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Appendix

Proof of Theorem 1

Proof. We would like to find the probability that each
center lies in a distinct cluster core. Consider the
event in which one of the cluster cores (say the core of
cluster Ci) is missing from the selected k centers. The
probability of this event occurring is:

pi ≤
(

1− |C
o
i |
|X|

)k
≤ (1− ε′)k ≤ e−ε

′k.

Let θ be the probability this event does not occur for
any of the k clusters - that is, there is a center in each
cluster core. Then,

θ ≥ 1−
k∑
i=1

pi ≥ 1− ke−ε
′k.

Now let’s assume that we successfully pick a center
in each cluster core. Then we assign each point to
its closest center, which leads to an (r, t)-accordant
clustering C ′. By the proof of Lemma 2, the algorithm
changes this clustering as it continues to iterate towards
convergence only if it can find a lower cost solution.

The optimal (r, t)-accordant clustering CA can only
have cost better than C ′. Since C ′ has near-optimal
cost, so does CA (the optimal (r, t)-accordant cluster-
ing). As our algorithm outputs a clustering that has
cost no higher than that of C ′, it outputs a clustering of
near-optimal cost. By the (α, ε)-property the clustering
it finds is ε-close to the optimal clustering C∗, which
is ε-close to the optimal (r, t)-accordant clustering CA.
As such, we find a clustering that is 2ε-away from the
optimal accordant solution.

Proof of Corrolary 1

Proof. The probability that one of the cluster cores is
missing from a selection of k centers is pi ≤ e−ε

′k, as
shown in Theorem 1. If θ is the probability that this
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does not occur for any of the k clusters at least once in
m trials, then:

θ ≥ 1− (

k∑
i=1

pi)
m ≥ 1− (ke−ε

′k)m

For any iteration with a center in each core, by the proof
of Theorem 1, the algorithm will find a clustering that
is ε-close to the optimal clustering C∗ and 2ε-close to
the optimal (r, t)-accordant solution.

Once a near-optimal clustering is found, any subse-
quent clusterings will only be chosen if they have lower
cost. Hence, our algorithm outputs an (r, t)-accordant
clustering of near-optimal cost that is 2ε-close to the
optimal (r, t)-accordant solution.

UCI datasets We now evaluate the methods on 6 UCI
datasets used in previous clustering studies [1] namely:
a) Glass, b) Heart, c) Ionosphere, d) Breast Cancer, e)
Iris and f) Wine. The Glass dataset, the Heart dataset,
the Ionosphere dataset, the Breast Cancer dataset, the
Iris dataset and the Wine dataset are partitioned into
6 groups, 2 groups, 2 groups, 2 groups, 3 groups and 3
groups respectively, as indicated by their ground truth
labels.

The performance of the various methods on these
datasets is seen in figure 1. k is set to the number
of groups and we vary t in each case with r being set
to 1. Given the space constraints, we plot the mean
and the confidence intervals in the figures themselves.
However, to keep the exposition clear we depict the
results using bar charts for low, medium and high values
of t. In particular, we compare the different methods for
t = {0.2, 0.5, 0.8}.

We see from the figure that across all the datasets
Akmeans matches the performance of k-means for low
and medium values of t when k-means satisfies our con-
straint. This again reaffirms the fact that our method
can provide the same quality clustering as standard k-
means when our constraint is trivially satisfied. The
other methods have consistently higher (mean) error
and in some cases even higher variance than our method.

For high values of t, where k-means does not satisfy
our constraint such as on Heart, Ionosphere and Wine,
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Figure 1: Above we see the performance (mean +- 95% confidence interval) of the various methods on 6 UCI
datasets namely: a) Glass, b) Heart, c) Ionosphere, d) Breast Cancer, e) Iris and f) Wine for 3 different (low,
medium, high) values of t. The bars for which we do not see any confidence interval correspond to runs that have
zero or insignificant variance.



k kmeans Akmeans Skmeans SSIkmeans COPkmeans CSC GFHF

2 41.2 41.2 88.3 749.9 2519.4 1899.2 3212.4
3 31.5 21.4 183.5 698.8 2245.3 1834.2 39344.9
4 9.5 22.5 456.3 677.7 2698.1 1829.5 4171.9
5 10.2 21.3 491.1 594.6 2746.8 1704.4 42840.1
6 13.5 57.6 258.5 619.6 2734.4 1840.4 4690.4

Table 1: The above table shows half the width of the 95% confidence interval (based on the randomizations)
for the different methods and for different values of k around the corresponding means w.r.t. the Health Care
dataset.

k kmeans Akmeans Skmeans SSIkmeans COPkmeans CSC GFHF

2 513.5 513.5 482.3 6492.5 22199.8 16595.7 37903.4
3 297.2 1999.2 1571.5 5973.5 19225.3 16112.2 45340.9
4 117.8 2244.6 3867.8 6173.8 23943.1 17581.5 48660.2
5 100.2 2148.9 4117.1 5292.6 25362.8 26589 50149.1
6 520.5 1574.9 2470.3 5382.3 25700 16742 48677.4
7 420.7 2177.1 3756.7 4836.2 25234.7 11883.6 50216.9

Table 2: The above table shows half the width of the 95% confidence interval (based on the randomizations) for
the different methods and for different values of k around the corresponding means w.r.t. the Spend dataset.

Akmeans is only incrementally worse than k-means,
though it provides a feasible clustering. In this case
too, when k-means does provide a feasible clustering
our method outputs the same quality clustering. The
other methods are much worse in most cases with again
higher error and in some cases higher variance.

Amongst the other methods COPkmeans seems to
be performing the best overall with lower error and
moderate variance in many cases. However, its higher
error and in many cases higher variance relative to our
method is again because of its sensitivity to the chosen
t fraction that it must assign to the same cluster. This
gap is much lesser on the Iris dataset, since the groups
are relatively well separated with not much overlap.
The sensitivity issue is also prevalent in CSC for the
same reasons. For GFHF besides the sensitivity to the t
fraction its performance is also affected by the instances
we choose from the other groups to initialize it. This is
the reason for its excessively high variance in multiple
cases.

The supervised methods perform much worse than
our method in general, since they strive to cluster all
instances in a manner that is consistent with the groups
they belong to. Hence, this procedure turns out to be
excessively demanding leading to lower quality feasible
clusterings.
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