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Abstract We describe methods for continual prediction of manufactured prod-
uct quality prior to final testing. In our most expansive modeling approach, an
estimated final characteristic of a product is updated after each manufacturing
operation. Our initial application is for the manufacture of microprocessors,
and we predict final microprocessor speed. Using these predictions, early cor-
rective manufacturing actions may be taken to increase the speed of expected
slow wafers (a collection of microprocessors) or reduce the speed of fast wafers.
Such predictions may also be used to initiate corrective supply chain manage-
ment actions. Developing statistical learning models for this task has many
complicating factors: (a) a temporally unstable population (b) missing data
that is a result of sparsely sampled measurements and (c) relatively few avail-
able measurements prior to corrective action opportunities. In a real manu-
facturing pilot application, our automated models selected 125 fast wafers in
real-time. As predicted, those wafers were significantly faster than average.
During manufacture, downstream corrective processing restored 25 nominally
unacceptable wafers to normal operation.

Keywords manufacturing - data mining - prediction

1 Introduction

The manufacturing of chips is a complex process, taking months to produce
a modern microprocessor. Starting from the initial wafer, the chips are pro-
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duced by the application of hundreds of steps and tools. Given the complexity
of these processes and the long periods needed to manufacture a micropro-
cessor, it is not surprising that extensive efforts have been made to collect
data and mine them looking for patterns that can eventually lead to improved
productivity (Goodwin et al., 2004), (Harding et al., 2006), (Melzner, 2002),
(Weber, 2004), (Weiss et al., 2010). Among the primary roles of data mining in
semiconductor manufacturing are quality control and the detection of anoma-
lies. When something goes wrong, such as a significant reduction in yield, the
data are pulled and examined to find probable causes. From a data collection
perspective, tens or even hundreds of thousands of measurements are taken
and recorded to monitor results at different stages of chip production. Since,
the objective is mostly to monitor quality of production, wafer measurements
can be sparsely sampled, typically less than 10%.

In contrast to monitoring production for diagnostic application, in this
paper we consider prediction of final chip performance. Each wafer, and its
constituent chips, has an incremental history of activity and measurement
accrued during its manufacture. In its purest and most ambitious form, our
objective is to predict the final outcome of each wafer in terms of critical
functional characteristics. Months may pass before a chip is completed, hence
there is great interest in mining production data to predict its performance
prior to final testing (Irani et al., 1993), (Apte et al., 1993), (Fountain et al.,
2000). While many alternative testing measurements are reasonable to measure
the health of a wafer, in our initial applications, we designate a proxy for
microprocessor speed as the predicted outcome. Thus during manufacture,
the average speed of the finished product is estimated at a time far from
completion.

Using the same data that are recorded to monitor individual elements of the
fab manufacturing process, the final performance of a wafer is estimated. This
exercise implicitly raises, and in part addresses the question of how much power
such a set of measurements, designed explicitly for the purposes of monitoring
unit and integrated process performance, has for this very different prediction
application.

Measures of speed are the final critical characteristics used in this paper to
measure outcome. A chip running too slow is clearly a negative outcome, as is a
chip running too fast, since it may consume too much power. The advantages
of accurately predicting final performance are manifold. Among the actions
that might be taken are as follows:

— Correct wafers with expected poor performance.

— Prioritize manufacturing times for expected best-performing wafers allo-
cating them to high-priority customers, With an average wafer manufac-
turing time of many months, theoretically the highest-yielding wafers could
be finished earlier than otherwise expected.

— Queue wafers based on expected performance and current demand.

Predicting final performance based on incomplete measurements is a diffi-
cult task. It implies accurate and highly predictive measurements. The benefits
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can potentially be great in improving manufacturing efficiency and yield and
the early detection of potentially weak outcomes. From a machine learning
perspective, technical difficulties abound, from time-varying populations and
the inherent instabilities of massively missing data. To address these difficul-
ties, knowledge-based methods for missing values are developed, specialized
sampling techniques are employed, and combined learning methods such as
linear and boosted trees are invoked. An overview of the applied methodology
is shown in Figure 1.

In Section 2, we provide more domain specific details for semiconductor
manufacturing. In Sections 3 and 4, we describe the development of regres-
sion models predicting microprocessor speed. In Sections 5-7, we then describe
the further development of these models for real-world applications requiring
the identification of normal wafers and requiring the identification of aber-
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Fig. 2 Stages of wafer/chip manufacturing. A wafer moves from left to right. Circles with
numbers reflect measurements used in these models

rantly fast or slow wafers. Additionally, the performance of these real-world
applications is measured in terms of the benefits of suggested actions.

2 Background

It takes a few months to manufacture a microprocessor, during which a wafer
undergoes incremental processing (nominally value adding) and measurement
(nominally non-value adding) operations. During production, in total, thou-
sands of different measurements are taken, and while some relatively small
number of measurements are made on at least one wafer in every lot, as few
as only 5 to 10% of the wafers may undergo any single measurement. Fur-
thermore, there may be varying degrees of coordination in the selection of
lots and wafers between measurements. Thus some lots and wafers may have
many measurements while other lots and wafers have only a very few or no
measurements beyond the relatively small set of compulsory measurements.

Figure 2 illustrates the progression of a wafer through the line for a main-
frame microprocessor. Here, a wafer starts at step 1, where a Pad Oxide op-
eration is performed, and proceeds to increasingly numbered steps. Wafers
typically travel in groups of 25, called a lot. Measurement steps monitoring
the quality of individual processing steps, or assessing the quality of integrated
processing progress, follow many processing steps. These measurement steps
may be performed on randomly selected lots, with a lot sampling frequency
determined by quality control metrics, and most commonly on 2 to 4 randomly
selected wafers within each sampled lot. The same wafers may not necessar-
ily be measured on following steps, so that most wafers will have a random
collection of measurements, with many of them unknown.

The target outcome for prediction is a real-valued electrical test (PSRO)
serving as a proxy for the average microprocessor speed on the wafer. The
higher the PSRO the slower the wafer. This test is conducted on all wafers
as one of the last set of electrical tests. In an ideal implementation, we would
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update a (regression) prediction of PSRO measured at final test for each wafer
after each processing and measurement step.

In our initial implementations, we established a limited number of land-
marks in the production process where predictions are updated. These land-
mark steps are selected based on knowledge of the production line. While
the ideal implementation of continual prediction covers all possibilities, a rea-
sonable alternative is to make the predictions after these critical landmark
steps. This coordinates the data collection for all wafers, so that they are
synchronized relative to completeness of data, and more amenable to statisti-
cal modeling. Engineering knowledge also plays an important role in defining
the landmarks. From the engineering perspective, landmarks may be selected
based on the potential actions that may be taken. In our case, we can con-
tinue to model and predict after each step, and predictions tend to get more
accurate as more steps are completed. However, corrective processing action
is only feasible during early stages of manufacture, that is, with less than 50%
of steps completed. In Figure 2, we might establish landmarks at step 7 and
14, where predictions after step 14 might be useful for customer triage, but no
corrective processing action can be taken.

For our primary application, the most critical prediction of final speed was
made at a landmark marking the last time for corrective processing action. If
a wafer’s predicted speed was unacceptably high or low, its progress on the
line was halted until an engineering review and response, including tailored
remedial downstream processing. The basic unit for sampling is a wafer and
its historical record. Depending on the application and manufacturing line
operation policies, it may be necessary to predict final mean or median speed
by individual wafer or by lot. In our initial implementation, we predicted mean
lot speed by averaging the predictions of the individual wafers comprising those
lots.

All our experiments were performed in a major production fab, not an
R&D facility. This multi-billion dollar fab is used to manufacture IBM prod-
ucts and customer products under contract such as microprocessors for game
consoles. Multiple products are manufactured on the same line, and at each
step, multiple sets of tools are available to perform the same function. We have
access to all stored fab data and can perform data analyses. Under special ap-
proval, we were allowed to perform a restricted set of experiments for a small
set of wafers within the standard production line consistent with engineering
protocols to improve wafer performance. We had absolutely no mandate or
capability to alter the overall recipes of production or to manage supply chain
for customers. We proceed with essentially no change to protocols in place for
chip production.

3 Methods and Procedures

Our application has the following input and output characteristics:
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— Input: Sparsely sampled control measurements on a wafer such as physical
measurements (wafer mean film thicknesses, dopant doses), lithographic
metrology (wafer mean critical dimensions and layer to layer overlays), and
electrical measurements (wafer mean individual transistor to small scale
macro performance measures). Defectivity measurements, having relatively
little influence on PSRO were not included.

— Output: Performance indicators such as speed or power consumption mea-
surements. In our studies, we use the electrical test (PSRO) serving as a
proxy for microprocessor speed to be our target.

Using these input measurements, the objective is to predict the output
measure long before it is actually measured. In the ideal application a va-
riety of engineering and management actions may be initiated based on the
continuously updated predictions of final wafer characteristics. Unwarranted
corrections to the wafers or supply-chain actions may be very costly, in the
worst case ruining salable products. This imposes a clear requirement that the
predictions be made with high precision. Thus, depending on the expected ac-
curacy of prediction, we restrict actions to those wafers that are predicted to
be most deviant. In our application these are the estimated fastest and slowest
wafers.

3.1 Collecting Data

In this work, we explore the use of preexisting control measurements for pre-
dictive applications.

The data are all real valued and can be posed in a standard vector format.
For any wafer, W(i), the target speed prediction, can be made by mapping
from the input vector X(i) to the output, Y(i). We collected data and made
predictions using wafer mean and median values and did not explore data and
predictions by individual chip or wafer region.

Figure 2 illustrates the progression of a wafer through the line for a main-
frame microprocessor. Here, a wafer starts at the step labeled First Process
and proceeds to the right through increasingly numbered steps. Thousands of
different measurements may be defined for a given manufacturing route and
are in place to assess the quality of unit processes or integrated processing
progress.

To reduce cost and manufacturing cycle time, these measurements are made
only on a fraction of lots, and on a fraction of the wafers within each lot. The
fractions sampled are generally determined by quality control considerations.
Thus, while a relatively small number of compulsory measurements are made
on many wafers in every lot, as few as only 5 to 10% of the wafers may
undergo any single measurement. Furthermore, there may be varying degrees
of coordination in the sampling of lots and wafers between measurements. As
a result, some lots and wafers may have many measurements while other lots
and wafers have only a very few or no measurements beyond the relatively
small set of compulsory measurements. While such measurement sampling
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Fig. 3 Missing data characteristics.

policies are optimized for control applications, they are obviously suboptimal
for predictive applications where the ideal would be all measurements on all
wafers.

The complete data for wafers that have finished final test testing can be
readily retrieved from a database. This data is complete only in the sense that
all measurements that will be ever made on these wafers have already been
made. The measurements for many lots and wafers may be missing, and the
types of missing measurements are inconsistent from wafer to wafer. However,
the wafers of interest, for which actionable predictions are to be made, have
not completed even half of the full processing flow. Thus the input data vector
for those wafers is additionally highly censored.

This results in a standard data presentation with one practical deficiency:
Most of the data items are missing. Figure 3 presents the wafer and lot frac-
tions of missing data measurements from a sample of 6435 completed wafers.
Approximately 90% by wafer, and from 50% to 90% by lot of the nominally
anticipated measurements are missing. The frequency of sampling varies by
measurement and is determined by the engineering team based on their view
of the importance of the measurement and quality control considerations. It’s
the measurement that is randomly sampled, not the wafer. It’s not the case
that a wafer has either completely sample measurements or not— each wafer
will be be missing random selections of measurements. We have no capability
to change that frequency, and we use the data as given.

To estimate whether unit and integrated processes are operating within
specification, sampling of some measurement values is adequate to collect mean
values for quality control. When the goal is modified to use these same mea-
surements for prediction, the inadequacy of current data collection standards
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is manifest. With 90% missing, prediction is not feasible. How then do we
transform an intractable problem due to lack of data to a feasible application
with adequate data?

Given knowledge of which measurements had the most significant predic-
tive power, one could imagine implementing a full lot and wafer test on a
limited set of measurements, as a long term strategy. Depending on the par-
ticular predictive application implemented, some other quality control mea-
surements could be reduced in frequency, offsetting the additional cost and
time associated with full test for the highly predictive measurements.

In theory, another strategy would be to replace missing measurements with
predictions from a set of virtual metrology models. These models use process
trace data, process consumable characteristics, and chamber state informa-
tion, generally available for all wafers, as inputs to predict the results of unit
processes. However the accuracy of such predictions for many processes is not
yet well established, especially over tool maintenance cycles. So this must be
regarded as an ambitious, risky, long term strategy (Khan et al., 2007), (He
and Zhu, 2012), (Zhu and Baseman, 2012).

However, for immediate and practical action, the current data samples
must be used as is. Wafers are processed and measured together as a lot, explic-
itly so in batch processing tools, implicitly so in single wafer tools, undergoing
the same process simultaneously, in the same tools. We can take advantage of
these relationships to improve estimates of missing measurements. Consider
the following hierarchy of possibilities for estimating a missing measurement
for a wafer.

— Full sample measurement mean
— Lot measurement mean
— Split lot measurement mean

The simplest idea is to estimate missing measurements by the global mea-
surement mean, using the complete sample. This approach would allow ma-
chine learning to function, possibly succeeding when the most predictive mea-
surements are more fully sampled. In our application, over 90% of measure-
ments are missing, and this approach fails to predict accurately.

The second idea is to use the wafer’s lot mean. Because the wafers with
a lot are generally processed identically, this approach can improve results
greatly over using a global mean.

The next idea improves somewhat over the lot mean. In the course of pro-
duction, some wafers may temporarily be split from their parent lots into child
lots to undergo rework processes, travel along branch routes for measurements,
act as send aheads for control feedback, or test improved processes. The child
lots may undergo single or multiple processes at different times and by different
tools. In this case, at the expense of additional record-keeping, the individual
child lot means are used for estimating each wafer’s missing values, based on
each wafer’s lot membership at each process, rather than using the full lot
means.
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The variance of a measurement within a lot is usually much less than
between lots because the within-lot wafers use the same tools on each step. For
different lots, tools from varying generations and manufacturers are available
for each step. That explains the rationale for using within lot estimates for
missing values. Of the three alternatives cited here, in our application, the
detailed child-lot option yields the best predictive accuracy.

It is also important to note that other machine learning methods for fill-
ing in missing values, such as expectation-maximization based methods, were
tested and resulted in less accurate predictions than the suggested approach;
possibly because they are agnostic. Moreover, such methods are significantly
more computationally expensive, which is undesirable in the anticipated large-
scale applications.

3.2 Sampling and Evaluation

In the previous section, we reviewed the sampling of measurements. This is
inherent in the operation of the fab, and is something that is unlikely to be
modified due to time and cost constraints.

In this application, our data set is continually growing due to the man-
ufacture of additional chips. If the data are stable and are from the iden-
tical population, the complete sample would be used for learning. Once the
manufacturing process has stabilized, the physical relationships among the
measurements should also stabilize. The largest sample in a high-dimensional
feature space is likely best for learning and most representative of the complete
population.

Here we see competing themes for learning. Depending on the stability of
the manufacturing processes, we are pulled in different directions. If the pop-
ulation is stationary, the standard train and test model can be applied on the
full sample. However, it is not unusual for the population to be non station-
ary in the complex manufacturing environment for semiconductors. Yield or
performance enhancing process adjustments may continue over a significant
portion of a product’s life cycle, while nominally stable processes may evolve
within or in some cases temporarily outside of control limits. In these environ-
ments, the population acts like a time series, where the most recent data are
more valuable that older historical data.

To make predictions and measure performance, a separate train and test set
of prior results are essential. Clearly, lots must be completely separated, given
their underlying relations among their wafers. Because results may change
over time and the population is not stationary, independent time-ordered sets
are advantageous over randomly sampled wafers or lots. This time-ordering
corresponds to the real manufacturing environment, where we look at recently
manufactured wafers to predict future wafer performance. This application
has thousands of wafers to sample, and ample data are present for training
and testing. If the populations from these two time periods are very similar,
some reasonable percentage of the complete sample could be used for training
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and testing, for example 70% training and 30% testing. However, given the
nonstationary nature of data, better results can be achieved by restricting the
training data to a window of k days. This reflects the usual time-series expec-
tation — for non-periodic data— that the more recently completed wafers are
most indicative of expected results for current wafers that are still progressing.
In our case, we use the following constraints on data sampling:

— one year of data for complete sample of n wafers
— k wafers for training
— n - k wafers for testing

The value of k is typically much smaller than n, perhaps 3 months of
data. However, the choice of £ must also be verified by testing, and several
possibilities are examined. The population may change, and that implies that
these values and experiments may be performed periodically to verify previous
choices. Yet, we know that even good performance on test cases could change
over time, so it is wise to have a large test set taken over a longer time-
frame that is representative of varying conditions. In particular, we have gone
through periods where pessimism is more warranted in predictions, especially
when changes are being made to enhance the manufacturing processes. The
expectation is that updates to the manufacturing process are implemented
with an eventual return to stability. Thus we adopt an emphasis on recent
data for training, and more extensive historical data for testing.

Algorithm 1 illustrates the evaluation procedure that is used to estimate
model predictive performance for the current wafers and to determine sample
and model characteristics. In a static environment, one might simply choose
those modeling characteristics that minimize error. However, the application
environment is dynamic—wafers enter and leave the manufacturing line and
processes and fab performance may change. Directions in fab and model per-
formance may also change, but not on a daily basis. Therefore some overall
knowledge about the trends in model performance must be applied. One rea-
sonable strategy is to make major modeling decisions in an experimental phase,
and then watch trends over time before making major revisions. However, the
estimates for individual wafers are critically important for decisions made on
a daily basis. Typically, only wafers with the most extreme predictions will
be selected for actions. The procedure of Algorithm 1 is used for our internal
estimates. Real-world decisions are made by selecting wafers for revision, and
the consequences of those decisions are the ultimate evaluation of predictive
performance.

4 Methods for Learning

From a machine learning perspective, the objective is to predict the even-
tual outcome of product testing, PSRO measured at final test. Given a set of
real-valued measurements including the outcome, regression methods are ap-
plicable. We could also view the task as classification, when well defined speed
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Algorithm 1 Model Evaluation

1. Collect sample S1 of wafers with known completed measurements

2. Collect independent sample. S2, for testing.

3. Learn a prediction model from S1 and evaluate on S2.

4. For step 3, any learning model learned from S1 is acceptable, subject to
fair performance evaluation on S2.

5. example of a prediction model for step 3 is a linear model, where
Given n wafers in S1, each with j measurements find the best set weights
such that error is minimized as in this computation for the k-th wafer.
wt(1)* M(1)+ ...+ wt(j)M() = P(k)

6. Error is estimated by MSE or MAD for difference in true value T(j) and
predicted wafer target measurement P(j),

’ Method \ Step 3 \ Step 7 \ Step 14 ‘
Boosted trees and linear | 0.04 0.08 0.69
Boosted trees -0.01 0.05 0.62
Ridge -0.13 0.03 0.59
SVM -0.02 0.04 0.60
HMML -0.22 0 0.16
BTM -0.25 -0.15 0.14

Table 1 Above is the comparison in terms of average R? of different state-of-the-art learning
methods at different steps in the processing (Figure 2) of a wafer based on weeks of daily
experimentation.

thresholds can be specified. Early exploratory experiments not described here
demonstrated far better predictive value for regression analysis than classifi-
cation. Predicting the continuous PSRO provides a natural ordered ranking of
the wafers. The most likely candidates for correction are those with the most
extreme predictions or those outside a specified normal range.

Using the procedure in Algorithm 1, different learning methods can be
compared and the one with best results selected. This is a standard approach
to selecting learning algorithms in a stationary population when predictive
performance is the primary goal. However, the fab population is not station-
ary, and periods of relative stability and periods of rapid change are both
anticipated.

To deal with these changes and also based on experimentation over many
weeks, linear regression and forests (boosted trees) (Schapire, 1990) methods
were combined and used for modeling with carefully customized train and test
protocols.

The results of testing several learning methods are shown in Table 1. In this
table, SVM stands for support vector machines (Vapnik, 1998). HMML stands
for a hidden markov model based method with lasso regression in every state
(Liu et al., 2009). BTM stands for best of the time series methods using SPSS
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expert modeler. The ensemble learning method, which averages the predictions
of boosted trees and linear regression performs the best overall. The reported
results are R? values averaged over weeks of experimentation. R? is a standard
measure in statistics used to evaluate regression algorithms. It is defined as,

~ mse(M)
—g

where mse(M) denotes the mean squared error of a model M on the test set
while mse(u:) denotes the mean squared error of the training set target mean
on the test set. In our case, M would signify the regression functions learned
using the different learning methods while p; would signify the mean PSRO
computed over the training set. Hence, R? values closer to 1 imply that M
is much superior to . Negative R? values imply that using M is inferior to
using the simple prediction of the training set mean, and are highly suggestive
of nonstationarity in the underlying input output relationships.

The classical linear model is a simplified model that assumes a fixed rep-
resentation. In our experiments, it usually performed worse than the forests
which are collections of decision trees generated from random subsampling
of the training data. However, in nonstationary environments, i.e. fab perfor-
mance is evolving, the linear method could win. The reason is likely tied to
its simplified and restricted perspective that does not overfit the data and is
more robust.

The forests, numbering in the hundreds of decision trees, are capable of
modeling much more complex functions than the single linear regression model.
When the population is stable, the forests will perform much better. When
fab behavior is evolving, the results can weaken because the fit to the (stable)
training data is too tight.

The predictions of these two methods can be averaged. This is an effective
strategy for dealing with evolving fab dynamics. Combining two or more in-
dependent methods is known to often give better results (Bao et al., 2009),
(Dzeroski and Zenko, 2004), (Bell et al., 2009). The methods can be evaluated
independently and in combination. In our applications, they are retrained on
the data every day, so there is ample opportunity to examine which variation is
doing better. Besides the purely empirical evaluation, one may have knowledge
of the overall performance of the fab. For example, just looking at the trend
in mean speed over several weeks can suggest whether the fab performance is
stable or not.

Algorithm 2 is a overview of a procedure for sampling, learning and eval-
uating the models induced from the current sample of wafer data.

RZ=1

5 Optimizing Predictions

The overall mission is the early identification of wafers or lots that will be
unacceptably fast or slow, and the implementation of effective countermea-
sures. The engineering staff recognizes an acceptable range of speeds for each
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Algorithm 2 Model Learning
— L. For all learning methods including trees:

1. Collect sample S1 of wafers with known completed measurements
2. Collect independent sample. S2, for testing.

— II. For boosted decision trees and other multiple-sample leaning methods:

Randomly re-sample from sample S1 and create S3

Learn a prediction model from S3

Repeat steps 3 and 4, k times

Average the results for all k trees For new wafer prediction, average all
k predictions.

Ll ol

IIT Customize boosted trees

1. Determine best sample period for creating S1 and S2. For example, 90
days of wafer production.

2. In step II-1, determine best random re-sample size. For example, ran-
domly sample 100

3. In step II-1, overweight most erroneously predicted wafers during re-
sampling

IV. Multiple models of different types (e.g. boosted trees and linear models
1. Average predictions of forests and linear models on S2 sample.

product. If our predictions were completely accurate, we could simply report
and act on all wafers predicted outside of that acceptable range. We can see
in Table 1 that predictions are far from completely accurate using data col-
lected prior to step 7, which is the last opportunity to implement downstream
corrective processing.

Analogous to predictive sales applications where lift is plotted, i.e. plot-
ting the gain from ranked selection of prospects versus random selection, these
predictions can be ordered and ranked. Wafers in the extreme tails of the pre-
diction distribution are usually much more likely to be out of range, and of
interest in our application. The test data are used to estimate expected devi-
ations from the mean. Given a specific threshold, for example all wafers pre-
dicted above t, overall deviation of the true values from the mean are measured.
Additionally measured are deviation in the correct direction and deviation in
the negative direction. A measure of accuracy is provided, where a prediction
is scored as correct when it is in the same direction as the true answer, i.e.
above or below the mean. The results for selected threshold, ¢, should surpass
a minimum degree of accuracy for both direction and deviation. An effective
threshold must provide highly accurate predictions and identify wafers with
meaningfully large absolute deviations from the desired range.

The selected wafers will undergo corrective processing to increase or de-
crease their speed. In general we consider corrective processing strategies de-
signed to adjust wafers slightly, to move wafers from outside a desired range
into the range, rather than trying to move the wafers to the center of the
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range. Assuming a modest increase in speed for a predicted slow wafer, a mis-
take in prediction could make it too fast and actually degrade the wafer yield,
a costly expense. However, if the increase in speed maintains the wafer’s chips
within the upper bound, then the expense is minor. Thus, a more detailed
analysis of thresholds for prediction is warranted to find an interval where
prediction is most accurate. Algorithms 3 and 4 are procedures for optimizing
the thresholds for detecting high or low values based on predictions of the
model described in the Section 4.

Algorithm 3 Detecting High Values

1. Build statistical prediction model for sample of completed wafers or lots.

2. Collect a separate test sample from either earlier or later completed wafers

3. Using the model in (1) and test sample in (2), predict the target measure-
ment for each wafer

4. For each wafer, compute the prediction error by comparing to the true
target measurement.

5. For the subset X of wafers above threshold x, compute mse (mean square
error) [or mad (mean absolute deviation)]

6. Compute good mse (or mad) for wafers in (5) that are above the mean of
the sample.

7. Compute bad mse (or mad) for wafers in (5) that are below the mean of
the sample.

8. Compute an accuracy rate:
(number of predicted wafers actually above mean) / (number of wafers
predicted above sample test mean)

9. Using these accuracy estimates, engineering staff selects high threshold for
decision based on expected costs and yields.

Although we focus on the early detection and correction of aberrant wafers,
other applications of our system require early detection with high accuracy of
“normal” wafers, i.e. not fast, not slow. For example, some machine build de-
signs can only use chips with relatively tight power performance specifications
and customized wafer back-end processing. Any chips tailored in the back end
for that design, not ultimately meeting those tight specifications, may be un-
usable for another build. In such a case, improving the likelihood that chips
tailored for that design will meet those tight specifications can reduce yield
loss.

The task of early detection of normal wafers is not merely a trivial comple-
ment to the prediction with high accuracy of aberrant wafers: The absence of a
prediction of aberrant wafers does not imply a prediction of normal. While the
models we have developed for detecting aberrant wafers have high accuracy,
their recall is limited and the applications exploiting those models are rela-
tively forgiving of false negatives. Thus the early detection of normal wafers
is a more difficult and complex problem from detecting fast or slow alone.
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Algorithm 4 Detecting low values

1. Build statistical prediction model for sample of completed wafers or lots.

2. Collect a separate test sample from either earlier or later completed wafers

3. Using the model in (1) and test sample in (2), predict the target measure-
ment for each wafer

4. For each wafer, compute the prediction error by comparing to the true
target measurement.

5. For the subset X of wafers below threshold x, compute mse (mean square
error) [or mad (mean absolute deviation)]

6. Compute good mse (or mad) for wafers in (5) that are below the mean of
the sample.

7. Compute bad mse (or mad) for wafers in (5) that are above the mean of
the sample. .

8. Compute an accuracy rate:
(number of predicted wafers actually below mean) / (number of wafers
predicted below sample test mean)

9. Using these accuracy estimates, engineering staff selects low threshold for
decision based on expected costs and yields.

One approach is to find an interval for an ordered set of wafer speed esti-
mates, where the true normal occurrence rate is very high. Figure 5 describes
a procedure for finding an interval for normal wafers. In the absence of this
application, wafers would be chosen randomly for back end customization, and
a base fraction of chips will fail to meet final specs. Thus for this application,
we measure success in terms of the reduction of the number of customized
chips falling outside the desired PSRO window.

Figure 4 summarizes characteristics of the entire test wafer population and
wafers from three intervals selected by Algorithm 5.

Choosing wafers randomly leads to a fallout of 17% at final test. Prediction
intervals 1, 2 and 3, respectively are intervals that include roughly 75, 50 and
15% of the total test population, and are optimal in terms of the numbers
of wafers falling outside the desired PSRO window. The fraction of selected
wafers falling outside the window can be reduced to as little as 2.7%. The
reduction in loss shows the reduction in the number of failing chips in each
interval from the default random selection of chips, as a fraction of the number
of chips failing with random selection, which is as high as 84% for prediction
interval 3. We see a clear tradeoff between fraction of the population selected
for customization and the likelihood of failing to meet final specs.

In addition we show the accuracy, recall, and r2 for the entire sample
population and the three prediction intervals. We note a striking variation in
the R? across the different prediction intervals. These prediction intervals are
defined, as above, in terms of an optimal reduction in wafers falling outside the
desired window. In the course of these experiments optimal smaller prediction
intervals were not always strict subsets of optimal larger prediction intervals.
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Algorithm 5 Detecting normal wafers

1. Build statistical prediction model for sample of completed wafers or lots.

2. Collect a separate test sample from either earlier or later completed wafers

3. Using the model in (1) and test sample in (2), predict the target measure-
ment for each wafer

4. For each wafer, compute the prediction error by comparing to the true
target measurement.

5. For the subset X of wafers below threshold x, compute mse (mean square
error) [or mad (mean absolute deviation)]

6. Specify a normal range (x to y), i.e. an lower and upper bound on normal
wafers

7. Examine an interval of wafer predictions on the test sample. Compute an
accuracy ratio:
(number of true normal wafers within the interval)/ (number of predicted
wafers within the interval

8. Examine all intervals where each upper or lower bound is considered in
increments of j (example, normal range is 10 to 11 and increments are .1)

9. Choose the best accuracy such that a minimum of k wafers are covered.

In some cases, optimal smaller prediction intervals were disjoint from larger
optimal prediction intervals. The large variation in R? reported here across
the three prediction intervals reflects primarily variation in the effectiveness
of the train mean as an estimate of the wafers int he prediction interval.

We anticipate the use of our normal-finding algorithms for the manufac-
ture of relatively low volume products. Thus the rate of yield loss can be
cut dramatically, by relatively modest (relative to required product volumes)
reductions in the population of candidate customization wafers.

Choosing | Choosing | Choosing | Choosing

Wafers Wafers in Wafers in | Wafers in

Randomly | Prediction | Prediction | Prediction

Interval 1 Interval 2 Interval 3

Fraction of Test Wafers Included in Prediction Interval 1.00 075 049 0.15
Fraction of Wafers in Chosen Interval Falling Outside Desired PSRO Window 017 0.081 0.039 0.027
Reduction in Loss (Fractional, From 16.7%) 0.00 0.52 077 0.84
Accuracy (Fraction of Wafers in Prediction Interval Actually in Desired Window) | 0.83 0.92 0.96 0.97
Recall (Fraction of Wafers in Desired Window in Prediction Interval) 1.00 0.83 0.57 0.18
r2 for Wafers in Prediction Interval 0.59 035 007 0.33

Fig. 4 Sample results for normal wafers
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All Test Wafers | Sample1 | Sample 1 Sample2 | Sample 2 Mystery
Complement Complement | Wafers
Sample Size 5388 174 5214 o1 5337 77
Number Actually Slow 2620 147 2473 43 2577 70
Accuracy (Fraction of Number 0.49 084 047 0.84 048 094
in Sample Actually Slow)
Average Deviation from Train 0.04 0.66 0.02 0.7 0.04 119
Mean
Recall (Faction of Number Slow | 1.00 0.056 094 0.016 0.98 nia
in Sample
2 0.06 0.46 0.03 0.55 0.05 nfa
a)
All Test Wafers | Sample1 | Sample 1 Sample2 | Sample 2
Complement Complement
Average 1224 12.86 12.22 1291 12.24
Variance 0.35 033 0.34 0.32 0.35
T Stat 142 84
P(T<=t) one tail <108 <108
b)

Fig. 5 Results from retrospective study

6 Results

The concepts presented here have been implemented in a fully automated
system that predicts the final test PSRO proxy for final chip microprocessor
speed. Data for training, testing, and prediction are extracted from the fab’s
data warehouse, which is updated within minutes of any newly completed
measurement for a wafer. In our current implementation, samples, decision
models, and estimates are updated once a day.

A simple evaluation of predictive model performance on test data sets is an
inadequate characterization of overall system performance. Rather, below, we
describe two comprehensive evaluations. Retrospectively using complete his-
torical data, we performed a complete simulation of daily resampling, model
building and testing. In a smaller, more expensive prospective study, we per-
formed true real-world testing in a manner similar to evaluating the efficacy of
a drug versus a placebo. In both studies, the application is for remedial action
to a wafer prior to a landmark step S.

Retrospective Study: In Figure 2, the decision to hold a wafer and commit
to corrective downstream processing must be made by the landmark step 7
(LS7). Thus the system will compute predictions using only those measure-
ments collected prior to that landmark. Using data from all the wafers that
were completed through final test during a two month period, we examined
the daily estimation process for each wafer just prior to LS7. Twenty-four lots
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By Wafer Including all Wafers Excluding Fastest Lot
BAU Processing Predicted Fast BAU Processing Predicted Fast
Sample Size 290 35 290 29

Number Actually Fast

151

29

151

23

Accuracy (Fraction Fast in Sample)

0.52

0.83

0.52

079

Average 10.570 10.312 10.570 10.409
Variance 0.298 0.151 0.298 0.079
T Stat 3.524 2622
P(T<=t) one tail 0.00045 0.00572
a)

By Lot Including all Wafers Excluding Fastest Lot

BAU Processing Predicted Fast BAU Processing Predicted Fast
Sample Size 59 5 59 4

Number Actually Fast

28

4

28

3

Accuracy (Fraction Fast in Sample)

0.47

0.80

0.47

075

Average

10.540

10.335

10.540

10.457

Variance

0208

0.109

0208

0045

T Stat

1.288

0.676

P(T<=t) one tail

0127

0.264

b)

Fig. 6 Results from real time study

of approximately 25 wafers were completed during this time period. Of those
24 lots, 3 lots were predicted to be substantially fast and 3 substantially slow.
All 6 of the identified lots had average speed offsets in the predicted direction
which is evidence of operationally high accuracy, especially given the potential
impact of downstream processes of uncertain impact and stability.

Figure 5 is a summary of statistical results from a single day’s model of the
line. Two independent test set samples were examined using different thresh-
olds as described above. We see that roughly 90% of the wafers predicted to
be slow in both test samples were actually slower than average, a highly op-
erationally accurate result. Figure 5 also shows that the mean of the wafers
selected in each sample is significantly different from the mean of the wafers
not selected. We also note the anticipated tradeoff between the number of
wafers exceeding a predicted speed threshold and the accuracy of those pre-
dictions. This model was then applied to (mystery) wafers outside of the train
and test sets. The 90% accuracy of the predictions on the mystery wafers was
similar to that on the test wafers. Deviations from the mean were larger for
the mystery set than the test set. The extent of deviation from the mean is
a critical factor in determining whether corrective processing is warranted. In
this system learning and optimizing methods are tailored to identify wafers
with extreme deviations, however no explicit controls are introduced to assure
any minimum absolute deviations.
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Real Time Study: In a second, prospective pilot study, we intervened directly
in the production process to correct expected fast wafers. Many of the control
measurements in place are used as part of the fab’s run to run control system.
This pilot study explores the advantages of adding an additional level of control
to the preexisting control systems.

In the study design, a quota of 5 partial lots, about 70 wafers, was allocated
for intervention. We would notify an engineer to hold a predicted fast lot prior
to LS7, and then the lot would be split. Half of the lot would continue in
the regular fashion, i.e. with business as usual processing, and half would be
processed in a fashion to introduce a small speed reduction.

Given that the predictions are expected to be effective on an statistical
basis over large sets of wafers, this strategy allows for correction of fast wafers
while doing relatively little harm to those slow or normal wafers incorrectly
predicted as fast.

Although predictions were made by wafer, the pilot study was conducted
by selecting particular lots for split lot processing. Lot wise predictions were
made by averaging across wafers in each lot. Once a lot was selected for split lot
processing wafers were selected for normal processing or corrective processing
without regard to the wafer level speed prediction. Figure 6 summarizes the
results of the Real Time Pilot.

On a by wafer basis, the predictions were roughly 80% accurate in iden-
tifying wafers that were fast. The mean values of wafers predicted fast were
significantly faster that the remainder of the population, and by several tenths
of a picosecond, an operationally significant amount. One of the 5 lots pre-
dicted fast was much faster than the other 4 lots, and Figure 6 includes results
from the Pilot when that one particular lot is excluded from the analyses.
There is a modest reduction in accuracy, and the difference in the mean val-
ues is reduced, but the T statistic for difference in means remains statistically
significant at the 0.005 level.

A purely by-wafer analysis of the results is incomplete given the processing
relationships shared by wafers within a lot. Figure 6 also reports the results
by lot. Here the statistical significance of the test for difference in means is
reduced dramatically due to the reduction in sample size, though the accuracy
in identifying lots remains high, even when the extremely fast lots are removed
from the analysis.

From a macro-decision perspective, as a result of the predictions and cor-
rective processing, the extremely fast lot is corrected into a normal range,
while the other 4 lots remain in the normal range when modest corrections
are applied.

7 Discussion
We have described a fully functioning system that predicts mean wafer speed

prior to final testing. Speed serves as a proxy for estimating overall wafer
health during manufacture. The advantages of accurate prediction are manifold
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including wafer correction and prioritization for different customers. Although
the current implementation does not accurately predict future performance of
all wafers, we have shown promising results for identifying some outliers.

Clearly, this is a difficult prediction problem. The measurements are sam-
pled in small quantities and the utility of these measurements is uncertain,
especially when applied to individual wafer estimation. Processes may evolve
over time as described above, and manufacturing tool performance may evolve
over time reflecting a dynamic mix of products in a multi-purpose fab such as
IBM’s 300mm line.

We examined in detail an application with opportunities for corrective ac-
tion. Here the prediction must be made prior to a landmark operation so that
corrective action is feasible. Prediction accuracy is limited by the manufactur-
ing steps that occur downstream of landmark, to which the learning system is
oblivious. Any hope of making highly accurate predictions with such a data
set relies strongly on the stability of the processes occurring downstream from
that last data collection step and or an assumption that the downstream op-
erations have relatively little influence on speed.

From a modeling perspective, the nonstationary nature of the manufac-
turing processes along with overwhelming missing data makes for a complex
problem. Despite all these complications, we have shown that estimation sig-
nificantly beyond chance is feasible and in some cases reasonable predictions
can be made at the wafer and lot level.

There are many opportunities for future improvements to this system. We
anticipate improvements in accuracy with applications to increasingly stable
manufacturing environments.

An improvement in quality of measurement, or an increase in the sampling
rate of wafer measurements, will also likely lead to better results. Thousands
of different measurements are made in the course of the manufacturing line,
many at low frequency. If the most predictive measurements are identified,
an increase in their measurement sampling frequency should be beneficial for
prediction.

Here we considered on-wafer physical measurements, on-wafer chemical
measurements, on-wafer metrology, and in-line kerf electrical measurements
as potential predictors. Other classes of measurements characterizing the fab
and manufacturing process, included so-called process trace data and data
characterizing fab facilities, environment, and consumables should be consid-
ered as additional powerful predictors.

Data input for learning, testing and prediction in these implementations
was aggregated by wafer. Many unit manufacturing processes exhibit signifi-
cant across wafer non-uniformities. In a related but different problem of mon-
itoring and predicting yield, it was reported that some semiconductor yield
models show improvements with spatially resolved estimates, e.g. by individ-
ual chip or by region (Krueger et al., 2011). Yield prediction has been a heavily
studied problem in semiconductor literature (Stapper, 1989), (Kumar et al.,
2006), (Yeh et al., 2007), (Hu, 2009), (Chien et al., 2013), (Li et al., 2006),
(Holden and Serearuno, 2005), (Lee et al., 2000), (Su and Tai-Lin, 2003), where
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defect data is the primary driver in estimating yield, usually of memory chips.
In our case however, we had only electrical and physical measurements taken
early on in the manufacturing process to estimate microprocessor speed. More-
over, we described an online system which runs daily in the fab and adapts
to changing dynamics as opposed to a static yield model. There has also been
work on throughput prediction (Chien et al., 2012) using machine learning
models so as to reduce fab cycle times, however this problem is orthogonal to
both yield prediction and our work.

We expect, a priori, that some manufacturing line measurements should
reflect well known physical relationships, for instance known relationships be-
tween transistor gate dimensions and transistor speed should be reflected in re-
lationships between manufacturing gate metrology and microprocessor speed.
The empirical observations manufacturing results reveal these relationships to
varying degrees. A variety of explanations for weak or evolving empirically
observed relationships are possible, suggesting explicit use of known physical
models in such systems.

Overall, there are many possibilities for improving fab operations by exam-
ining in detail the reasons for poor predictions and modifying fab operations.
In our case, we assume no change to fab operations and experiment within the
existing operations framework.

From a machine learning perspective, models could be incrementally up-
dated as new measurements are recorded. Specialized algorithms would be
needed for incremental learning because not only are new wafers incremen-
tally observed, but also older wafers have revised information. Our current
algorithms make a fresh start every day with the latest sample and complete
batch learning. Those procedures are adequate when the system is not stressed
by time and data constraints. Both knowledge from chip-making and possibly
improved machine learning techniques could produce a new class of methods
for estimating chip performance.
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