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Distributed Processing Framework for Big Data

= Hadoop Eco-Systems
— HDFS: the center of data store

— utilizing data between different frameworks
- Spark, Tez, Flink, YARN, MR, Hive, Pig, Hbase, etc--- Application

= Big Data Workload E Dist. Framework
~ETL R

- SQL

— ML / DL / Streaming
= JVM as a Hadoop Runtime
— disk-oriented = in-memory oriented

— /0O intensive = CPU-intensive
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Motivation and Problem - Many choices of the systems

- Rapid Development Cycle SprK
— Fast Open sources releases Performance Improvement History

— marge new feature frequently
— query performance is also improved

=
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o
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o

execution time (sec)
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TPC-H Q3 TPC-H Q5

= Too many SQL-on-Hadoop Systems
— Which one is best? (SparkSQL or Hive or Impara or Presto or )
— Should we switch a system to another one?

— No single SQL-on-Hadoop engine is best for ALL queries
— No single JVM is best for ALL queries as well
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Motivation and Problem - Selecting a system adaptively

Requirements of Query Execution on Cloud
— query users: do not care about backend system as long as it returns a result fast

— cloud providers: wants to minimize resources by using fast processing backend

Related work: workload translation
— generate suitable code for a best system

— Musketeer [Eurosys "16], Weld [CIDR "17]

Related work: Multi Store / Hybrid Engines
— MISO [SIGMOD ’14], MuSQLE [BigData '16]

— using multiple engines/stores based on cost model / heuristics / etc.

No JVM awareness
need to update cost model / heuristics frequently
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Questions and Challenges

\ 3. What data to help building a model?
training

. Run SQL \

on best

Empirical Study 9 * T el
reasoning | -lyo/li -y Predicting -

2. What features make the differences?

1. What about potential gains?
observation

4. How accurately can the model predict?

Meta Scheduler
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= Spark
— DAG-based distributed framework

— execute stage by stage

= Spark SQL
— Catalyst — Query Optimizer

SQL Query

DataFrame
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Spark/Spark SQL

— Parquet Columnar Format
— code generation (SIMD, loop unrolling)

‘IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII.

Analysis

5|F: https://spark.apache.org/docs/latest/cluster-overview.html
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Tez/Hive

= Tez
— Generalized Map Reduce

— DAG-based distributed framework

“ H ive / LLAP Ref: Apache Tez: A Unifying Framework for Modeling and
; ] Building Data Processing Applications, SIGMOD’15
— focus on interactive query

N
— Vectorization / Pipeline | | , | :

LU LU TN DPSRIvE
— In-Memory Columnar Cache (off-heap) UL :i"
— ORC Columnar Format N

auto Q all
AM B3 AM £ |
Tez ‘ 'TezwithLLAP (auto) A Tez with LLAP (all) '
Ref: : i i - ived- jon-in-hive, Hadoop Summit 2015
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JVM - OpendDK & IBM J9

Open)DK &
= JVM
— OpendDK / J9 (Eclipse OMR based)

— Internal optimization / implementation are different . . S
= JIT Open J9

— Tiered Compilation Level

— Intrinsics

— Inlining Heuristics

— Vectorization Code
= Memory Management
— GC Algorithm (G1GC / Generational / CMS / Parallel / Copying etc.)

— Memory Fence
= Thread

— Lock Reservation
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Questions and Challenges

1. What about potential gains?
observation

\\.!

training

I
[
I
[
I
on best
Empirical Stud é I * v
reasoning [ <lle [l predicting

. I .
? ?
2. What features make the differences?y| = - ===~ 4. How accurately can the model predict:

l \ 3. What data to help building a model?
GOAL
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Environment - HW/SW Spec & Benchmark
| Machine | Description |

. Processor POWERS8
= Machine 3.3 GHz * 2
— evaluated on a single POWERS8 node # Cores 24 cores
(2 Sockets * 12 Cores)
— Use Flash storage for HDFS SMT 8
Memory 1TB
. TPC'DS Benchmark Disk Flash System (9.3TB)
. 0S Ubuntu 16.04
— hive-testbench (*1) (kernel 4.4.0-31)
- 68 queries " somware | version
Spark 2.1.0
Hadoop (HDFS) 2.7.2
= data set .
ez 0.9.0
— Scale Factor 500 (500GB) o -
— prepared two columnar dataset; Parquet & ORC OpenJDK 1.8.0_u121
IBM J9 JVM 1.8.0 SR4FP2

‘*1 ) hngg:“gi;hHQ.ggm(hgr;gnwgrkﬂhivg—;gg;hgngh
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Environment - Others
= Configurations of Spark & Tez

Executor JVM 1 1
Worker Threads 12 12
I/O Threads - 12
On Heap Size 192 GB 96 GB
Off Heap Size - 96 GB
Execution Mode Daemon (Thrift Server) LLAP Daemon
Columnar Format Parquet ORC
Compression Format gzip (zlib) gzip (zlib)
Other JVM Options (Common) GC Threads = 12, -agentpath:libjvmti_oprofile.so

= Evaluation Methodology
— used Thrift Server
— picked up fastest result in b-times test per query
— reset buffer cache (echo 3 > /proc/sys/vm/drop_caches)
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Performance Comparison of TPC-DS on Spark
- Which JVM is better for Spark?

= Performance Comparison Result
— OpendDK achieved faster than J9 in 3b queries (35/62 = 56.5%)

— J9 achieved faster than OpenJDK in 27 queries (27/62 = 43.5%)
— leads up to 3x drawback

Lower is Better

I BMJ9 = QOpen)DK

Exectution Time (sec.)

—ratio

1
N

!
[HEY

ratio (OpenJDK/IBM J9)
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Performance Comparison of TPC-DS on Tez
- Which JVM is better for Tez?

= Performance Comparison Result
— OpendDK achieved faster than J9 in 35 queries (35/65 = 53.8%)

— J9 achieved faster than OpendDK in 30 queries (30/65 = 46.1%)
— leads up to 2x drawback

_ Lower is Better

2000 . - 2
U mEm(BMJ9  mmQOpen]lDK  —ratio o)
G) -
< 1500 | : =
@ OpenJDKgs faster I 0
£ 1 =
— 00 S, | e WIS B e —— + 1 9.
5 . — 17z
-g IBMI'J9 is faster | : S
- 500 F i O
Ll>j 0 1 e o PIE | R | | 0 g
N O AN <SS A N < IO N MmO O AT < T I WM WIND AHOOY O N IN AN OO0 O < =
0000000000000 0goog0ggoogocgggoo g g O godag
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Performance Comparison of TPC-DS with OpenJDK
- Which query engine is better with OpenJDK?

Performance Comparison Result
— Tez is faster in two-thirds queries than Spark

— leads up to 17x drawback

Lower is Better (Using OpenJDK)

2000 100
g i EENSpark METez —Ratio (tez/Spark)
= 1500 10 <
& S
£ L
= 1000 1S
i) =
2 500 0.12
0 ®
x
s 0.01
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Summary of Motivational Evaluation

= Result IBM J9 OpenJDK | total
— 060 queries are successfully run Spark 13 6 19
— picked up a best combination for all queries Tes | 0 19 4l
tOtal :l3I5IIIIIIIIII2I5II: 60

= Tendency
— Tez is better than Spark

—J9 is better than OpendDK : ;

— Combination of Tez & J9 is good at in many cases ="*""""""*
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Comparison of picked up queries

500
r 'Spark (J9) ®"Spark (OpendDK) ®Tez (J9) "Tez (OpendDK)

400 |

300
200
100 I I
i lI Il-
= analysis

— query plan (DAG) / middleware execution stats

= System
— Spark wins Tez : Q51

— Tez wins Spark : Q50, Q58, Q82
= Runtime
—J9 wins OpenJDK: Q51, Q58

— OpendDK wins J9: Q50, Q82

(Lower is Better mmmm

— hot method profiling (oprofile) / system utilization
— Java method stack trace / GC Log / JIT Log
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Gain comes from JVM difference - JII

" Spark (OpenJDK) ®"Tez (J9) "Tez (OpenJDK)

- Spark case .|] g
p ’ aso T ass 4" "as
= Q51 = Q82
—J9 wins — OpendDK wins
— many stages — few stages
— less shuffle data — much shuffle data
T "‘?-: T "‘f- s';:-:- _I—: fj; —1-: "j-: - - 53: -: . .
- C Y T B e ot/
= =5 BN B I B = o
o o ey B Dy =
T N | o~
‘—
6.0 GB 1.0 GB Shuffle
J9: 11s OpenJDK: 29 s
Q82 2 2 2.5GB 5.6 GB Map

J9: 66s OpenJDK: 47s
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100

- Spark case 0
= Method Profiling

— J9 is good at Intrinsic for Sun.misc.Unsafe.copyMemory (JNI overhead)
— OpendDK is good at serialization and sort in data shuffling

J9 Advantage: Many Stages, less Shuffling Data
OpendDK Advantage: Few Stages, much Shuffling Data

Gain comes from JVM difference - JII

S J9 is faster
B JVM Mnative library MWJava W®others

¥ Spark (J9) " Spark (OpenJDK) ®Tez (J9) "Tez (OpenJDK)

aso " 51

OpenJDK is faster

100% T . Q51 Q82
80% SNsao J9  OpendDK | J9  OpenJDK
g 60% catalyst | 25.3% 13.2% 15.7% 13.0%
g 40% sql core | 3.49% 3.65% 24.4% 13.5%
o a0k sql sort | 0.41% 0.29% 10.3% 5.2%
cre32¢ | 2.5% 2.0% 0.59% 0.9%
o OmenioK ~ lzd | 3.0% 3.6% 6.9% 14.5%
- S Unsafe [0.0001% ~ 2.0% | 0.0003%  22% -
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Gain comes from JVM difference

200

- Tez case

¥ Spark (J9) " Spark (OpenJDK) ®Tez (J9) "Tez (OpenJDK)

4ammemmmn?

Qso0 &n Qs8 Q82
= Q50 = Q51
— OpendDK wins —J9 wins
— gets 1.7x gain in reduce vertex — gets 3x gain in map vertex
D Difference d ‘_....leference
e o= — ‘-;é. — = = =
el e *ennsn® =) Ctauans®
= o = ) oty =t
— ‘enpuns®
Difference

# Map Stages # Reduce Stages Input Records / GB Shuffle Records / GB

1.3 * 1019 5.0 * 1017
(5.4 GB) (1.9 GB)
Q51 4 5 3.5 * 1018 3.5 * 1018
(1.3 GB) (3.5 GB)

Reduce
J9:106s, OpenJDK: 60s

Map
J9: 7s, OpendDK: 21s
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Gain comes from JVM difference . 3
- Tez case - ;

Q50 &=

= Q51

— J9 achieved 3x gain in map vertex

— writing intermediate data (including in-mem agg. & SerDe) iS time-consuming

J9 Advantage: Few Vertices, Much Shuffling Data

| p——

Q50 I Q51 I

J9 OpenJDH J9 OpenJDK :

kallsyms | 18.4%  6.5% : 11%  33% |

jvm | 9.1% 25.9% i 11.2% 7.0% 1

java | 68.6% 61.0% | | 81.5% 87.0% i

PipelinedSorter (Reduce Vertex) =-- tez | 3.1% 26% 1| 28.9% 12.0% I

In memory ORC (LLAP) Read --* orc | 11.9% 17.0% : 0.8% 0.3% :
java.io.DataOutputStream ==- java.io | 1.0% 4.0% [ 6.0% 18.3%

. Serialize + Spill

JOIN / Aggregation === hive.ql | 38.0% 30.7% | | 16.0% 9.3%
Serialization/Deserialization === serDe | 2.3% 1.3% : 12.4% 29.0%

4ammemmmn?

Q58 Q82
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Gain comes from JVM difference
- Tez case

= Q50

— OpendDK achieved 1.7x gain in reduce vertex

— many shuffle threads / many vertices
— huge context switch overhead

300

200

100

Q50

" Spark (J9) " Spark (OpenJDK) ®"Tez (J9)

Tez (OpenJDK)

..

(
Qs8 Q82

Q51

OpendDK Advantage: Many Vertices, Less Shuffling Data

e
: Q50 i Q51
I J9  OpenJDK : J9  OpenJDK
OpenJDK kallsyms 1| 18.4% 6.5% | 4.1% 3.3%
jvmll 91%  25.9% 2w 7.0%
0 10 20 30 40 50 60 70 80 90 100 110 java: 68.6% 61.0% |81'5% 87.0%
tezl| 3.1% 26% |128.9%  12.0%
Heduce orcyl 11.9%  17.0% (108%  0.3%
java.iol| 1.0% 4.0% =6.0% 18.3%
J9 hive.ql: 38.0%  30.7% |116.0% 9.3%
serDel 2.3% 1.3% :12.4% 29.0%
I

0O 10 20 30 40 50 60 70 80 90 100 110 120 130 140
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I IBM ResearCh >0 " Spark (J9) " Spark (OpenJDK) ®Tez (J9) " Tez (OpenJDK)
Gain comes from query engine difference -
- Spark or Tez 1 =

= Spark Advantage (Q51)
— reduce shuffling data by better filtering rule

— Spark: 366 rows - shuffling 687MB
—Tez: 8,116 rows - shuffling 3.6GB

Spark DAG

= Tez Advantage (Q50, Q58, Q82)
—reduce shuffling data by Bloom Filter

Good query optimizer (Cost Based Optimizer) helps to reduce shuffling data
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Empirical Study Summary - What features affect the
performance

= Query Engine
— DAG

- # of Vertices / Stages (Map or Reduce)
- amount of shuffling data (intermediate data)

- Input data size (tables)
- CBO

- filtering rule

= JVM
— # of threads
— Intrinsic
— SerDe performance

—1/O performance

© 2016 IBM Corporation
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Questions and Challenges

AN
1. What about potential gains? / 3. What data to help building a model?
observation ! training

I ( COA \
Run SQL
on best
Empirical Stud é ? ML Model

2. What features make the differences? 4. How accurately can the model predict? |

Meta Scheduler
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Proposed Classifier Overview - Training and Prediction

= Key points

— Making classifier model based on the features that come from DAG
— Selecting a combination of the system based on the model before query execution

explain

explain

features Labels train

Y
?(I)OI;(I’)? —> ./:\‘ » Classifier
T predict
N\

Tables Physical Plan S | Tez + OpenJDK
Statistics (DAG) A features ] Tez +J9
l | Spark + OpenJDK
Tez —| Spark + J9
cso) |
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Training Classifier

= Why extract features from DAG? Why not SQL?

— contains much more info including table stats/actual stages than SQL
= What features are used

— # of stages, # of joins, join types, used tables, etc.

— 69 features in total

Spark
(CBO)

run T

Tables Physical Plan
SQL EStatisticsj (DAG)

\’

¢
]
vzz:
i
S
I

]

1

]

| .

rqsult L= train —
|||||||-I—) mg  — Classifier

T : features Labels
run i —> [TMm I
Tz | _Tez feature _ |
(CBO)
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Predicting best combination using classifier

= Extract features without actual query run

— sql explain generates DAG (compiling it in 2-b sec)
= Predict best system for the query

— decide a combination based on the classifier

Spark > Spark feature
(CTBO) ‘/:\‘ > oo Spark + OpenJDK
. ark + Open
explain ¢ run on P P

predict

Tables Physical Plan [T >» | Classifier —> Spark + J9
Statistics (DAG) T

SQL

Tez + OpenJDK

l ‘/0 g—
Tes ‘>\‘ Tez feature Tez + J9
—>

(CBO)

explain
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Evaluation of classifier

= Training and testing four ML algorithms
— kNN, Decision Tree, SVM, Random Forest

— k-fold cross-validation (split data into 80:20)

| .
'V'°°_'e'3 - # of stages makes impact to the model
— binary class: Spark or Tez - Using BF or Join types do not affect
— multi class: Spark/OpendDK or Spark/J9 or v
Tez/OpenJDK or Tez/J3 Features Impact in Random Forest
Accuracy %25332?
binary classifier multinomial classifier ?:EZdEEEZ
mean  stddev (+/-) | mean  stddev (+/-) T_store_sales
kNN | 0.65 0.08 0.43 0.04 S BeastExch
Decision Tree | 0.69 0.17 0.34 0.16 ey
F----jm— L--&m---wi--J&L- S_StOI"?_:/Ia;S:
[ Random Forest 0.72 0.02 0.46 0.06 || sT:Mtaps
-----------K------------- S_S_I\lllj(e)m
S_ReBcastExch
Random Forestis better than others SO e mportances e Y
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Evaluation of classifier

= training and testing model

— k-fold cross-validation except test query feature
= Result

— baseline: exec time with Spark/J9 only
— ascending order

12000
E = haseline
% 10000 ideal (2)
£ ' predict(2) o
= 8000 | deal (1) reduced by 35%
Q .
redict(4
S 6000 ¢ predic®) reduced by 50%
£ 4000 | big miss pred"ction
) X
&
> 2000 F
S
<
0

i i (o) ™ LN on on (@) N~ [\e] [Tp] o i (98] < M~ Tp] 0 o™ < <

N O O g wnw S N d g o o9 o N o9 ;m N 0O N O

g o d g o o g g oo oo oo o oo
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Summary and Future Works

= Summary
— No single query engine and JVM is best for all queries

— query engine mismatch leads up to 10x drawback
— JVM mismatch also leads up to 3x drawback
— Proposed Random Forest based classifier achieved 50% time reduction in total

= Future Works
— Implements meta scheduler

— applies it on Cloud/Container/Kubernetes environment
— training data augmentation
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