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Abstract
We propose a method for building an inter-
pretable recommender system for personalizing
online content and promotions. Historical data
available for the system consists of customer fea-
tures, provided content (promotions), and user
responses. Unlike in a standard multi-class clas-
sification setting, misclassification costs depend
on both recommended actions and customers.
Our method transforms such a data set to a new
set which can be used with standard interpretable
multi-class classification algorithms. The trans-
formation has the desirable property that mini-
mizing the standard misclassification penalty in
this new space is equivalent to minimizing the
custom cost function.

1. Introduction
Predictive analytics has been widely used to support de-
cision making in various applications such as online mar-
keting, health care, and personalized recommender sys-
tems. In these applications, interpretability of the recom-
mendation logic is critical for the adoption of the decision
support tool. For this reason, there has recently been in-
creased focus on interpretable machine learning methods,
e.g. (Malioutov & Varshney, 2013; Kim et al., 2015; Ide &
Dhurandhar, 2015).

Our work is motivated based on a growing need for a (com-
mercial) system that recommends personalized content and
promotions in an explicable way. Many marketing man-
agers, who are the main users of the tool, are uncomfort-
able with fully relying on “black-box” recommendation al-
gorithms that cannot be understood, verified, or adjusted
to fit their needs. Thus, the rules need to be simple and
interpretable. An example rule can be “if the customer is
younger than 30, and spends more than $500 per month,
then show variant 1.” The number of rules should be small

in order to be reviewed and comprehended by marketing
managers. In such a situation, ensuring interpretability as
well as maintaining the quality of the recommendation is a
challenging problem.

Historical data available in such recommender systems
usually consists of the following triples: (customer fea-
tures, action, outcome). In the context of personalized rec-
ommendation, such data sets are suitable to estimate the
conversion probability, i.e., the probability that the cus-
tomer converts to purchase, under each possible action.
Without the interpretability constraint, the recommender
system can simply compare the estimated conversion prob-
abilities for an incoming customer under all possible ac-
tions and recommend the option with the highest conver-
sion probability such as in Domingos (1999). In this case,
even when the estimator of the conversion probability un-
der each option is interpretable, the optimal recommenda-
tion policy may not be summarized in small number of in-
terpretable rules.

There are many algorithms for learning interpretable rules
in multi-class classification problems—such as decision
trees (Hastie et al., 2009)—which can be applied to data
consisting of pairs of (customer features, action). Most
such learning algorithms compute a set of rules that (ap-
proximately) minimizes the misclassification error, which
is uniform over customers and classes. The penalty of an
suboptimal recommendation, however, is not uniform and
varies significantly with different customers and recom-
mended actions. In this paper, we develop a method that
transforms the original data with sample dependent costs
into a new data set with an identical standard (or 0/1) mis-
classification error. With the transformed data, one can use
existing multi-class classification algorithms to obtain rec-
ommendation rules.

Our work is closely related to cost-sensitive classification
problems (Ling & Sheng, 2008), which are prevalent in
practice. Algorithms have been developed for learning
cost-sensitive trees, e.g. (Drummond et al., 2003; Ling
et al., 2004; Lomax & Vadera, 2013). The advantage of



our transformation is its generality as it can be used with
any classifier. Several such transformation have been previ-
ously proposed and studied for binary and multi-class clas-
sification (Zadrozny et al., 2003; Abe et al., 2004; Zhou
& Liu, 2006). Abe et al. (2004) is closest to our work,
but in our case the original data set is different from the
space of the transformed data set and we study a particu-
lar application to recommender systems. The existing re-
search is concerned with a data set consisting of (features,
action) records, and the action represents the right class to
which the feature needs to be classified. In contrast, our
research deals with a data set consisting of (features, ac-
tion, outcome) records. In our case, the actions captured in
the training data can even be completely independent of the
effectiveness of the action depending on how previous ac-
tions were determined, i.e., it does not necessarily represent
the correct class.

The transformation method may be more broadly appli-
cable than just to interpretable rule generation for recom-
mender systems. There is almost always a cost associated
with taking a particular action in some context. For in-
stance, in healthcare patients being administered a partic-
ular treatment may show different levels of recovery and
consequently the benefit/detriment to them may vary. Our
proposed method can also be used in these other settings.

2. Problem definition
Consider an online recommender system for personalized
contents and promotions. For an incoming customer, the
system can recommend a content or a promotion (an ac-
tion) from a set of available options A. Each customer is
represented by a feature vector x ∈ X . When action a ∈ A
is taken, i.e., when option a is provided, to a customer with
feature x, the customer converts to purchase with proba-
bility p(x, a). The optimal option for a customer with fea-
ture x is the maximizer of the conversion probability, which
we denote by a∗(x) = argmaxa∈A p(x, a). The optimal
recommender (classifier) h(·) : X → A maximizes the
expected conversion rate Ex[p(x, h(x))], where the expec-
tation is taken over the distribution of customer feature x.
The objective is to obtain a near optimal classifier that con-
sists of a small number of interpretable rules.

We are given S = {(x1, a1, o1)), . . . , (xN , aN , oN )},
which consists of historical customer feature xn, taken ac-
tion an, and the realized outcome on ∈ {0, 1}. Given this
data set, one can build an estimator f(x, a) for the conver-
sion probability p(x, a). Without the intrepretability con-
straint, the recommender system can simply recommend an
action a with the highest estimated conversion rate for the
given customer feature, i.e., classify x to argmaxaf(x, a).
To obtain interpretable recommendation rules using exist-
ing multiclass classification algorithms, we transform the

data set S to a new set T whose elements are pairs of the
customer feature x and an action a.

3. Loss preserving transformation
One trivial approach to construct T is to discard a record
(xn, an, on) ∈ S if on = 0, and otherwise add (xn, an) to
T . This approach is problematic, for example, if the prior
actions are not uniformly distributed. If a certain promotion
option was heavily used before, then recommender trained
with T will classify most inputs to this option.

A more appealing approach to build T is constructing an
estimator f(x, a) for the conversion probability, and for
each (xn, an, on) ∈ S putting (xn, argmaxa∈Af(xn, a))
to T . In this case, the two sets have the same size, but the
the action taken in the past is replaced with an estimated
optimal action. For each (x, a) ∈ T , classifying x to an
action other than a incurs some misclassifcation penalty,
and thus it is encouraged to classify x to a. We use this
transformation method as the benchmark method.

Although every element in T constructed by the bench-
mark method contains the estimated optimal action for
the given input and thus encourages optimal classification,
the approach does not reflect the impact of misclassifica-
tion cost properly. To see this point, consider a classifier
h(·) : X → A. For a customer with feature x, the cost
of the classifier h(x) is p(x, a∗(x))− p(x, h(x)), which is
the difference between the optimal conversion rate and the
conversion rate under the recommended action h(x). Thus,
the total loss of the classifier h(·) on the data set S is

LS(h) =
N∑

n=1

[p(xn, a
∗(xn))− p(xn, h(xn))] .

Now suppose that for some xn, p(xn, a) is the same for
every a, i.e., p(xn, a) = p(xn, a

∗(x)) for every a ∈ A.
In this case, there is no cost in recommending any ac-
tion for xn. Hence, for the purpose of obtaining recom-
mendation rules, (xn, a

∗(xn)) is useless, i.e., it should
be effectively removed from T . Next, suppose that for
some xn, p(xn, a∗(xn)) = 1 and p(xn, a) = 0 for every
a 6= a∗(xn). In this case, classifying xn to an subopti-
mal action is always 1, which is the maximum loss in the
conversion rate. Thus, one may want to ensure that xn is
classified to a∗(xn) in the recommendation rules. These
examples imply that misclassification penalties depends on
the feature and the classes.

To incorporate the feature and class dependent misclassifi-
cation penalty, we can control the sample weights (or sim-
ilarly the number of replicas) in T . Consider the following
construction procedure for T : for each n ∈ {1, . . . , N}
and a ∈ A, set let kan be the weight of sample (xn, a) in
T . Thus, on T classifying xn to an action a incurs the
total 0/1 misclassification penalty of

∑
â∈A\{a} k

â
n. The

total 0/1 misclassification penalty of a classifier h(·) on T



is given as

LT (h) =
N∑

n=1

∑
a∈A:

a6=h∗(xn)

ka
n .

As it can be readily shown, this condition is satisfied when
for every n and a,∑

â∈A\{a}

kân = K [p(xn, a
∗(xn))− p(xn, a)] + L, (1)

holds for some K and L. Sample weights need to be non-
negative and kan ≥ 0. The next proposition, which follows
by simple algebraic manipulation, shows bounds the loss
due to (approximately) solving the transformed problem.

Proposition 1. Let K > 0 and let h̃ be an approximate
minimizer of LT . Then:

LT (h̃) ≤
LT (h̃)
LT (h∗)

LS(h∗) +
LT (h̃)
LT (h∗)

L

K
.

And in particular, argmaxh LT (h) = argmaxh LS(h),
by setting h̃ = h∗.

In other words, solving LT optimally will give us the opti-
mal solution for LS and if the solution is approximate, the
quality of the approximation is better for smaller values of
L.

The loss function LT can be minimized using standard
multi-class classification methods and any optimal classi-
fier is also optimal in terms of LS .
Proposition 2. The optimal solution to (1) is given by:

ka
n =

1

|A| − 1

(
K

(∑
â∈A

qân

)
−K(|A| − 1)qan + L

)
, (2)

where qan = p(xn, a
∗(xn))− p(xn, a).

The proof follows, for example, by an immediate applica-
tion of Sherman-Morrison-Woodbury formula. In addition,
since mina∈A q

a
n = 0 in Proposition 2, it can be readily

shown that L ≥ 0.

When using sample replication instead of weights, kan may
not be an integer. One solution for this issue is to round kan
to the nearest integer. Another approach is to insert bkanc
replicas of (xn, a) to T , and add one more replica ran-
domly with probability kan − bkanc. Both approaches will
incur a bias between the two loss functions. However, the
impact is be minor if kan are much larger than 1. For this
reason one may want to use a large K, but the size of T
increases as K increases.

In practice, the true conversion probability p(x, a) is not
given, and thus needs to be estimated using the historical
data. Thus, interpretable rule generation for personalized

recommendation can be done in three steps. First, build an
estimator for the conversion probability using S . Second,
with the estimated conversion probability transform S to T
based on (2). Third, build a classifier using T .

4. Numerical experiments
We conduct numerical experiments to show the value of the
proposed transformation method. We use a data set consist-
ing of three million records of price searches on the website
of a transportation company including customer features
and estimated conversion probabilities under eight differ-
ent promotion options. Among the three million records,
we used two million records to train two classifiers using
the CART algorithm. The first classifier was trained on
a set that is constructed via the benchmark method (i.e.,
a set consists of (xn, a∗(xn))). The second classifier was
trained on a set that is constructed by the proposed transfor-
mation method. Because the CART algorithm can incorpo-
rate sample weights, we use kan defined in (2) as the sample
weight for (xn, a) instead of adding kan replicas of (xn, a).
By increasing the number of rules to generate (number of
leaf nodes in the classification tree), we compute the con-
version rate under the two classifiers using the remaining
one million records under the assumption that the estimated
conversion probabilities are true conversion probabilities.
Because actions recommended by the classifiers may not
be the same as the actual promotion provided in the histor-
ical data set, we cannot test the quality of the classifiers in
a truly fair way (Li et al., 2011).
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Figure 1. Average Conversion Rates

Figure 1 shows the results. The upper bound is the conver-
sion rate when we always recommends the optimal promo-
tion a∗(xn) for each customer xn, and the lower bound
is the conversion rate when we always recommends the
worst promotion to each customer (promotion with the
lowest conversion probability). The figure shows that for



each given number of rules, the recommendation rules ob-
tained via the proposed transformation method have a sig-
nificantly higher conversion rate than the rules obtained via
the benchmark method. Recall that the training data set
constructed by the benchmark method contains the exact
information on the optimal action for each record. Thus,
the deviation from the upper bound may be primarily in-
curred by the limitation on obtaining a smaller number of
interpretable rules. Even under the proposed transforma-
tion method, this limitation substantially deteriorates the
quality of the recommender. Yet, the deviation from the
upper bound is much smaller when we use the proposed
conversion method. This result highlights the importance
of rigorously addressing the sample and class dependent
misclassification loss when obtaining a small number of in-
terpretable classification rules.

To further show the value of the proposed loss-
preserving transformation method, we conducted another
numerical experiment. We added one additional fic-
titious promotion to the original problem. The con-
version probability of this promotion is defined as
max{mina∈A p(xn, a), αmaxa∈A p(xn, a)} for some α ∈
[0, 1]. Hence, this promotion performs at least as well as the
worst promotion, and performs close to the optimal when
α is close to one. Thus, a good classifier would safely rec-
ommend this promotion to most customers when α is close
to 1.
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Figure 2. Average Conversion Rates

We fix the number of rules at six, and repeat the same ex-
periment as before while changing the value of α. Note
that the fictitious promotion does not change the worst and
best conversion probability, and thus the lower and upper
bounds do not change. The training set constructed via the
benchmark method is not affected by the additional pro-
motion except for when α = 1. When α < 1, the addi-
tional promotion is never optimal, and thus the training data

would not have any record containing this additional pro-
motion. Consequently, no rule that recommends this pro-
motion will be obtained. An interesting observation is the
fact that the conversion rate under the benchmark method
is still notably smaller than the upper bound when α = 1.
When α = 1, always recommending this promotion will
achieve the upper bound, i.e., it is globally optimal. How-
ever, because there will always be another promotion that
achieves the same best conversion, the benchmark method
may produce a training data set that contains other promo-
tions, which are only locally optimal. Thus, with the inter-
pretability constraint, the classifier trained out of this data
set may fail to produce an optimal set of rules.

When the proposed transformation method is used, the con-
version rate of the recommender increases as α increases
in a smooth way, and achieves the upper bound when
α = 1. The result shows another important reason why rig-
orously incorporating the sample and class dependent mis-
classification error is important in interpretable rule gener-
ation. The proposed transformation method improves the
robustness of classification rules, which often are known
to change drastically by a small number of additional data
points.

5. Discussion and future research
The proposed transformation method requires conversion
probabilities under all actions for each given customer fea-
ture, which needs to be estimated from data. The predic-
tion error of the conversion probability estimator will in-
fluence construction of the transformed data, which in turn
affects the trained classifier. Analysis of the impact of the
prediction error in the original space on the quality of the
classifier on the transformed space will help improve the
transformation method to minimize the true loss of recom-
mendation rules.
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