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Overview

§ Introduction
– Motivation
– Goal and Result

§ Workload Characterization
– How Spark and Spark SQL work
– Environments 
– Application level analysis
– System level analysis 
– GC analysis
– PMU analysis

§ Problem Assessments and Approach
§ Result
§ Summary and Future Work
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Motivation

§ Complexity to find a fundamental Bottlenecks
– I/O bottleneck à CPU, Memory, Network bottleneck

– JVM handles many worker threads

§ Managing large Java heap causes high GC overhead
– Keeps as much data in memory as possible

– Generates short-lived immutable Java objects 

§ From Scale-out to Scale-up 
– Utilizes many worker threads w/ SMT on multiple NUMA nodes

– Need to know micro architectural efforts 
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Spark Runtime

Spark Application

JVM

OS

Hardware

Apache Spark is an in-memory data processing framework, runs on JVM
Spark executes Hadoop similar workloads, but optimization points are not same

à How we can reduce garbage collection overhead? 

à How we can exploit underlying Hardware features?

à What is a best practice to achieve high performance?
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Goal and Result

§ Goal
– To characterize Spark Performance through SQL workloads
– To find optimization best practice for Spark 
– To investigate potential problem in current Spark and JVM for 

scaling up 

§ Result
– Achieved up to 30% improvement by reducing GC overhead
– Achieved up to 10% improvement by utilizing more SMT
– Achieved up to 3% improvement by NUMA awareness
– Achieved 30 – 40% improvement on average with applying all 

optimization 
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How Spark and Spark SQL work
§ Spark 

– Job is described as a data transformation chain and divided into 
multiple stages

– Each stage includes multiple tasks
– Tasks are concurrently proceeded by worker threads on JVMs
– Data shuffling occurs between stages

§ Spark SQL
– Catalyst, a query optimization framework for Spark, generates an 

optimized code
– It has a compatibility for HIVE query
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Cited from Michael et al., Spark SQL: Relational Data Processing in Spark , SIGMOD’15
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§ stage 0 : Load CUSTOMER table named as ’c’
§ stage 1 : Load ORDERS table named as ‘o’
§ stage 2 : Join c and o where c.custkey = o.custkey
§ stage 3 : Select c_count, count(1) groupby c_count

How SQL code translates into Spark  - TPC-H Q13 
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Machine & Software Spec and Spark Settings
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Processor # Core SMT Memory OS
POWER8

3.30 GHz * 2
24 cores

(2 sockets * 12 cores)
8

(total 192 hardware threads)
1TB Ubuntu

14.10 (kernel 3.16.0-31)

software version
Spark 1.4.1 

Hadoop (HDFS) 2.6.0

Java 1.8.0 (IBMJ9 VM SR1 FP10)

Scala 2.10.4

§ Baseline Spark settings

– # of Executor JVMs: 1

– # of worker threads: 48

– Executor heap size: 192GB  (nursery = 48g, tenure = 144g)

§ Other picked up Spark configurations (spark-defaults.conf)

– spark.suffle.compress = true

– spark.sql.parquet.compression.codec = Snappy

– spark.sql.parquet.fileterPushdown = true
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Workload Characterization – Spark job level
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Query SQL Characteristics Converted Spark Operation
( # of stages)

Input 
(total, GB)

Shuffle 
(total, GB)

Stages / Tasks Time (sec)

Q1 1 GroupBy
Load 1 Table

1 Load
1 Aggregate

4.8 0.002 2 / 793 48.7 

Q3 1 GroupBy, 2 Join
Load 3 Table

3 Load
2 HashJoin, 1 Aggregate

7.3 5.0 6 / 1345 64.6

Q5 1 GroupBy, 5 Join
Load 6 Table

3 Load, 3 HashJoin
1 BcastJoin, 1 Aggregate

8.8 14.1 8 / 1547 125

Q6 1 Select, 1 Where
Load 1 Table

1 Load
1 Aggregate

4.8 0 2 / 594 15.1

Q9 1 GroupBy, 5 Join
Load 6 Table

4 Load, 4 HashJoin
1 BcastJoin, 1 Aggregate

11.8 34.4 10 / 1838 370

Q18 3 Join, 1 UnionAll
Load 3 Table

6 Load, 3 HashJoin
1 Union, 1 Limit

7.7 13.8 11 / 3725 202

Q19 3 Join, 1UnionAll
Load 2 Table

6 Load, 3 HashJoin
1 Union, 1 Aggregate

19.8 0.4 8 / 2437 80.8

* Picked up several queries 

Q1, Q6, Q19

Shuffle-light queries

Q5, Q9, Q18

Shuffle-heavy queries
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Workload Characterization – oprofile 
§ Shuffle-heavy queries (e.g. Q5 and Q8) : over 30% cycles are spent in GC
§ Shuffle-light queries (e.g. Q1 and Q6) : low SerDes cost
§ Unexpected JIT and Thread Spin Lock overheads exists in Q16 and Q21
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Workload Characterization – garbage collection
§ GC

– Many nursery GC ab

– Small Pause time (0.02 sec)

– Few global GC 

§ Java Heap
– Low usage level ( within nursery space)
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Shuffle-Light Query (Q1) Shuffle-Heavy Query (Q5)

§ GC
– Many nursery GC 

– Big pause time (3 – 5 sec)

– Global GC while execution

§ Java Heap
– Objects are flowed into tenure space
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Workload Characterization – PMU profile 
§ Approach

– Observed performance counters by perf
– Categorized them based on the CPI breakdown model [*]

§ Result
– Backend stalls are quite big
– Lots of L3 miss which comes from distant memory access
– CPU Migration occurs frequently
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[*] https://www.ibm.com/support/knowledgecenter/linuxonibm/liaal/iplsdkcpieventspower8.htm

https://www.ibm.com/support/knowledgecenter/linuxonibm/liaal/iplsdkcpieventspower8.htm
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Problem Assessments and Optimization Strategies  

§ How we can reduce GC overhead?
– 1). Heap sizing

– 2). JVM Option tuning

– 3). Changing # of Spark Executor JVMs

– 4). GC algorithm tuning

§ How we can reduce backend stall cycles?
– 1). NUMA awareness

– 2). Adding more hardware threads to Executor JVMs 
– 3). Changing SMT level (SMT2, SMT4, SMT8)
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Efforts of Heap Space Sizing
§ Heap sizing efforts 

– Bigger nursery space 
achieves up to 30% 
improvement

§ Small tenure space may 
be harmful

– Run out of tenure space 
by caching RDDs in 
memory

– Leaked objects from 
nursery space
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Nursery Space
(-Xmn)

Execution Time 
(sec)

GC ratio (%) Nursery GC Avg.
pause time

Nursery GC Global GC

48g (default) 316 s 20 % 2.1 s 39 1

96g 310 s 18 % 3.4 s 22 1

144g 292 s 14 % 3.6 s 14 0

TPC-H Q9 Case
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Efforts of Other JVM Options
§ JVM options

– Monitor threads tuning
– # of GC threads tuning
– Java thread tuning
– JIT tuning, etc.

§ Result
– Improved over 20%
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GC Threads à
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Disable Large Object Area à

Reduce thread lock cost à
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Efforts of changing JVM Counts
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§ Result
– Up to 70% improvement in Q16 (by avoiding unexpected threads 

lock activity)
– Reduced heavy GC overhead
– Has a drawback a little for shuffle-light queries 
– Using 1 JVM frequently occurs task execution failure than 4 JVMs
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Efforts of NUMA aware process affinity

§ Setting NUMA aware process affinity to each Executor JVM helps to speed-
up

– By reducing scheduling overhead
– By reducing cache miss and stall cycles

§ Result
– Achieved 3 – 3.5 % improvement in all benchmarks without any bad effects
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Efforts of Increasing worker threads

§ Settings
– 2WT/core : handles 12 worker threads on 6 cores (in total, 48 worker threads)
– 4WT/core : handles 24 worker threads on 6 cores (in total, 96 worker threads)

§ Result
– Some queries gain over 10% improvement regardless of shuffle data size
– Q5 and Q8 had a drawback
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Summary of applying all optimizations

§ Shuffle-light: 10 – 20% improvement
§ Shuffle-heavy: 30 – 40% improvement
§ Eliminated unexpected JVM behavior in Q16 and Q21

– Q21 took 543 sec, which took over 3000 sec before tuning
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Summary and Future Works

§ Summary
– Reduced GC overhead from 30% to 10% or less by heap 

sizing, JVM counts, and JVM options

– Reduced distant memory access from 66.5% to 58.9% by 
NUMA awareness

– In summary, achieved 30 – 40 % improvement on average

– All experiment codes are available at 
https://github.com/tatsuhirochiba/tpch-on-spark

§ Future works 
– Comparison between x86_64 and POWER8

– Other Spark workloads
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https://github.com/tatsuhirochiba/tpch-on-spark

