Q8 had a drawback

Workload Characterization and Optimization for TPC-H Queries on Apache Spark © 2016 IBM Corporation




IBM Research — Tokyo

Summary of applying all optimizations

s default s optimized --0O---relative (%)
. 3T
Q
300 ---"\‘ ---------------- -,Q\- ---------------------
8 250 e S
:” \ ’_O’" -0 ‘Q % ‘o--0
£ 200 A---rmmmmmmmmm e AN i
= N
_5 150 - R
5
@ 100 --------------f------ S BB
X
L
50 ot e B
O -
598555588883
g o g

= Shuffle-light: 10 — 20% improvement
= Shuffle-heavy: 30 — 40% improvement
= Eliminated unexpected JVM behavior in Q16 and Q21

— Q21 took 543 sec, which took over 3000 sec before tuning
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Summary and Future Works

= Summary

— Reduced GC overhead from 30% to 10% or less by heap
sizing, JVM counts, and JVM options

— Reduced distant memory access from 66.5% to 58.9% by
NUMA awareness

— In summary, achieved 30 — 40 % improvement on average

— All experiment codes are available at

hitps://aithub.com/tatsuhirochiba/toch-on-spark

= Future works

— Comparison between x86_64 and POWERS8
— Other Spark workloads
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