
IBM Research

© 2016 IBM C orporation

Towards Selecting Best Combination of
SQL-on-Hadoop Systems and JVMs

Tatsuhiro Chiba, Takeshi Yoshimura,
Michihiro Horie and Hiroshi Horii

IBM Research

IBM Research

© 2016 IBM C orporation

Agenda
§ Motivation, Problems and Challenges
§ Backgrounds

– Backend engines: Spark and Tez
– Backend runtimes: OpenJDK and J9

§ Empirical Study
– Performance evaluation
– Performance analysis

§ ML model
– training classification model
– evaluating classification model

§ Summary

2 IEEE CLOUD 2018 / Towards Selecting Best Combination of SQL-on-Hadoop Systems and JVMs

IBM Research

© 2016 IBM C orporation

Distributed Processing Framework for Big Data

§ Hadoop Eco-Systems
– HDFS: the center of data store
– utilizing data between different frameworks
• Spark, Tez, Flink, YARN, MR, Hive, Pig, Hbase, etc…

§ Big Data Workload
– ETL
– SQL
–ML / DL / Streaming

§ JVM as a Hadoop Runtime
– disk-oriented à in-memory oriented
– I/O intensive à CPU-intensive

3

Dist. Framework

Application

JVM

OS

Hardware

IEEE CLOUD 2018 / Towards Selecting Best Combination of SQL-on-Hadoop Systems and JVMs

IBM Research

© 2016 IBM C orporation

Motivation and Problem ‒ Many choices of the systems

§ Rapid Development Cycle
– Fast open sources releases
– marge new feature frequently
– query performance is also improved

§ Too many SQL-on-Hadoop Systems
– Which one is best? (SparkSQL or Hive or Impara or Presto or …)
– Should we switch a system to another one?
– No single SQL-on-Hadoop engine is best for ALL queries
– No single JVM is best for ALL queries as well

4 IEEE CLOUD 2018 / Towards Selecting Best Combination of SQL-on-Hadoop Systems and JVMs

Performance Improvement History

0

50

100

150

1.4.1 1.5.2 1.6.1 1.4.1 1.5.2 1.6.1

TPC-H Q3 TPC-H Q5

ex
ec

ut
io

n
tim

e
(se

c)

IBM Research

© 2016 IBM C orporation

Motivation and Problem ‒ Selecting a system adaptively
§ Requirements of Query Execution on Cloud

– query users: do not care about backend system as long as it returns a result fast
– cloud providers: wants to minimize resources by using fast processing backend

§ Related work: workload translation
– generate suitable code for a best system
–Musketeer [Eurosys ’16], Weld [CIDR ’17]

§ Related work: Multi Store / Hybrid Engines
–MISO [SIGMOD ’14], MuSQLE [BigData ’16]
– using multiple engines/stores based on cost model / heuristics / etc.

5 IEEE CLOUD 2018 / Towards Selecting Best Combination of SQL-on-Hadoop Systems and JVMs

No JVM awareness
need to update cost model / heuristics frequently

IBM Research

© 2016 IBM C orporation

Questions and Challenges

6 IEEE CLOUD 2018 / Towards Selecting Best Combination of SQL-on-Hadoop Systems and JVMs

Run SQL
on best

engine/runtime
ML ModelEmpirical Study

GOAL

1. What about potential gains?

2. What features make the differences?

3. What data to help building a model?

4. How accurately can the model predict?

observation

reasoning

training

predicting

Meta Scheduler

Choices of Engine and Runtime

IBM Research

© 2016 IBM C orporation

Agenda
§ Motivation, Problems and Challenges
§ Backgrounds

– Backend engines: Spark and Tez
– Backend runtimes: OpenJDK and J9

§ Empirical Study
– Performance evaluation
– Performance analysis

§ ML model
– training classification model
– evaluating classification model

§ Summary

7 IEEE CLOUD 2018 / Towards Selecting Best Combination of SQL-on-Hadoop Systems and JVMs

IBM Research

© 2016 IBM C orporation

Spark/Spark SQL
§ Spark

– DAG-based distributed framework
– execute stage by stage

§ Spark SQL
– Catalyst ‒ Query Optimizer
– Parquet Columnar Format
– code generation (SIMD, loop unrolling)

8 IEEE CLOUD 2018 / Towards Selecting Best Combination of SQL-on-Hadoop Systems and JVMs
��� Michael et al., Spark SQL: Relational Data Processing in Spark , SIGMOD’15

��� https://spark.apache.org/docs/latest/cluster-overview.html

Catalyst

IBM Research

© 2016 IBM C orporation

Tez/Hive

§ Tez
– Generalized Map Reduce
– DAG-based distributed framework

§ Hive/LLAP
– focus on interactive query
– Vectorization / Pipeline
– In-Memory Columnar Cache (off-heap)
– ORC Columnar Format

9 IEEE CLOUD 2018 / Towards Selecting Best Combination of SQL-on-Hadoop Systems and JVMs

Ref�Apache Tez: A Unifying Framework for Modeling and
Building Data Processing Applications, SIGMOD’15

Ref� https://www.slideshare.net/Hadoop_Summit/llap-longlived-execution-in-hive, Hadoop Summit 2015

https://www.slideshare.net/Hadoop_Summit/llap-longlived-execution-in-hive

IBM Research

© 2016 IBM C orporation

JVM ‒ OpenJDK & IBM J9

§ JVM
– OpenJDK / J9 (Eclipse OMR based)
– internal optimization / implementation are different

§ JIT
– Tiered Compilation Level
– Intrinsics
– Inlining Heuristics
– Vectorization Code

§ Memory Management
– GC Algorithm (G1GC / Generational / CMS / Parallel / Copying etc.)
–Memory Fence

§ Thread
– Lock Reservation

10 IEEE CLOUD 2018 / Towards Selecting Best Combination of SQL-on-Hadoop Systems and JVMs

IBM Research

© 2016 IBM C orporation

Agenda
§ Motivation, Problems and Challenges
§ Backgrounds

– Backend engines: Spark and Tez
– Backend runtimes: OpenJDK and J9

§ Empirical Study
– Performance evaluation
– Performance analysis

§ ML model
– training classification model
– evaluating classification model

§ Summary

11 IEEE CLOUD 2018 / Towards Selecting Best Combination of SQL-on-Hadoop Systems and JVMs

IBM Research

© 2016 IBM C orporation

Questions and Challenges

12 IEEE CLOUD 2018 / Towards Selecting Best Combination of SQL-on-Hadoop Systems and JVMs

Run SQL
on best

engine/runtime
ML ModelEmpirical Study

GOAL

1. What about potential gains?

2. What features make the differences?

3. What data to help building a model?

4. How accurately can the model predict?

observation

reasoning

training

predicting

Meta Scheduler

Choices of Engine and Runtime

IBM Research

© 2016 IBM C orporation

Environment ‒ HW/SW Spec & Benchmark

§ Machine
– evaluated on a single POWER8 node
– Use Flash storage for HDFS

§ TPC-DS Benchmark
– hive-testbench (*1)
– 68 queries

§ data set
– Scale Factor 500 (500GB)
– prepared two columnar dataset; Parquet & ORC

13 IEEE CLOUD 2018 / Towards Selecting Best Combination of SQL-on-Hadoop Systems and JVMs

Software version

Spark 2.1.0

Hadoop (HDFS) 2.7.2

Tez 0.9.0

Hive 2.2.0

OpenJDK 1.8.0_u121

IBM J9 JVM 1.8.0 SR4FP2

Machine Description

Processor POWER8

3.3 GHz * 2

Cores 24 cores

(2 Sockets * 12 Cores)

SMT 8

Memory 1TB

Disk Flash System (9.3TB)

OS Ubuntu 16.04
(kernel 4.4.0-31)

(*1) https://github.com/hortonworks/hive-testbench

https://github.com/hortonworks/hive-testbench

IBM Research

© 2016 IBM C orporation

Environment - Others
§ Configurations of Spark & Tez

§ Evaluation Methodology
– used Thrift Server
– picked up fastest result in 5-times test per query
– reset buffer cache (echo 3 > /proc/sys/vm/drop_caches)

14 IEEE CLOUD 2018 / Towards Selecting Best Combination of SQL-on-Hadoop Systems and JVMs

Configuration Spark / Spark SQL Tez / Hive

Executor JVM 1 1

Worker Threads 12 12

I/O Threads - 12

On Heap Size 192 GB 96 GB

Off Heap Size - 96 GB

Execution Mode Daemon (Thrift Server) LLAP Daemon

Columnar Format Parquet ORC

Compression Format gzip (zlib) gzip (zlib)

Other JVM Options (Common) GC Threads = 12, -agentpath:libjvmti_oprofile.so

IBM Research

© 2016 IBM C orporation

0

1

2

0

500

1000

1500

2000

Q
72

Q
15

Q
12

Q
55

Q
63

Q
17

Q
52

Q
13

Q
93

Q
98

Q
46

Q
34

Q
42

Q
68

Q
32

Q
50

Q
60

Q
18

Q
75

Q
31

Q
84

Q
83

Q
22

Q
56

Q
89

Q
26

Q
39

Q
67

Q
94

Q
47

Q
95

ra
tio

	(O
pe
nJ
DK

/IB
M
	J9

)

Ex
ec
tu
tio

n	
Ti
m
e	
(se

c.
) IBM	J9 OpenJDK ratio

Performance Comparison of TPC-DS on Spark
- Which JVM is better for Spark?
§ Performance Comparison Result

– OpenJDK achieved faster than J9 in 35 queries (35/62 = 56.5%)
– J9 achieved faster than OpenJDK in 27 queries (27/62 = 43.5%)
– leads up to 3x drawback

15

OpenJDK is faster

IBM J9 is faster

Lower is Better

IEEE CLOUD 2018 / Towards Selecting Best Combination of SQL-on-Hadoop Systems and JVMs

IBM Research

© 2016 IBM C orporation

0

1

2

0

500

1000

1500

2000

Q
87

Q
80

Q
92

Q
24

Q
22

Q
95

Q
94

Q
85

Q
90

Q
63

Q
89

Q
83

Q
49

Q
96

Q
71

Q
39

Q
98

Q
34

Q
25

Q
55

Q
75

Q
31

Q
19

Q
20

Q
64 Q
3

Q
45

Q
52 Q
7

Q
76

Q
28

Q
70

Q
84

ra
tio

	(O
pe
nJ
DK

/IB
M
	J9

)

Ex
ec
tu
tio

n	
Ti
m
e	
(se

c.
) IBM	J9 OpenJDK ratio

Performance Comparison of TPC-DS on Tez
- Which JVM is better for Tez?

16

OpenJDK is faster

IBM J9 is faster

Lower is Better

IEEE CLOUD 2018 / Towards Selecting Best Combination of SQL-on-Hadoop Systems and JVMs

§ Performance Comparison Result
– OpenJDK achieved faster than J9 in 35 queries (35/65 = 53.8%)
– J9 achieved faster than OpenJDK in 30 queries (30/65 = 46.1%)
– leads up to 2x drawback

IBM Research

© 2016 IBM C orporation

0.01

0.1

1

10

100

0

500

1000

1500

2000

Q
66

Q
58

Q
17

Q
93

Q
49

Q
71

Q
82

Q
13 Q
6…

Q
64

Q
15

Q
32

Q
55

Q
42 Q
7

Q
79

Q
98 Q
3

Q
94

Q
75

Q
34

Q
76

Q
87

Q
91

Q
43

Q
95

Q
97

Q
39

Q
51

Q
65

ra
tio

	(T
ez
/S
pa
rk
)

Ex
ec
tu
tio

n	
Ti
m
e	
(se

c.
) Spark Tez Ratio	(tez/Spark)

Tez is faster

Spark is faster

Performance Comparison of TPC-DS with OpenJDK
- Which query engine is better with OpenJDK?

17

Lower is Better (Using OpenJDK)

IEEE CLOUD 2018 / Towards Selecting Best Combination of SQL-on-Hadoop Systems and JVMs

§ Performance Comparison Result
– Tez is faster in two-thirds queries than Spark
– leads up to 17x drawback

IBM Research

© 2016 IBM C orporation

Summary of Motivational Evaluation

§ Result
– 60 queries are successfully run
– picked up a best combination for all queries

§ Tendency
– Tez is better than Spark
– J9 is better than OpenJDK
– Combination of Tez & J9 is good at in many cases

18 IEEE CLOUD 2018 / Towards Selecting Best Combination of SQL-on-Hadoop Systems and JVMs

IBM Research

© 2016 IBM C orporation

Comparison of picked up queries

§ System
– Spark wins Tez : Q51
– Tez wins Spark : Q50, Q58, Q82

§ Runtime
– J9 wins OpenJDK: Q51, Q58
– OpenJDK wins J9: Q50, Q82

§ analysis
– query plan (DAG) / middleware execution stats
– hot method profiling (oprofile) / system utilization
– Java method stack trace / GC Log / JIT Log

19 IEEE CLOUD 2018 / Towards Selecting Best Combination of SQL-on-Hadoop Systems and JVMs

Lo
w

er
 is

 B
et

te
r

0

100

200

300

400

500

Q50 Q51 Q58 Q82

Spark (J9) Spark (OpenJDK) Tez (J9) Tez (OpenJDK)

IBM Research

© 2016 IBM C orporation

0

100

200

300

400

500

Q50 Q51 Q58 Q82

Spark (J9) Spark (OpenJDK) Tez (J9) Tez (OpenJDK)

Gain comes from JVM difference
‒ Spark case
§ Q51

– J9 wins
–many stages
– less shuffle data
– gets 2.6x gain in shuffle stage

20 IEEE CLOUD 2018 / Towards Selecting Best Combination of SQL-on-Hadoop Systems and JVMs

§ Q82
– OpenJDK wins
– few stages
–much shuffle data
– gets 1.4x gain in map stage

Query # Map Stages # Reduce Stages Input Read Shuffle Output Difference

Q51 2 6 6.0 GB 1.0 GB Shuffle
J9: 11s OpenJDK: 29 s

Q82 2 2 2.5 GB 5.6 GB Map
J9: 66s OpenJDK: 47s

IBM Research

© 2016 IBM C orporation

Gain comes from JVM difference
‒ Spark case

21 IEEE CLOUD 2018 / Towards Selecting Best Combination of SQL-on-Hadoop Systems and JVMs

§ Method Profiling
– J9 is good at Intrinsic for Sun.misc.Unsafe.copyMemory (JNI overhead)
– OpenJDK is good at serialization and sort in data shuffling

J9 is faster OpenJDK is faster

J9 Advantage: Many Stages, less Shuffling Data
OpenJDK Advantage: Few Stages, much Shuffling Data

0

100

200

300

400

500

Q50 Q51 Q58 Q82

Spark (J9) Spark (OpenJDK) Tez (J9) Tez (OpenJDK)

IBM Research

© 2016 IBM C orporation

Gain comes from JVM difference
‒ Tez case
§ Q50

– OpenJDK wins
– gets 1.7x gain in reduce vertex

22 IEEE CLOUD 2018 / Towards Selecting Best Combination of SQL-on-Hadoop Systems and JVMs

§ Q51
– J9 wins
– gets 3x gain in map vertex

Query # Map Stages # Reduce Stages Input Records / GB Shuffle Records / GB Difference

Q50 5 7 1.3 * 10^9
(5.4 GB)

5.0 * 10^7
(1.9 GB)

Reduce
J9: 106s, OpenJDK: 60s

Q51 4 5 3.5 * 10^8
(1.3 GB)

3.5 * 10^8
(3.5 GB)

Map
J9: 7s, OpenJDK: 21s

Difference

Difference

Difference

0

100

200

300

400

500

Q50 Q51 Q58 Q82

Spark (J9) Spark (OpenJDK) Tez (J9) Tez (OpenJDK)

IBM Research

© 2016 IBM C orporation

Gain comes from JVM difference
‒ Tez case
§ Q51

– J9 achieved 3x gain in map vertex
– writing intermediate data (including in-mem agg. & SerDe) is time-consuming

23 IEEE CLOUD 2018 / Towards Selecting Best Combination of SQL-on-Hadoop Systems and JVMs

In memory ORC (LLAP) Read ���

java.io.DataOutputStream ���

JOIN / Aggregation ���
Serialization/Deserialization ���

PipelinedSorter (Reduce Vertex) ���

Serialize + Spill

J9 Advantage: Few Vertices, Much Shuffling Data

0

100

200

300

400

500

Q50 Q51 Q58 Q82

Spark (J9) Spark (OpenJDK) Tez (J9) Tez (OpenJDK)

IBM Research

© 2016 IBM C orporation

0
2
4
6
8
10
12
14
16

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

usr sys wai

Gain comes from JVM difference
‒ Tez case
§ Q50

– OpenJDK achieved 1.7x gain in reduce vertex
– many shuffle threads / many vertices
– huge context switch overhead

24 IEEE CLOUD 2018 / Towards Selecting Best Combination of SQL-on-Hadoop Systems and JVMs

OpenJDK

J9

ReduceMap

OpenJDK Advantage: Many Vertices, Less Shuffling Data

0

100

200

300

400

500

Q50 Q51 Q58 Q82

Spark (J9) Spark (OpenJDK) Tez (J9) Tez (OpenJDK)

0
2
4
6
8
10
12
14
16

0 10 20 30 40 50 60 70 80 90 100 110

usr sys wai

IBM Research

© 2016 IBM C orporation

M 1 M 2

R 1 R 2

R 3 R 4

R 5

R 6

web
sales

store
sales

date
dim

M 3 M 4

R 1 R 2

R 5

R 6

M 1 M 2

R 7

store
sales

web
sales

date
dim

date
dim

Spark DAG Tez DAG

Gain comes from query engine difference
‒ Spark or Tez
§ Spark Advantage (Q51)

– reduce shuffling data by better filtering rule
– Spark: 366 rows à shuffling 687MB
– Tez: 8,116 rows à shuffling 3.6GB

25 IEEE CLOUD 2018 / Towards Selecting Best Combination of SQL-on-Hadoop Systems and JVMs

366 rows
8116 rows

687MB 3.6GB

Good query optimizer (Cost Based Optimizer) helps to reduce shuffling data

§ Tez Advantage (Q50, Q58, Q82)
– reduce shuffling data by Bloom Filter

0

100

200

300

400

500

Q50 Q51 Q58 Q82

Spark (J9) Spark (OpenJDK) Tez (J9) Tez (OpenJDK)

IBM Research

© 2016 IBM C orporation

Empirical Study Summary - What features affect the
performance

§ Query Engine
– DAG
•# of Vertices / Stages (Map or Reduce)
• amount of shuffling data (intermediate data)
• input data size (tables)

– CBO
• filtering rule

§ JVM
– # of threads
– Intrinsic
– SerDe performance
– I/O performance

26 IEEE CLOUD 2018 / Towards Selecting Best Combination of SQL-on-Hadoop Systems and JVMs

IBM Research

© 2016 IBM C orporation

Agenda
§ Motivation, Problems and Challenges
§ Backgrounds

– Backend engines: Spark and Tez
– Backend runtimes: OpenJDK and J9

§ Empirical Study
– Performance evaluation
– Performance analysis

§ ML model
– training classification model
– evaluating classification model

§ Summary

27 IEEE CLOUD 2018 / Towards Selecting Best Combination of SQL-on-Hadoop Systems and JVMs

IBM Research

© 2016 IBM C orporation

Questions and Challenges

28 IEEE CLOUD 2018 / Towards Selecting Best Combination of SQL-on-Hadoop Systems and JVMs

Run SQL
on best

engine/runtime
ML ModelEmpirical Study

GOAL

1. What about potential gains?

2. What features make the differences?

3. What data to help building a model?

4. How accurately can the model predict?

observation

reasoning

training

predicting

Meta Scheduler

Choices of Engine and Runtime

IBM Research

© 2016 IBM C orporation

Proposed Classifier Overview - Training and Prediction
§ Key points

–Making classifier model based on the features that come from DAG
– Selecting a combination of the system based on the model before query execution

29 IEEE CLOUD 2018 / Towards Selecting Best Combination of SQL-on-Hadoop Systems and JVMs

+

+

9

���	��

���	��
 �������

�������

+ 9()

+ 9()

(

(

������� ����
����	

IBM Research

© 2016 IBM C orporation

Training Classifier
§ Why extract features from DAG? Why not SQL?

– contains much more info including table stats/actual stages than SQL
§ What features are used

– # of stages, # of joins, join types, used tables, etc.
– 69 features in total

30 IEEE CLOUD 2018 / Towards Selecting Best Combination of SQL-on-Hadoop Systems and JVMs

)

((

��

��

���	 ������

��� ������

������� ����
�

���
� ����

IBM Research

© 2016 IBM C orporation

Predicting best combination using classifier

§ Extract features without actual query run
– sql explain generates DAG (compiling it in 2-5 sec)

§ Predict best system for the query
– decide a combination based on the classifier

31 IEEE CLOUD 2018 / Towards Selecting Best Combination of SQL-on-Hadoop Systems and JVMs

+

+

9

9

9

+ 9()

(

+ 9()

(

IBM Research

© 2016 IBM C orporation

Evaluation of classifier
§ Training and testing four ML algorithms

– kNN, Decision Tree, SVM, Random Forest
– k-fold cross-validation (split data into 80:20)

§ Models
– binary class: Spark or Tez
–multi class: Spark/OpenJDK or Spark/J9 or
Tez/OpenJDK or Tez/J9

32 IEEE CLOUD 2018 / Towards Selecting Best Combination of SQL-on-Hadoop Systems and JVMs

Accuracy

Features Impact in Random Forest

Random Forest is better than others

- # of stages makes impact to the model
- Using BF or Join types do not affect

IBM Research

© 2016 IBM C orporation

0

2000

4000

6000

8000

10000

12000

Q2
1

Q9
1

Q9
6

Q3 Q5
5

Q4
3

Q7
3

Q1
9

Q7 Q6
6

Q1
5

Q6
0

Q7
1

Q1
3

Q5
4

Q9
7

Q7
5

Q5
8

Q9
3

Q2
4

Q6
4

Ac
cu

m
ul

at
ed

 E
xe

c T
im

e (
se

c) baseline
ideal(2)
predict(2)
ideal(4)
predict(4)

Evaluation of classifier
§ training and testing model

– k-fold cross-validation except test query feature
§ Result

– baseline: exec time with Spark/J9 only
– ascending order

33 IEEE CLOUD 2018 / Towards Selecting Best Combination of SQL-on-Hadoop Systems and JVMs

reduced by 50%

reduced by 35%

big miss prediction

IBM Research

© 2016 IBM C orporation

Summary and Future Works

§ Summary
– No single query engine and JVM is best for all queries
– query engine mismatch leads up to 10x drawback
– JVM mismatch also leads up to 3x drawback
– Proposed Random Forest based classifier achieved 50% time reduction in total

§ Future Works
– implements meta scheduler
– applies it on Cloud/Container/Kubernetes environment
– training data augmentation

34 IEEE CLOUD 2018 / Towards Selecting Best Combination of SQL-on-Hadoop Systems and JVMs

