
IBM Research – Tokyo

April. 17-19, 2016 | IEEE ISPASS 2016 @ Uppsala, Sweden © 2016 IBM C orporation

Workload Characterization and Optimization of
TPC-H Queries on Apache Spark

Tatsuhiro Chiba and Tamiya Onodera

IBM Research - Tokyo

IBM Research – Tokyo

Workload Characterization and Optimization for TPC-H Queries on Apache Spark © 2016 IBM C orporation

Overview

§ Introduction
– Motivation
– Goal and Result

§ Workload Characterization
– How Spark and Spark SQL work
– Environments
– Application level analysis
– System level analysis
– GC analysis
– PMU analysis

§ Problem Assessments and Approach
§ Result
§ Summary and Future Work

2

IBM Research – Tokyo

Workload Characterization and Optimization for TPC-H Queries on Apache Spark © 2016 IBM C orporation

Motivation

§ Complexity to find a fundamental Bottlenecks
– I/O bottleneck à CPU, Memory, Network bottleneck

– JVM handles many worker threads

§ Managing large Java heap causes high GC overhead
– Keeps as much data in memory as possible

– Generates short-lived immutable Java objects

§ From Scale-out to Scale-up
– Utilizes many worker threads w/ SMT on multiple NUMA nodes

– Need to know micro architectural efforts

3

Spark Runtime

Spark Application

JVM

OS

Hardware

Apache Spark is an in-memory data processing framework, runs on JVM
Spark executes Hadoop similar workloads, but optimization points are not same

à How we can reduce garbage collection overhead?

à How we can exploit underlying Hardware features?

à What is a best practice to achieve high performance?

IBM Research – Tokyo

Workload Characterization and Optimization for TPC-H Queries on Apache Spark © 2016 IBM C orporation

Goal and Result

§ Goal
– To characterize Spark Performance through SQL workloads
– To find optimization best practice for Spark
– To investigate potential problem in current Spark and JVM for

scaling up

§ Result
– Achieved up to 30% improvement by reducing GC overhead
– Achieved up to 10% improvement by utilizing more SMT
– Achieved up to 3% improvement by NUMA awareness
– Achieved 30 – 40% improvement on average with applying all

optimization

4

IBM Research – Tokyo

Workload Characterization and Optimization for TPC-H Queries on Apache Spark © 2016 IBM C orporation

How Spark and Spark SQL work
§ Spark

– Job is described as a data transformation chain and divided into
multiple stages

– Each stage includes multiple tasks
– Tasks are concurrently proceeded by worker threads on JVMs
– Data shuffling occurs between stages

§ Spark SQL
– Catalyst, a query optimization framework for Spark, generates an

optimized code
– It has a compatibility for HIVE query

5

Cited from Michael et al., Spark SQL: Relational Data Processing in Spark , SIGMOD’15

IBM Research – Tokyo

Workload Characterization and Optimization for TPC-H Queries on Apache Spark © 2016 IBM C orporation

§ stage 0 : Load CUSTOMER table named as ’c’
§ stage 1 : Load ORDERS table named as ‘o’
§ stage 2 : Join c and o where c.custkey = o.custkey
§ stage 3 : Select c_count, count(1) groupby c_count

How SQL code translates into Spark - TPC-H Q13

IBM Research – Tokyo

Workload Characterization and Optimization for TPC-H Queries on Apache Spark © 2016 IBM C orporation

Machine & Software Spec and Spark Settings

7

Processor # Core SMT Memory OS
POWER8

3.30 GHz * 2
24 cores

(2 sockets * 12 cores)
8

(total 192 hardware threads)
1TB Ubuntu

14.10 (kernel 3.16.0-31)

software version
Spark 1.4.1

Hadoop (HDFS) 2.6.0

Java 1.8.0 (IBMJ9 VM SR1 FP10)

Scala 2.10.4

§ Baseline Spark settings

– # of Executor JVMs: 1

– # of worker threads: 48

– Executor heap size: 192GB (nursery = 48g, tenure = 144g)

§ Other picked up Spark configurations (spark-defaults.conf)

– spark.suffle.compress = true

– spark.sql.parquet.compression.codec = Snappy

– spark.sql.parquet.fileterPushdown = true

IBM Research – Tokyo

Workload Characterization and Optimization for TPC-H Queries on Apache Spark © 2016 IBM C orporation

Workload Characterization – Spark job level

8

Query SQL Characteristics Converted Spark Operation
(# of stages)

Input
(total, GB)

Shuffle
(total, GB)

Stages / Tasks Time (sec)

Q1 1 GroupBy
Load 1 Table

1 Load
1 Aggregate

4.8 0.002 2 / 793 48.7

Q3 1 GroupBy, 2 Join
Load 3 Table

3 Load
2 HashJoin, 1 Aggregate

7.3 5.0 6 / 1345 64.6

Q5 1 GroupBy, 5 Join
Load 6 Table

3 Load, 3 HashJoin
1 BcastJoin, 1 Aggregate

8.8 14.1 8 / 1547 125

Q6 1 Select, 1 Where
Load 1 Table

1 Load
1 Aggregate

4.8 0 2 / 594 15.1

Q9 1 GroupBy, 5 Join
Load 6 Table

4 Load, 4 HashJoin
1 BcastJoin, 1 Aggregate

11.8 34.4 10 / 1838 370

Q18 3 Join, 1 UnionAll
Load 3 Table

6 Load, 3 HashJoin
1 Union, 1 Limit

7.7 13.8 11 / 3725 202

Q19 3 Join, 1UnionAll
Load 2 Table

6 Load, 3 HashJoin
1 Union, 1 Aggregate

19.8 0.4 8 / 2437 80.8

* Picked up several queries

Q1, Q6, Q19

Shuffle-light queries

Q5, Q9, Q18

Shuffle-heavy queries

IBM Research – Tokyo

Workload Characterization and Optimization for TPC-H Queries on Apache Spark © 2016 IBM C orporation

Workload Characterization – oprofile
§ Shuffle-heavy queries (e.g. Q5 and Q8) : over 30% cycles are spent in GC
§ Shuffle-light queries (e.g. Q1 and Q6) : low SerDes cost
§ Unexpected JIT and Thread Spin Lock overheads exists in Q16 and Q21

9

IBM Research – Tokyo

Workload Characterization and Optimization for TPC-H Queries on Apache Spark © 2016 IBM C orporation

Workload Characterization – garbage collection
§ GC

– Many nursery GC ab

– Small Pause time (0.02 sec)

– Few global GC

§ Java Heap
– Low usage level (within nursery space)

10

Shuffle-Light Query (Q1) Shuffle-Heavy Query (Q5)

§ GC
– Many nursery GC

– Big pause time (3 – 5 sec)

– Global GC while execution

§ Java Heap
– Objects are flowed into tenure space

0
0.5

1
1.5

2
2.5

3
3.5

0 50 100 150 200 250 300

GC
 p

au
se

 ti
m

e
(s

ec
.)

nursery gc
global gc

0

10

20

30

40

50

0 50 100 150 200 250 300

He
ap

 S
ize

 (G
B)

elapsed time (sec.)

nursery size used tenure heap
used nursery heap total used heap

0
1
2
3
4
5
6

0 100 200 300 400 500 600 700 800 900

GC
 p

au
se

 ti
m

e
(s

ec
.) global gc nursery gc

0

50

100

150

200

0 100 200 300 400 500 600 700 800 900

He
ap

 S
ize

 (G
B)

elapsed time (sec.)

used tenure heap used nursery heap total used heap

IBM Research – Tokyo

Workload Characterization and Optimization for TPC-H Queries on Apache Spark © 2016 IBM C orporation

Workload Characterization – PMU profile
§ Approach

– Observed performance counters by perf
– Categorized them based on the CPI breakdown model [*]

§ Result
– Backend stalls are quite big
– Lots of L3 miss which comes from distant memory access
– CPU Migration occurs frequently

11

[*] https://www.ibm.com/support/knowledgecenter/linuxonibm/liaal/iplsdkcpieventspower8.htm

https://www.ibm.com/support/knowledgecenter/linuxonibm/liaal/iplsdkcpieventspower8.htm

IBM Research – Tokyo

Workload Characterization and Optimization for TPC-H Queries on Apache Spark © 2016 IBM C orporation

Problem Assessments and Optimization Strategies

§ How we can reduce GC overhead?
– 1). Heap sizing

– 2). JVM Option tuning

– 3). Changing # of Spark Executor JVMs

– 4). GC algorithm tuning

§ How we can reduce backend stall cycles?
– 1). NUMA awareness

– 2). Adding more hardware threads to Executor JVMs
– 3). Changing SMT level (SMT2, SMT4, SMT8)

12

IBM Research – Tokyo

Workload Characterization and Optimization for TPC-H Queries on Apache Spark © 2016 IBM C orporation

Efforts of Heap Space Sizing
§ Heap sizing efforts

– Bigger nursery space
achieves up to 30%
improvement

§ Small tenure space may
be harmful

– Run out of tenure space
by caching RDDs in
memory

– Leaked objects from
nursery space

13

Nursery Space
(-Xmn)

Execution Time
(sec)

GC ratio (%) Nursery GC Avg.
pause time

Nursery GC Global GC

48g (default) 316 s 20 % 2.1 s 39 1

96g 310 s 18 % 3.4 s 22 1

144g 292 s 14 % 3.6 s 14 0

TPC-H Q9 Case

-35.0%
-30.0%
-25.0%
-20.0%
-15.0%
-10.0%
-5.0%
0.0%
5.0%

0
50

100
150
200
250
300
350

Q1 Q5 Q6 Q8 Q9 Q16 Q19
Ex

ec
ut

io
n

Ti
m

e
(se

c.
)

Xmn48g Xmn96g Xmn128g relative (%)

IBM Research – Tokyo

Workload Characterization and Optimization for TPC-H Queries on Apache Spark © 2016 IBM C orporation

Efforts of Other JVM Options
§ JVM options

– Monitor threads tuning
– # of GC threads tuning
– Java thread tuning
– JIT tuning, etc.

§ Result
– Improved over 20%

14

GC Threads à

Monitor Threads à

Disable Large Object Area à

Reduce thread lock cost à

Stop compaction à

Stop JIT feature à

Stop System.gc() à

-25.0%

-20.0%

-15.0%

-10.0%

-5.0%

0.0%

5.0%

0

20

40

60

80

100

120

option 1option 2option 3option 4option 5option 6option 7
Ex

ec
ut

io
n

TI
m

e (
se

c.
)

Q1 Q5 relative Q1 (%) relative Q5 (%)

IBM Research – Tokyo

Workload Characterization and Optimization for TPC-H Queries on Apache Spark © 2016 IBM C orporation

Efforts of changing JVM Counts

15

§ Result
– Up to 70% improvement in Q16 (by avoiding unexpected threads

lock activity)
– Reduced heavy GC overhead
– Has a drawback a little for shuffle-light queries
– Using 1 JVM frequently occurs task execution failure than 4 JVMs

-80%

-60%

-40%

-20%

0%

20%

40%

60%

0

50

100

150

200

250

300

Q1 Q5 Q6 Q8 Q9 Q16 Q19 Q19

Ex
ec

ut
io

n
TI

m
e

(s
ec

.)
1JVM 2JVM 4JVM 8JVM best (%) worst (%)

IBM Research – Tokyo

Workload Characterization and Optimization for TPC-H Queries on Apache Spark © 2016 IBM C orporation

Efforts of NUMA aware process affinity

§ Setting NUMA aware process affinity to each Executor JVM helps to speed-
up

– By reducing scheduling overhead
– By reducing cache miss and stall cycles

§ Result
– Achieved 3 – 3.5 % improvement in all benchmarks without any bad effects

16

-4.0%
-3.5%
-3.0%
-2.5%
-2.0%
-1.5%
-1.0%
-0.5%
0.0%

0

50

100

150

200

250

Q1 Q5 Q9 Q19

Ex
ec

ut
io

n
TI

m
e

(s
ec

.)

NUMA off NUMA on speedup (%)

NUMA1NUMA0 NUMA2 NUMA3

JVM 0
12threads

JVM 1
12threads

JVM 2
12threads

JVM 3
12threads

Socket 0 Socket 1P
ro

ce
ss

or
s

DRAMDRAM
DRAMDRAM

DRAMDRAM
DRAMDRAM

numactl -c [0-7],[8-15],[16-23],[24-31],[32-39],[40-47]

Spark Executor JVMs

IBM Research – Tokyo

Workload Characterization and Optimization for TPC-H Queries on Apache Spark © 2016 IBM C orporation

Efforts of Increasing worker threads

§ Settings
– 2WT/core : handles 12 worker threads on 6 cores (in total, 48 worker threads)
– 4WT/core : handles 24 worker threads on 6 cores (in total, 96 worker threads)

§ Result
– Some queries gain over 10% improvement regardless of shuffle data size
– Q5 and Q8 had a drawback

17

-20.0%

-10.0%

0.0%

10.0%

20.0%

30.0%

40.0%

0

50

100

150

200

250

Q1 Q5 Q6 Q8 Q9 Q16 Q19

Ex
ec

ut
io

n
Ti

m
e

(se
c.

)
2WT/core (192GB) 4WT/core (192GB) relative (%)

IBM Research – Tokyo

Workload Characterization and Optimization for TPC-H Queries on Apache Spark © 2016 IBM C orporation

Summary of applying all optimizations

§ Shuffle-light: 10 – 20% improvement
§ Shuffle-heavy: 30 – 40% improvement
§ Eliminated unexpected JVM behavior in Q16 and Q21

– Q21 took 543 sec, which took over 3000 sec before tuning

18

-90.0%
-80.0%
-70.0%
-60.0%
-50.0%
-40.0%
-30.0%
-20.0%
-10.0%
0.0%

0

50

100

150

200

250

300

350
Q

1
Q

2
Q

3
Q

4
Q

5
Q

6
Q

7
Q

8
Q

9
Q

10
Q

11
Q

12
Q

13
Q

14
Q

15
Q

16
Q

17
Q

18
Q

19
Q

20
Q

22

Ex
ec

ut
io

n
Ti

m
e

(s
ec

.)

defaul t optimized relative (%)

IBM Research – Tokyo

Workload Characterization and Optimization for TPC-H Queries on Apache Spark © 2016 IBM C orporation

Summary and Future Works

§ Summary
– Reduced GC overhead from 30% to 10% or less by heap

sizing, JVM counts, and JVM options

– Reduced distant memory access from 66.5% to 58.9% by
NUMA awareness

– In summary, achieved 30 – 40 % improvement on average

– All experiment codes are available at
https://github.com/tatsuhirochiba/tpch-on-spark

§ Future works
– Comparison between x86_64 and POWER8

– Other Spark workloads

19

https://github.com/tatsuhirochiba/tpch-on-spark

