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terpretation. By assuming the data to be drawn independently and identically distributed from the

underlying probability distribution, and by going over the space of all possible datasets, we establish

general relationships between the generalization error, hold-out-set error, cross-validation error,

and leave-one-out error. We later exemplify the method and the results by studying the behavior

of the errors for the naive Bayes classifier.

Categories and Subject Descriptors: H.2.8 [Database Management]: Database Applications—

Data mining

General Terms: Theory, Algorithms

Additional Key Words and Phrases: Model selection, generalization error, classification

ACM Reference Format:
Dhurandhar, A. and Dobra, A. 2009. Semi-analytical method for analyzing models and model selec-

tion measures based on moment analysis. ACM Trans. Knowl. Discov. Data. 3, 1, Article 2 (March

2009), 51 pages. DOI = 10.1145/1497577.1497579 http://doi.acm.org/10.1145/1497577.1497579

1. INTRODUCTION

Consider the problem of estimating how a given classification algorithm (as
opposed to a particular classifier) performs on a given joint distribution over
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the input-output space (X × Y ). As opposed to the general setup in machine
learning where the distribution is unknown and only independently and identi-
cally distributed (i.i.d.) samples are available, in this scenario, in principle, the
behavior of classification algorithm can be accurately studied. Should this prob-
lem be solvable efficiently, it offers an alternative line of study for classification
algorithms and potentially unique insights into the nonasymptotic behavior of
learning algorithms.

While the problem of estimating classification algorithm performance on a
given distribution might look simple, solving it efficiently poses significant tech-
nical hurdles. The most natural way of studying a classification algorithm would
be to sample N datapoints from the given distribution, train the algorithm to
produce a classifier, test the classifier on a few sampled test sets, and report
the average error computed over these test sets. A shortcoming of the afore-
mentioned approach is that based on just one single instance of the algorithm
(since the algorithm was trained on a single dataset of size N ) we conclude
about its general behavior. A straightforward extension of the preceding ap-
proach to make results more relevant in studying the algorithm would be to
sample multiple datasets of size N , train on each of them to produce different
classifiers, compute the test error for each of the classifiers, and calculate the
average and variance of the obtained test errors. This procedure would be a bet-
ter indicator of the behavior of the algorithm than the previous case, since we
study multiple instances of the algorithm rather than just an isolated instance.
Ideally, we would want to study the behavior of the algorithm by training it
on all possible datasets of size N , producing a variety of classifiers and then
evaluating the expected value and variance of the Generalization Error (GE)
of each of these classifiers. The GE of a classifier ζ is given by

GE(ζ ) = E[λ(ζ (x), y)]

= P [ζ (x) �= y],
(1)

where λ(., .) is a 0-1 loss function, x is an input, and y is an output (class label),
and the expectation is over the input-output space X × Y .

The expected value and variance of GE over all possible classifiers1 are de-
noted by

EZ(N )[GE(ζ )] (2)

Var(GE(ζ )) = EZ(N )×Z(N )[GE(ζ )GE(ζ ′)] − EZ(N )[GE(ζ )]2, (3)

where Z(N ) represents the space of all possible classifiers produced by train-
ing the classification algorithm on all datasets of size N (denoted by D(N )),
drawn from the joint distribution. Thus, the moments provide a natural and
informative avenue for studying classification algorithms. The question that
now arises is: Can we compute them efficiently? In the work that we present
here, we provide a general framework for computing these quantities for an
arbitrary classification algorithm efficiently. By extensive use of the linearity

1Going over Z(N ) is more general than going over D(N ), since the classification algorithm can be

randomized.
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of expectation and change of the order of sums (and integrals), the moments of
GE can be expressed in terms of the behavior of the classification algorithm on
specific inputs rather than on the whole space, thus reducing the complexity
(i.e., number of terms) from an exponential in the size of the input space to
linear for the computation of the first moment and quadratic for the second
moment.

The specific contributions we make in this article are as follows.

(1) We propose a new methodology to analyze statistical behavior of models and
model evaluation measures. The methodology is based on defining random
variables for quantities of interest, computing their moments, and then
understanding their behavior by visualization. By introducing a probability
space over the classifiers and computing the moments of the GE, we have the
following two advantages over the theoretical results given by Statistical
Learning Theory (SLT) [Vapnik 1998] from the point of view of studying
learning methods: (a) We obtain qualitative results about classifiers based
on the actual classification algorithms, not the expressiveness of the class
of functions to which the classifier belongs to; and (b) the results are not
as pessimistic. A disadvantage of our method is that we lose the ability to
make generalized statements to the extent that SLT makes.

(2) We reduce the complexity (i.e., number of terms) of computing the moments
from an exponential in the input size to a polynomial along with the com-
plexity of each individual term in Theorem 1.

(3) We establish connections between the moments of hold-out-set error, cross-
validation error, and leave-one-out error and the moments of the GE, indi-
cating efficient strategies for computing these moments.

(4) We exemplify the general theory by deriving formulations for the moments
of the Naive Bayes Classifier (NBC) in the discrete setting. We discuss
strategies to make the analysis scalable. The strategies are truly generic in
the sense that they can be used to “quickly” approximate cdf ’s of random
variables in settings where moments are known. In the latter portion of the
article we discuss ways of extending the analysis to the continuous NBC
and other classification algorithms in general.

(5) We perform empirical studies wherein we first show that our method is
more accurate than Monte Carlo used to directly estimate the moments.
We explain reasons for this observed behavior. We then portray the manner
in which the formulations can be used as an exploratory tool in studying
nonasymptotic behavior of the model selection measures. Lastly, we study
the NBC with respect to distributions built on real UCI datasets, which
depicts the behavior of the classification algorithm not only on the partic-
ular datasets but rather on a class of datasets that are similar to the UCI
datasets, since the moments are over all datasets of a particular size.

1.1 Applications of the Methodology

The primary goal of the methodology is creating an avenue in which learning
algorithms can be studied precisely, that is, studying the statistical behavior

ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 1, Article 2, Publication date: March 2009.



P1: VLM

TKDD0301-02 ACM-TRANSACTION February 20, 2009 2:56

2:4 • A. Dhurandhar and A. Dobra

of a particular algorithm with respect to a chosen/built distribution. Next, we
discuss the two most important perspectives in which the methodology can be
applied.

1.1.1 Algorithmic Perspective. If a researcher/practitioner designs a new
classification algorithm, he/she needs to validate it. Standard practice is to
validate the algorithm on a relatively small (5–20) number of datasets and to
report the performance. By observing the behavior of only a few instances of
the algorithm the designer infers its quality. Moreover, if the algorithm under-
performs on some datasets, it can be sometimes difficult to pinpoint the precise
reason for its failure. If instead he/she is able to derive parametric expressions
for the moments of GE, the test results would be more relevant to the particular
classification algorithm, since the moments are over all possible datasets of a
particular size drawn i.i.d. from some chosen/built distribution. Testing indi-
vidually on all these datasets is an impossible task. Thus, by computing the
moments using the parametric expressions, the algorithm would be tested on
a plethora of datasets with the results being highly accurate. Moreover, since
the testing is done in a controlled environment that is, all the parameters are
known to the designer while testing, he/she can precisely pinpoint the condi-
tions under which the algorithm performs well and the conditions under which
the algorithm underperforms.

1.1.2 Dataset Perspective. If an algorithm designer validates his/her algo-
rithm by computing moments, as mentioned earlier, it can instill greater con-
fidence in the practitioner searching for an appropriate algorithm for his/her
dataset. The reason is that if the practitioner has a dataset which has a similar
structure or is from a similar source as the test dataset on which an empirical
distribution was built and favorable results reported by the designer, then this
would mean that the results apply not only to that particular test dataset, but
also to other, similar types of datasets. Moreover, since the practitioner’s dataset
belongs to this similar collection, the results would also apply to his. Note that
a distribution is just a weighting of different datasets and this perspective is
used in the aforesaid exposition.

If the dataset is categorical, it can be precisely modeled by a multinomial
distribution in the following manner. A multinomial is completely character-
ized by the probabilities in each of its cells (which sum to 1) and the total count
N (sum of individual cell counts). The designer can set the number of cells in
the multinomial to be the number of cells in his contingency table, with em-
pirical estimates for the individual cell probabilities being the corresponding
cell counts divided by the size of the dataset, which is the value of N. With this
we have a fully specified multnomial distribution, using which we can compute
the formulations, consequently characterizing the moments of the GE. Since
the estimates for the cell probabilities are based on the available dataset, the
true underlying distribution, of which this dataset is a sample, may have differ-
ent values. This scenario can be accounted for by varying the cell probabilities
and observing the variation in the estimates of GE. This would assist in deci-
phering the sensitivity to noise of the model in question. In the continuous case,
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Fig. 1. Numbers of terms for three methods that analytically compute the first moment are shown.

For the second moment the number of terms is just the square of the given complexity. N is the

dataset size, y is the number of classes (output space), d is the number of attributes, and O(m) is

the number of distinct values per attribute. It can be seen that Theorem 1 significantly reduces the

complexity without compromising on accuracy.

there is no such generic distribution (as the multinomial), but a popular choice
could be a mixture of Gaussians (since universal approximators), though any
other distribution may be chosen. It is important to notice here that the goal of
computing the moments of GE is to also study the behavior of the classification
algorithm on a set of datasets other than the original; hence, the distribution
built on the original dataset need only be a reasonable approximation.

1.1.3 Roadmap. The rest of the article is organized as follows. In Section 2
we briefly survey related work. In Section 3 we derive Theorem 1. In the left-
most block of Figure 1 we see that the naive approach of analytically computing
moments by summing over all possible datasets results in exponential number
of terms to be computed in the input-output size with base being the sample
size N . In the center block we see that by summing over classifiers the number
of terms reduces to an exponential in the input space with base the output space
Y . In the rightmost block we see that the application of Theorem 1 dramatically
reduces the complexity to a low degree polynomial in the input-output space. In
this section we also derive relationships between the moments of the General-
ization error, hold-out-set error, multifold cross-validation error, and leave-one-
out error, which are independent of any classification algorithm. This lays the
foundation for the study of classification algorithms along with model selection
measures. In Section 4 we illustrate the actual methodology by applying it to
the NBC in one dimension. In Sections 5 and 6 we extend the method to the NBC
in multiple dimensions and discuss ways of accurately and efficiently approxi-
mating the individual terms in the moments. These approximation techniques
are generic in the sense that they can be used to approximate the cumulative
distribution function of any random variable, given its moments. Hence, if in
the future formulations for the moments of GE are developed for classification
algorithms other than the NBC, these approximation methods will still be ap-
plicable. In Section 7 we report experiments with three major goals in mind:
(i) to show that our method is more accurate than Monte Carlo used to directly
estimate the moments; (ii) to portray the manner in which the derived formu-
lations can be used as an exploratory tool to study model selection measures
in conjunction with a classification algorithm; and (iii) to depict a way of build-
ing distributions on real data and studying the classification algorithm with
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respect to these built distributions, which informs us about the behavior of the
algorithm on the particular dataset as well as on a plethora of similar datasets
(since the moments are over all possible datasets). We then discuss extensibility
of the methodology in Section 8. Finally, we propose promising lines for future
research and summarize the major developments in Section 9.

2. RELATED WORK

Statistical Learning Theory categorizes classification algorithms (actually the
more general learning algorithms) into different classes, called concept classes.
The concept class of a classification algorithm is determined by its Vapnik-
Chervonenkis (VC) dimension, which is related to the shattering capability of
the algorithm. Distribution-free bounds on the generalization error of a clas-
sifier built using a particular classification algorithm belonging to a concept
class are derived in SLT. The bounds are functions of the VC dimension and the
sample size. The strength of this technique is that by finding the VC dimension
of an algorithm, we can derive error bounds for the classifiers built using this
algorithm without ever referring to the underlying distribution. A fallout of this
very general characterization is that the bounds are usually loose [Boucheron
et al. 2005; Williamson 2001], which in turn results in making statements about
any particular classifier weak.

The idea we pursue in this article is to define a class of classifiers induced
by a given learning algorithm and i.i.d. data of a given size. Any member of
this class can be viewed as a sample classifier, and the characterization of the
class is strongly connected to the behavior of the classifier. This class of classi-
fiers is much smaller than the classes considered in SLT. The downside of our
method is the fact that we lose the strength to make generalized statements
to the extent that SLT does. With this noted, in the next section we establish
relationships between the statistical behavior of the generalization error and
empirical errors for the members of this class of classifiers and relationships
that have the character of general results (they hold irrespective of the classifi-
cation algorithm that induces the class). We now review work done with respect
to these empirical errors (model selection measures).

There is a large body of both experimental and theoretical work that ad-
dresses the problem of understanding various model selection measures. Shao
[1993] showed that asymptotically Leave-One-Out(LOO) chooses the best but
not the simplest model. Devroye et al. [1996] derived distribution-free bounds
for cross-validation. The bounds they found were for the nearest-neighbor
model. Breiman [1996] showed that cross-validation gives an unbiased estimate
of the first moment of the generalization error. Though cross-validation has de-
sired characteristics with estimating the first moment, Breiman stated that
its variance can be significant. Theoretical bounds on LOO error under certain
algorithmic stability assumptions were given by Kearns and Ron [1997]. They
showed that the worst-case error of the LOO estimate is not much worse than
the training error estimate. Elisseeff and Pontil [2003] introduced the notion of
training stability. They showed that even with this weaker notion of stability
good bounds could be obtained on the generalization error. Blum et al. [1999]
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showed that v-fold cross-validation is at least as good as N
v hold-out-set estima-

tion on expectation. Kohavi [1995] conducted experiments on naive Bayes and
C4.5 using cross-validation. Through his experiments he concluded that ten
fold stratified cross-validation should be used for model selection. Moore and
Lee [1994] proposed heuristics to speed-up cross-validation. Plutowski [1996]
survey included papers with theoretical results, heuristics, and experiments
on cross-validation. His survey was especially geared towards the behavior of
cross-validation on neural networks. He inferred from the previously published
results that cross-validation is robust. More recently, Bengio and Grandvalet
[2003] proved that there is no universally unbiased estimator of the variance
of cross-validation. Zhu and Rohwer [1996] proposed a simple setting in which
cross-validation performs poorly. Goutte [1997] refuted this proposed setting
and claimed that a realistic scenario in which cross-validation fails is still an
open question.

The work we present here covers the middle ground between these theoreti-
cal and empirical results by allowing classifier specific results based on moment
analysis. Such an endeavor is important since the gap between theoretical and
empirical results is significant [Langford 2005].

3. MOMENT ANALYSIS

Probability distributions completely characterize the behavior of a random vari-
able. Moments of a random variable give us information about its probability
distribution. Thus, if we have knowledge of the moments of a random vari-
able we can make statements about its behavior. In some cases, characterizing
a finite subset of moments may prove to be a more desired alternative than
characterizing the entire distribution, which can be computationally expen-
sive to compute. This is precisely what we do when we study the behavior of
the generalization error of a classifier and the error estimation methods called
hold-out-error, leave-one-out error, and cross-validation error. Characterizing
the distribution, though possible, can turn out to be a tedious task and studying
the moments instead is a more viable option. As a result, we employ moment
analysis and use linearity of expectation to explore the relationship between
various estimates for the error of classifiers: Generalization Error (GE), Hold-
out-set Error (HE), and Cross-validation Error (CE) (leave-one-out error is just
a particular case of CE and we do not analyze it independently). The relation-
ships are drawn by going over the space of all possible datasets. The actual
computation of moments, though, is conducted by going over the space of clas-
sifiers induced by a particular classification algorithm and i.i.d. data, as can
be seen in Section 4. This is done since it leads to computational efficiency.
We interchangeably go over the space of datasets and space of classifiers as
deemed appropriate, since the classification algorithm is assumed determinis-
tic. In other words, we have

Ex1×···×xN [F(ζ (x1, x2, . . . , xN ))] = ED(N )[F(ζ [D(N )])] = EZ(N )[F(ζ )],

where F() is some function that operates on a classifier. We also consider learn-
ing algorithms to be symmetric. Throughout this section and in the rest of the
article we use the notation in Table I unless stated otherwise.
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Table I. Notation Used in the Article

Symbol Meaning

X Random vector modeling input

X Domain of random vector (input space) X
Y Random variable modeling output

Y (x) Random variable modeling output for input x
Y Set of class labels (output space)

D Dataset

(x, y) Data-point from dataset D
Dt Training dataset

Ds Testing dataset

Di ith part/fold of D (for cross validation)

Dij
t Common training part in ith and j th run of cross-validation

N Size of dataset

Nt Size of training dataset

Ns Size of testing dataset

v Number of folds of cross validation

ζ Classifier

ζ [D] Classifier build from dataset D
GE(ζ ) Generalization error of classifier ζ

HE(ζ ) Hold-out-set error of classifier ζ

CE(ζ ) Cross validation error of classifier ζ

Z(S) The set of classifiers obtained by application of

classification algorithm to an i.i.d. set of size S
D(S) Dataset of size S
EZ(S)[] Expectation with respect to the space of classifiers built on a sample of size S

3.1 Generalization Error

The notion of generalization error is defined with respect to an underlying
probability distribution defined over the input-output space and a loss function
(error metric). We model this probability space with the random vector X for
input and random variable Y for output. When the input is fixed, Y (x) is the
random variable that models the output.2 We assume in this article that the
domain X of X is discrete; all the theory can be extended to continuous es-
sentially by replacing the counting measure with Lebesgue measure and sums
with integrals. Whenever the probability and expectation is with respect to this
probabilistic space (i.e., (X , Y )) that models the problem, we will not use any
index. For other probabilistic spaces, we will specify by an index what is the
probability space we refer to. We denote the error metric by λ(a, b); in this work
we will use only the 0-1 metric that takes value 1 if a �=b and 0 otherwise. With
this, the generalization error of a classifier ζ is

GE(ζ ) = E[λ(ζ (X ), Y )]

= P [ζ (X ) �=Y ]

=
∑
x∈X

P [X =x]P [ζ (x) �=Y (x)],
(4)

2By modeling the output for a given input as a random variable, we allow the output to be random-

ized, as it might be in most real circumstances.
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where we used the fact that for 0-1 loss function, the expectation is the prob-
ability that the prediction is erroneous. Notice that the notation using Y (x) is
really a conditional on X =x. We use this notation since it is intuitive and more
compact. The last equation for the generalization error is the most useful in
this article, since it decomposes a global measure, namely generalization error,
defined over the entire space into micromeasures, one for each input.

By carefully selecting the class of classifiers for which the moment analysis
of the generalization error is performed, meaningful and relevant probabilistic
statements can be made about the generalization error of a particular classifier
from this class. The probability distribution over the classifiers will be based on
the randomness of the data used to produce the classifier. To formalize this, let
Z(N ) be the class of classifiers built over a dataset of size N with a probability
space defined over it. With this, the kth moment around 0 of the generalization
error is

EZ(N )[GE(ζ )k] =
∑

ζ∈Z(N )

PZ [ζ ]GE(ζ )k .

The problem with this definition is that it talks about global characterization
of classifiers which can be hard to capture. We rewrite the formulae for the first
and second moment in terms of fine-granularity structure of the classifiers.

While deriving these moments, we have to consider double expectations of
the form EZ(N )[E[F(x, ζ )]] with F(x, ζ ) a function that depends both on the
input x and the classifier. With this we arrive at the result

EZ(N )[E[F(x, ζ )]] =
∑

ζ∈Z(N )

PZ(N )[ζ ]
∑
x∈X

P [X =x]F(x, ζ )

=
∑
x∈X

P [X =x]
∑

ζ∈Z(N )

PZ(N )[ζ ]F(x, ζ )

= E[EZ(N )[F(x, ζ )]]

(5)

that uses the fact that P [X =x] does not depend on a particular ζ and PZ(N )[ζ ]
does not depend on a particular x, even though both quantities depend on the
underlying probability distribution.

Using the definition of the moments, Eq. (4) and Eq. (5) we have the following
theorem. The proof is in the Appendix. In fact all relatively lengthy proofs have
been placed in the Appendix.

THEOREM 1. The first and second moment of GE are given by

EZ(N )[GE(ζ )] =
∑
x∈X

P [X =x]
∑
y∈Y

PZ(N )[ζ (x)= y]P [Y (x) �= y]

and

EZ(N )×Z(N )[GE(ζ )GE(ζ ′)] =
∑
x∈X

∑
x ′∈X

P [X =x]P [X =x ′] ·
∑
y∈Y

∑
y ′∈Y

PZ(N )×Z(N )[ζ (x)= y ∧ ζ ′(x ′)= y ′] ·

P [Y (x) �= y]P [Y (x ′) �= y ′].
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In both series of equations we made the transition from a summation over the
class of classifiers to a summation over the possible outputs, since the focus
changed from the classifier to the prediction of the classifier for a specific input
(x is fixed inside the first summation). What this effectively does is allow the
computation of moments using only local information (behavior on particular
inputs), not global information (behavior on all inputs). This results in speeding
the process of computing the moments.

3.2 Application of Theorem 1 to Continuous Spaces

The key aspect in the derivation of Theorem 1 is the use of linearity of expecta-
tion. Linearity of expectation holds for both sums as well as integrals. Nowhere
in the proof of Theorem 1 are specific properties of the space being discrete
used. Thus the results derived in Theorem 1 are applicable to the continuous
domain as well. To obtain equivalent formulae in the continuous domain we
just need to switch from the counting measure to the Lebesgue measure. With
this we have the formulations

EZ(N )[GE(ζ )] =
∫

x∈X
P [X =x]

∑
y∈Y

PZ(N )[ζ (x)= y]P [Y (x) �= y]dx

and

EZ(N )×Z(N )[GE(ζ )GE(ζ ′)] =
∫

x∈X

∫
x ′∈X

P [X =x]P [X =x ′] ·∑
y∈Y

∑
y ′∈Y

PZ(N )×Z(N )[ζ (x)= y ∧ ζ ′(x ′)= y ′] ·

P [Y (x) �= y]P [Y (x ′) �= y ′]dxdx′
.

In fact, the formulations apply to any sigma finite measure [Doob 1994] de-
fined on the input space. Measure, theoretic notation is unnecessary and can
be tedious to follow, and hence for simplicity of notation we derived Theorem 1
assuming counting measure.

3.3 Impact of Theorem 1

The method we introduced before for computing the moments of the generaliza-
tion error are based on decomposing the moment into contributions of individ-
ual input-output pairs. With such a decomposition, not only does the analysis
become simpler, but the complexity of the algorithm required is reduced. In
particular, the complexity of computing the first moment is proportional to the
size of the input-output space and the complexity of estimating probabilities of
the form PZ [ζ (x)= y]. The complexity of the second moment is quadratic in the
size of the input-output space and proportional to the complexity of estimating
PZ [ζ (x)= y ∧ζ (x ′)= y ′]. To see the impact of Theorem 1, we look at the two most
natural alternatives for computing the moments using closed-form formulae.

3.3.1 Moments over Datasets. In this method we sum over all possible
datasets and multiply the generalization error of the classifier built from the
dataset with the probability to obtain the dataset as an i.i.d. sample from the
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underlying probability distribution. Formally,

ED(N )[GE(ζ )] =
∑

D∈D(N )

P [D]GE(ζ [D]) (6)

where D(N ) is the set of all possible datasets of size N . This is the most natural
procedure of computing the moments in closed form. The problem with this
method is that the number of terms in the preceding sum is exponential in the
size of the input-output space with base N . This is seen in Figure 1 where the
number of terms is O(N ymd

) (d is the number of attributes, y is the number of
classes (output space), and m is the number of values of each attribute).

3.3.2 Moments over Classifiers. In this method we sum over all the possi-
ble classifiers rather than summing over all possible datasets. The use of this
idea is that since the classification algorithms are assumed to be deterministic,
multiple datasets map to a single classifier and hence the space of classifiers is
comparatively smaller than the space of possible datasets. We have

EZ(N )[GE(ζ )] =
∑

ζ∈Z(N )

P [ζ ]GE(ζ ) (7)

where Z(N ) is the set of all possible classifiers built on a dataset of size N . The
complexity in this case reduces from O(Nmd

) to O( ymd
) . This is a significant

reduction since y will always be much smaller than N . However, the complexity
is still exponential in the input space (md ).

In summary, the advantages of Theorem 1 are: (a) The formulations are exact;
(b) each of the terms depends only on the local behavior of the classification
algorithm (applicable when input is either discrete or continuous); and (c) the
number of terms is reduced to a low degree polynomial (applicable to the discrete
case only, since in the continuous case the number of distinct inputs is infinite,
in which case we simply integrate). We will use these facts to compute moments
of the generalization error for the NBC in Section 4.

3.4 Error Estimation Methods

The exact computation of the generalization error depends on the actual un-
derlying probability distribution, which is unknown, and hence other estimates
for the generalization error have been introduced: Hold-Out-Set (HOS), Leave-
One-Out (LOO), and v-fold Cross-Validation (CV). In the this subsection we
establish relationships between moments of these error metrics and the mo-
ments of the generalization error with respect to some distribution over the
classifiers. The general setup for the analysis for all these metrics is the follow-
ing. A dataset D of size N is provided, containing i.i.d. samples coming from the
underlying distribution over the input and outputs. The set is further divided
and used both to build a classifier and to estimate the generalization error; the
particular way this is achieved is slightly different for each error metric. The
important question we will ask is how the values of the error metrics relate
to the generalization error. In all the developments that follow we will assume
that ζ [D] is the classifier built deterministically from the dataset D.
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3.4.1 Hold-Out-Set (HOS) Error. The HOS error involves randomly parti-
tioning the dataset D into two parts: Dt , the training dataset of fixed size Nt ;
and Ds, the test dataset of fixed size Ns. A classifier is built over the training
dataset and the generalization error is estimated as the average error over the
test dataset. Formally, denoting the random variable that gives the HOS error
by HE we have

HE = 1

Ns

∑
(x, y)∈Ds

λ(ζ [Dt](x), y), (8)

where y is the actual label for the input x.

PROPOSITION 1. The expected value of HE is given by

EDt (Nt )×Ds(Ns)[HE] = EDt (Nt )[GE(ζ [Dt])].

The proof of the proposition is in the Appendix. We observe from the aforesaid
result that the expected value of HE is dependent only on the size of the training
set Dt . This result is intuitive since only Nt datapoints are used for building
the classifier.

LEMMA 1. The second moment of HE is given by

EDt (Nt )×Ds(Ns)[HE2] = 1

Ns
EDt (Nt )[GE(ζ [Dt])] + Ns − 1

Ns
EDt (Nt )[GE(ζ [Dt])

2].

The proof of this lemma is in the Appendix.

THEOREM 2. The variance of HE is given by
VarDt (Nt )×Ds(Ns)(HE) = 1

Ns
EDt (Nt )[GE(ζ [Dt])] + Ns−1

Ns
EDt (Nt )[GE(ζ [Dt])

2] − ED(Nt )

[GE(ζ [Dt])]
2.

PROOF. The proof of the theorem immediately follows from the Proposition
1 and Lemma 1 and by using the formula for the variance of a random variable
in this case HE

Var(HE) = E[HE2] − E[HE]2.

Unlike the first moment, the variance depends on the sizes of both the train-
ing set as well as the test set.

3.4.2 Multifold Cross-Validation Error. v-fold cross-validation consists in
randomly partitioning the available data into v equi-size parts, then training
v classifiers using all data but one chunk, and then testing the performance
of the classifier on this chunk. The estimate of the generalization error of the
classifier built from the entire data is the average error over the chunks. Using
notation in this article and denoting by Di the ith chunk of the dataset D, the
Cross-validation Error (CE) is

CE = 1

v

v∑
i=1

HEi.
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Notice that we expressed CE in terms of HE, the HOS error. By substituting
the formula for HE in Eq. (8) into the previous equation, a direct definition for
CV is obtained, if desired.

In this case we have a classifier for each chunk not a single classifier for
the entire data. We model the selection of N i.i.d. samples that constitute the
dataset D and the partitioning into v chunks. With this we have the following
proposition.

PROPOSITION 2. The expected value of CE is given by

E
Dt

(
v−1

v N
)
×Di (

N
v )

[CE] = E
Dt

(
v−1

v N
)[GE(ζ [Dt])].

PROOF. Using the previous equation, Proposition 1 we get the following
result.

E
Dt

(
v−1

v N
)
×Di (

N
v )

[CE] = 1

v

v∑
i=1

E
Dt

(
v−1

v N
)
×Di (

N
v )

[HEi]

= 1

v

v∑
i=1

E
Dt

(
v−1

v N
)[GE(ζ [Dt])]

= E
Dt

(
v−1

v N
)[GE(ζ [Dt])]

This result follows the intuition, since it states that the expected error is the
generalization error of a classifier trained on v−1

v N datapoints. Thus, at least
on expectation, the cross-validation behaves exactly like the HOS estimate that
is trained over v − 1 chunks.

For CE we could compute the second moment around zero using the strategy
previously shown and then compute the variance. Here, we compute the vari-
ance using the relationship between the variance of the sum and the variances
and covariances of individual terms. In this way we can decompose the overall
variance of CE into the sum of variances of individual estimators and the sum
of covariances of pairs of such estimators; this decomposition significantly en-
hances the understanding of the behavior of CE, as we will see in the example
in Section 4.

Var(CE) = 1

v2

(
v∑

i=1

Var(HEi) +
∑
i �= j

Cov(HEi, HE j )

)
(9)

The quantity Var(HEi), the variance of the HE on training data of size v−1
v N and

test data of size 1
v N , is computed using the formulae in the previous section. The

only things that remain to be computed are the covariances. Since we already
computed the expectation of HE, to compute the covariance it is enough to
compute the quantity Q = E[HEiHE j ] (since for any two random variables X ,

Y we have Cov(X , Y ) = E[XY] − E[X ]E[Y ]). Dij
t denotes D \ {Di ∪ D j } and

let Ns = N
v . With this we have the following lemma, whose proof is in the

Appendix.

LEMMA 2. The EDij
t ( v−2

v N )×Di (
N
v )×D j ( N

v )[HEiHE j ] = E
Dij

t ( v−2
v N )

[GE(ζ [D \ Di])

GE(ζ [D \ D j ])].
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THEOREM 3. The variance of CE is given by

Var
Dij

t

(
v−2

v N
)
×D j ( N

v )
CE = 1

N
E

Dt

(
v−1

v N
)[GE(ζ [Dt])]

+ N − v
vN

E
Dt

(
v−1

v N
)[GE(ζ [Dt])

2] − v − 2

v
E

Dt

(
v−1

v N
)[GE(ζ [Dt])]

2

+ v − 1

v
E

Dij
t

(
v−2

v N
)[GE(ζ [D \ D j ])GE(ζ [D \ Di])].

PROOF. The expression for the covariance is immediate from the previous
result and so using Eq. (9) we derive the variance of CE.

It is worth mentioning that Leave-One-Out (LOO) is just a special case of
v-fold cross-validation (v = N for leave-one-out). The preceding formulae apply
also to LOO and thus no separate analysis is necessary.

With this we have related the first two moments of HE and CE to that of GE.
Hence, if we can compute the moments of GE we can also compute the moments
of HE and CE, allowing us to study the model as well as the selection measures.
In the next couple of sections we thus focus our attention on computing the
moments of GE efficiently for a particular classification model: NBC.

4. EXAMPLE: NAIVE BAYES CLASSIFIER

The results (i.e., expressions and relationships) we derived in the previous sec-
tion were applicable to any deterministic classification algorithm. We can thus
use these results to study the behavior of the errors for a classification algorithm
of our choice.

The classification algorithm we consider in this article is naive Bayes. We
first study the naive Bayes for a single input attribute (i.e., for one dimension)
and later the generalized version maintaining scalability. As we will see, these
moments are too complicated, as mathematical formulae, to interpret. We will
plot these moments to gain an understanding of the behavior of the errors under
different conditions, thus portraying the usefulness of the proposed method.

4.1 Naive Bayes Classifier Model

In order to compute the moments of the generalization error, moments that
we linked in Section 3 with the moments of the hold-out-set error and cross-
validation, we first have to select a classifier and specify the construction
method. We selected the single input, the naive Bayes classifier, since the anal-
ysis is not too complicated but highlights both the method and the difficulties
that have to be overcome. As we will see, even this simplified version exhibits
interesting behavior. We fix the number of class labels to 2 as well. In the next
section, we discuss how the analysis we present here extends to the general
NBC.

Given values for any of the inputs, the NBC computes the probability to
see any of the class labels as output, under the assumption that the input
attributes influence the output attribute independently. The prediction is the
class label that has the largest such estimated probability. For the version of
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Table II. Contingency Table of Input X

X y1 y2

x1 N11 N12

x2 N21 N22

.

.

.

xn Nn1 Nn2

N1 N2 N

Table III. Notation

Symbol Symantics

pc1 prior of class C1

pc2 prior of class C2

ph
ī j joint probability of being in hī , Cj

N1 r.v. denoting number of datapoints in class C1

N2 r.v. denoting number of datapoints in class C2

Nh
ī j r.v. denoting number of datapoints in hī , Cj

Nī j r.v. denoting number of datapoints in cell ī, Cj

N Size of dataset

the naive Bayes classifier we consider here (i.e., a single input), the prediction
given input x is

ζ (x) = argmaxk∈{1,2} P [Y = yk]P [X = x|Y = yk].

The probabilities that appear in the formula are estimated using the counts in
the contingency table in Table II. Using the fact that P [Y = yk]P [X = x|Y =
yk] = P [X = x ∧ Y = yk] and the fact that P [X = xi ∧ Y = yk] is Nik

N , the
prediction of the classifier is

ζ (xi) =
{

y1 if Ni1 ≥ Ni2)

y2 if Ni1 < Ni2)
.

4.2 Computation of the Moments of GE

Under the already stated data generation model, the moments of the gener-
alization error for the NBC can be computed (see Table III for notation.). We
now present three approaches for computing the moments and show that the
approach using Theorem 1 is by far the most practical.

Going over datasets. If we calculate the moments by going over all possible
datasets, the number of terms in the formulation for the moments is exponential
in the number of attribute values with the base of the exponential being the size
of the dataset (i.e., O(Nn) terms). This is because each of the cells in Table II
can take O(N ) values. The formulation of the first moment would be

ED(N )[GE(ζ (D(N )))] =
N∑

N11=0

N−N11∑
N12=0

. . .

N−(N11+···+N(n−1)2)∑
Nn1=0

eP [N11, . . . , Nn2], (10)

where e is the corresponding error of the classifier. We see that this formulation
can be tedious to deal with. So can we do better? Yes we definitely can and this
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spurs from the following observation. For the NBC built on Table II all we care
about in the classification process is the relative counts in each of the rows. Thus,
if we had to classify a datapoint with attribute value xi we would classify it into
class y1 if Ni1 > Ni2 and vice versa. What this means is that, irrespective of
the actual counts of Ni1 and Ni2, as long Ni1 > Ni2 the classification algorithm
would make the same prediction, namely we would have the same classifier. We
can hence switch from going over the space of all possible datasets to going over
the space of all possible classifiers, with the advantage of reducing the number
of terms.

Going over classifiers. If we find the moments by going over the space of
possible classifiers we reduce the number of terms from O(Nn) to O(2n). This
is because there are only two possible relations between the counts in any row
(≥ or <). The formulation for the first moment would then be

EZ (N )[GE(ζ )] = e1 P [N11 ≥ N12, . . . , Nn1 ≥ Nn2] + e2 P [N11 < N12, . . . , Nn1

≥ Nn2] + · · · + e2n P [N11 < N12, . . . , Nn1 < Nn2]

where e1, e2 to e2n are the corresponding errors. Though this formulation reduces
the complexity significantly, since N 	 2 for any practical scenario, nonetheless
the number of terms is still exponential in n. Can we still do better? The answer
is yes again. Here is where Theorem 1 gains prominence. To restate, Theorem 1
says that while calculating the first moment we just need to look at particular
rows of the table and to calculate the second moment just pairs of rows. This
reduces the complexity significantly without compromising on the accuracy, as
we will see.

Going over classifiers using Theorem 1. If we use Theorem 1, the number
of terms reduces from an exponential in n to small polynomial in n. Thus, the
number of terms in finding the first moment is just O(n) and that for the second
moment is O(n2). The formulation for the first moment would then be

EZ (N )[GE(ζ )] = e1 P [N11 ≥ N12] + e2 P [N11 < N12] + · · · + e2n P [Nn1 < Nn2],

where e1, e2 to e2n are the corresponding errors. They are basically the respec-
tive cell probabilities of the multinomial (i.e., e1 is probability of a datapoint
belonging to the cell x1C2, e2 is probability to belong to x1C1, and so on). For the
second moment we would have joint probabilities, with the expression being
the following.

EZ (N )[GE(ζ )2] = (e1 + e3)P [N11 ≥ N12, N21 ≥ N22] + (e2 + e3)P [N11 < N12, N21

≥ N22] + · · · + (e2n−2 + e2n)P [N(n−1)1 < N(n−1)2, Nn1 < Nn2]

We have thus reduced the number of terms from O(Nn) to O(nk) where k is
small and depends on the order of the moment we are interested in. This for-
mulation has another advantage. The complexity of calculating the individual
probabilities is also significantly reduced. The probabilities for the first moment
can be computed in O(N 2) time and that for the second in O(N 4) time rather
than O(Nn−1) and O(N 2n−2) time, respectively.

Further optimizations can be done by identifying independence between ran-
dom variables and expressing them as binomial cdf ’s, using the incomplete

ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 1, Article 2, Publication date: March 2009.



P1: VLM

TKDD0301-02 ACM-TRANSACTION February 20, 2009 2:56

Semi-Analytical Method for Analyzing Models and Model Selection Measures • 2:17

regularized beta function to calculate these cdf ’s in essentially constant time.
In fact, in future sections we discuss the general NBC model for which the cdf ’s
(probabilities) cannot be computed directly, as it turns out to be too expensive.
Therein we propose strategies to efficiently compute these probabilities. The
same strategies can be used here to make the computation more scalable.

The situation when ζ and ζ ′ are the classifiers constructed for two different
folds in cross-validation requires special treatment. Without loss of generality,
assume that the classifiers are built for the folds 1 and 2. If we let D1, . . . , Dv be
the partitioning of the datasets into v parts, ζ is constructed using D2∪D3∪· · ·∪
Dv and ζ ′ is constructed using D1 ∪ D3 ∪· · ·∪ Dv, thus D3 ∪· · ·∪ Dv training data
is common for both. If we denote by N j k the number of datapoints with X = x j

and Y = yk in this common part and by N (1)
j k and N (2)

j k the number of such
datapoints in D1 and D2, respectively, then we have to compute probabilities of
the form

P
[(

N (2)
i1 + Ni1 > N (2)

i2 + Ni2
) ∧ (

N (1)
j 1 + N j 1 > N (1)

j 2 + N j 2

)]
.

The estimation of this probability using the previous method requires fixing the
values of 6 random variables, thus giving an O(N 6) algorithm. Again, further
optimizations can be carried out using the strategies given in Sections 7 and 8.

Using the moments of GE, the moments of HE and CE are found using
relationships already derived.

5. MULTIDIMENSIONAL NBC

In the previous section we discussed the NBC built on data in a single di-
mension. As the dimensionality increases, the cost of exactly computing the
moments from the formulations also increases. To maintain the scalability of
the method, we propose a number of approximation schemes which can be used
to estimate the probabilities efficiently and accurately. As we will see, approx-
imating these probabilities leads to highly accurate estimates of the moments
for low computational cost, as against directly using Monte Carlo. The approx-
imation schemes we propose assist in efficient computation of the probabilities
in arbitrary dimension. As a matter of fact, the approximation schemes are
generic enough to be applied to any application where cumulative distribution
functions (cdfs) need to be approximated efficiently.

5.1 Calculation of Basic Probabilities

Having come up with the probabilistic formulation for discerning the moments
of the generalization error, we are now faced with the daunting task of effi-
ciently calculating the probabilities involved for the NBC when the number
of dimensions is more than one. In this section we will mainly discuss single
probabilities and the extension to joint probabilities is in Section 6. Let us now
briefly preview the kind of probabilities we need to decipher.

With reference to Figure 2, considering the cell x1 y1 without loss of generality
(w.l.o.g.) and by the naive Bayes classifier independence assumption, we need to
find the probability of the following condition being true for the two-dimensional
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Fig. 2. The scenario when we have two attributes, each having two values with two class labels.

case.

pc1

px
11

pc1

py
11

pc1

> pc2

px
12

pc2

py
12

pc2

namely pc2 px
11 py

11 > pc1 px
12 py

12

namely N2N x
11N y

11 > N1N x
12N y

12

In general for the d-dimensional (d ≥ 2) case we have to find the following
probability

P
[
N (d−1)

2 N x1
11 N x2

11 . . . N xd
11 > N (d−1)

1 N x1
12 N x2

12 . . . N xd
12

]
, (11)

where the xi’s are random variables.

5.2 Direct Calculation

We can find the probability P [N (d−1)
2 N x1

11 N x2
11 . . . N xd

11 > N (d−1)
1 N x1

12 N x2
12 . . . N xd

12 ]
by summing over all possible assignments of the multinomial random variables
involved. For the two-dimensional case shown in Figure 2, we have

P
[
N2N x

11N y
11 > N1N x

12N y
12

] =
∑
N111

∑
N121

∑
N211

∑
N112

∑
N122

∑
N212

∑
N222

P [N111, N121, N211,

N112, N122, N212, N221, N222] · I
[
N2N x

11N y
11 > N1N x

12N y
12

]
where N2 = N112 + N122 + N212 + N222, N x

11 = N111 + N121, N y
11 = N111 + N211,

N1 = N − N2, N x
12 = N112 + N122, and I [condition] = 1 if condition is true else

I [condition] = 0. Each of the summations takes O(N ) values and so the worst-
case time complexity is O(N 7). We thus observe that for the simple scenario
depicted, the time to compute the probabilities is unreasonable even for small-
size datasets(N = 100, say). The number of summations increases linearly with
the dimensionality of the space. Hence, the time complexity is exponential in
the dimensionality. We thus need to resort to approximations to speed-up the
process.
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5.3 Approximation Techniques

If all the moments of a random variable are known then we know the Moment
Generating Function (MGF) of the random variable and, as a consequence, the
probability generating function and hence the precise cdf for any value in the
domain of the random variable. If only a subset of the moments are known,
then we can at best approximate the MGF and so the cdf.

We need to compute probabilities(cdf ’s) of the following form P [X > 0],
where X = N (d−1)

2 N x1
11 N x2

11 . . . N xd
11 − N (d−1)

1 N x1
12 N x2

12 . . . N xd
12 . Most of the alter-

native approximation techniques we propose in the subsections that follow, to
efficiently compute the aforesaid probabilities(cdf ’s), are based on the fact that
we have knowledge of some finite subset of the moments of the random variable
X . We now elucidate a method to obtain these moments.

Derivation of moments. As previously mentioned the most general data gen-
eration model for the discrete case is the multinomial distribution. We know
the moment generating function for it. A moment generating function gener-
ates all the moments of a random variable, uniquely defining its distribution.
The MGF of a multivariate distribution is defined as

MR(t) = E(eR ′t), (12)

where R is a q-dimensional random vector, R ′ is transpose of R, and t ∈ Rq .
In our case q is the number of cells in the multinomial.

Taking different order partial derivatives of the moment generating function
with respect to the elements of t, and setting these elements to zero, gives us
moments of the product of the random variables in the multinomial raised to
those orders. Formally,

∂v1+v2+···+vq MR(t)

∂tv1
1 ∂tv2

2 . . . ∂tvq
q

|(t1=t2=···=tq=0)= E
(
Rv1

1 Rv2
2 . . . Rvq

q

)
(13)

where R ′ = (R1, R2, . . . , Rq), t = (t1, t2, . . . , tq), and v1, v2, . . . , vq is the order
of the partial derivatives with respect to t1, t2, . . . , tq , respectively.

The expressions for these derivatives can be precomputed or computed at
runtime using tools such as mathematica [Wolfram-Research 2009]. But how
does all of what we have just discussed relate to our problem? Consider the two-
dimensional case given in Figure 2. We need to find the probability P [Z > 0]
where Z = N2N x

11N y
11 − N1N x

12N y
12. The individual terms in the product can

be expressed as a sum of certain random variables in the multinomial. Thus,
Z can be written as the sum of the product of some of the multinomial random
variables. Consider the first term in Z . We have

N2N x
11N y

11 = (N112 + N122 + N212 + N222) (N111 + N121) (N111 + N211)

= N112N 2
111 + · · · + N222N121N211

and the second term also can be expressed in this form. Thus, Z can be written
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as the sum of the products of the multinomial random variables.

E[Z ] = E[N2N x
11N y

11 − N1N x
12N y

12]

= E[N2N x
11N y

11] − E[N1N x
12N y

12]

= E[N112N 2
111 + · · · + N222N121N211]

−E[N111N 2
112 + · · · + N221N122N212]

= E[N112N 2
111] + · · · + E[N222N121N211]

−E[N111N 2
112] − · · · − E[N221N122N212]

In the general case Z = Nd−1
2 N x1

11...1 . . . N xd
11...1 − Nd−1

1 N x1
11...12 . . . N xd

11...12 where
the subscript of N with dots has d + 1 numbers. The expected value of Z is
then given by

E[Z ] =E[N11...12Nd
11...1] + · · · + E[Nm1m2...md 2N11...md 1N11...md−111 . . . Nm11...1]

− E[N11...11Nd
11...2] − · · · − E[Nm1m2...md 1N11...md 2N11...md−112 . . . Nm11...12]

where mi denotes the number of attribute values of xi. These expectations can
be computed using the technique in the discussion before. Higher moments can
also be found in the same vein, since we would only need to find expectations
of higher degree polynomials in the random variables, of the multinomial. Sim-
ilarly, the expressions for the moments in higher dimensions will also include
higher degree polynomials.

We now elaborate on various methods that can be used to approximate the
cdf of a random variable, given its moments. Note that only the methods which
we found to be promising are explained in detail. The other methods, though
reasonable, are described briefly.

5.3.1 Series Approximations (SA). The Edgeworth or the Gram-Charlier
A series [Hall 1992] is used to approximate distributions of random variables
whose moments or, more specifically, cumulants are known. These expansions
consist in writing the characteristic function of the unknown distribution whose
probability density is to be approximated in terms of the characteristic function
of another known distribution (usually normal). The density to be found is then
recovered by taking the inverse Fourier transform. This method works rea-
sonably well in practice, as can be seen in Levin [1981] and Butler and Sutton
[1998]. The major challenge, though, lies in choosing a distribution that will ap-
proximate the unknown distribution “well,” as the accuracy of the cdf estimate
depends on this. The performance of the method may vary significantly on the
choice of this distribution, since choosing the normal distribution may not al-
ways give satisfactory results. This task of choosing an appropriate distribution
is nontrivial.

5.3.2 Optimization. We have just seen a method of approximating the cdf
using series expansions. Interestingly, this problem can also be framed as an
optimization problem, wherein we find upper and lower bounds on the possible
values of the cdf by optimizing over the set of all possible distributions having
these moments. Since our unknown distribution is an element of this set, its cdf
will lie within the bounds computed. This problem is called the classical moment
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problem and has been studied in literature [Isii 1963, 1960; Karlin and Shapely
1953]. In fact up to three moments known, there are closed-form solutions
for the bounds [Prekopa 1989]. In the material that follows, we present the
optimization problem in its primal and dual form. We then explore strategies for
solving it, given the fact that the most obvious ones can prove computationally
expensive.

Assume that we know m moments of the discrete random variable X , denoted
by μ1, . . . , μm where μ j is the j th moment. The domain of X is given by U =
x0, x1, . . . , xn. P [X = xr ] = pr where r ∈ 0, 1, . . . , n and

∑
r pr = 1. We only

discuss the maximization version of the problem (i.e., finding the upper bound)
since the minimization version (i.e., finding the lower bound) has an analogous
description. Thus, in the primal space we have the following formulation.

max P [X <= xr ] =
r∑

i=0

pi, r ≤ n

subject to :
n∑

i=0

pi = 1

n∑
i=0

xi pi = μ1

·
·
·

n∑
i=0

xm
i pi = μm

pi ≥ 0, ∀ i ≤ n

Solving the aforesaid optimization problem gives us an upper bound on
P [X <= xr ].

For our LP problem the dual is

min
m∑

k=0

ykμk

subject to :
m∑

k=0

ykxk − 1 ≥ 0; ∀ x ∈ W,

m∑
k=0

ykxk ≥ 0; ∀ x ∈ U

where yk represent the dual variables and W represents a subset of U over
which the cdf is computed. For scalability purposes we will need the dual for-
mulation. We observe that the number of variables is reduced to just m+1 in the
dual formulation but the number of constraints has increased to the size of the
domain of X . We now propose some strategies to solve this optimization prob-
lem, discuss their shortcomings, and eventually suggest our preferred strategy.
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Using standard linear programming solvers (LP). We have a linear program-
ming problem whose domain is discrete and finite. On careful inspection for
our problem we observe that the number of variables in the primal formulation
and the number of constraints in the dual increases exponentially in the di-
mensionality of the space (i.e., the domain of the random variable X ). Though
the current state-of-the-art LP solvers (using interior point methods) can solve
linear optimization problems of the order of thousands of variables and con-
straints rapidly, our problem can exceed these counts by a significant margin,
even for moderate dataset sizes and reasonable dimension, thus becoming com-
putationally intractable. Since standard methods for solving this LP can prove
inefficient we investigate other possibilities.

In the next three approaches we extend the domain of the random variable X
to include all the integers between the extremeties of the original domain. The
current domain is thus a superset of the original domain and so are the possible
distributions. Thus, the upper bound calculated in this scenario will be greater
than or equal to the upper bound of the original problem. This extension is done
to enhance the performance of the next two approaches since it tread jumps the
problem of explicitly enumerating the domain of X and is a requirement for
the third, as we will soon see.

Gradient descent with binary search (GD). We use gradient descent on the
dual to find new values of the vector ȳ = [ y0, . . . , ym]. We descend on the affine
objective function starting from an arbitrary point until the violation of any
constraint. We report the value as an upper bound on the cdf. The advantage
of this method is that it is fast. The pitfall, though, is that the bound can be
extremely loose and far from the optimum.

Gradient descent with local topology search (GDTS). Perform gradient de-
scent as mentioned before. Choose a random set of points around the current
best solution. Again perform gradient descent on the feasible subset of the cho-
sen points. Choose the best solution and repeat until some reasonable stopping
criteria. This works well sometimes in practice, though not always.

Prekopa’s algorithm (PA). Prekopa [1989] gave an algorithm for the discrete
moment problem. In his algorithm we maintain an m + 1 × m + 1 matrix called
the basis matrix B which needs to have a particular structure to be dual feasi-
ble. We iteratively update the columns of this matrix until it becomes primal
feasible, resulting in the optimal solution to the optimization problem.3 The
issue with this algorithm is that there is no guarantee with respect to the time
required for the algorithm to find this primal feasible basis structure.

In the remaining approaches we further extend the domain of the random
variable X to be continuous within the given range. Again, for the same reason
described before, the bound is unintrusive.

Sequential quadratic programming (SQP). Sequential quadratic program-
ming is a method for nonlinear optimization. It is known to have local conver-
gence for nonlinear nonconvex problems and will thus globally converge in the

3For explanation of the algorithm, read Prekopa [1989].
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Fig. 3. The current iterate ȳk just satisfies the constraint cl and easily satisfies the other con-

straints. Suppose cl is
∑m

j=0 y j x j
i , where xi is a value of X , then in the diagram on the left we

observe that for the kth iteration ȳ = ȳk the polynomial
∑m

j=0 y j x j = 0 has a minimum at X = xi
with the value of the polynomial being a. This is also the value of cl evaluated at ȳ = ȳk .

case of convex optimization. The idea behind SQP is the following. We start with
an initial feasible point, say ȳinit . The original objective function is then approx-
imated by a quadratic function around ȳinit , which then is the objective for that
particular iteration. The constraints are approximated by linear constraints
around the same point. The solution of the quadratic program is a direction
vector along which the next feasible point should be chosen. The step length
can be found using standard line search procedures or more sophisticated merit
functions. On deriving the new feasible point, the procedure is repeated until a
suitable stopping criterion. Thus at every iteration a quadratic programming
problem is solved.

For our specific problem the objective function is affine, thus a quadratic
approximation of it yields the original objective function. We have no equal-
ity constraints. For the inequality constraints, we use the following idea. The
two equations representing the infinite number of linear constraints given in
the dual formulation can be perceived as being polynomials in x with coeffi-
cients ȳ . For a particular iteration with iterate( ȳ) known, we find the lowest
value that the polynomials take. This value is the value of the most violated
(if some constraints are violated)/just satisfied (if no constraint is violated) lin-
ear constraint. This is shown in Figure 3. The constraint cl = ∑m

j=0 y j x j
i is

just satisfied. With this in view we arrive at the following formulation of our
optimization problem at the kth iteration.

min μT dk

subject to :
m∑

j=0

y (k)
j x j

i +
m∑

j=0

x j
i dk ≥ 0; ȳk = [

y (k)
0 , . . . , y (k)

m

]4

This technique gives a sense of the nonlinear boundary traced out by the con-
straints. The aforementioned values can be deduced by finding roots of the
derivative of the 2 polynomials with respect to x and then finding the mini-
mum of these values evaluated at the real roots of its derivative. The number
of roots is bounded by the number of moments; in fact, it is equal to m−1. Since
this approach does not require the enumeration of each of the linear constraints
and the operations described are fast with results being accurate, this turns out

4 y (k)
i is the value of yi at the kth iteration.
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to be a good option for solving this optimization problem. We carried out the
optimization using the Matlab [Wolfram-Research 2009] function fmincon and
the procedure just illustrated.

Semidefinite programming (SDP). A semidefinite programming problem has
a linear objective, linear equality constraints, and Linear Matrix Inequality
(LMI) constraints. Here is an example formulation

min cT q
subject to : q1 F1 + · · · + qnFn + H � 0

Aq = b

where H, F1, . . . , Fn are positive semidefinite matrices, q ∈ Rn, b ∈ R p, and
A ∈ R p×n. SDP’s can be efficiently solved by interior point methods. As it turns
out, we can express our semi-infinite LP as an SDP.

Consider the constraint c1(x) = ∑m
i=0 yixi. The constraint c1(x) satisfies

c1(x) ≥ 0 ∀x ∈ [a, b] iff ∃ a m + 1 × m + 1 positive semidefinite matrix S
such that ∑

i+ j=2l−1

S(i, j ) = 0; l = 1, . . . , m

l∑
k=0

k+m−l∑
r=k

yrrCk(m − r)Cl−kar−kbk =
∑

i+ j=2l

S(i, j ); l = 0, . . . , m.

S � 0 means S is positive semidefinite.

The proof of this result is given in Bertsimas and Popescu [1998].
We derive the equivalent semidefinite formulation for the second constraint

c2(x) = ∑m
i=0 yixi − 1 to be greater than or equal to zero. To accomplish this,

we replace y0 by y0 − 1 in the previous set of equalities, since c2(x) = c1(x) − 1.
Thus ∀x ∈ [a, b] we have the following semidefinite formulation for the second
constraint. ∑

i+ j=2l−1

S(i, j ) = 0; l = 1, . . . , m

l∑
k=1

k+m−l∑
r=k

yrrCk(m − r)Cl−kar−kbk

+
m−l∑
r=1

yr (m − r)Cl ar + y0 − 1 =
∑

i+ j=2l

S(i, j ); l = 1, . . . , m

m∑
r=1

yrar + y0 − 1 = S(0, 0)

S � 0

Combining the preceding two results we have the following semidefinite pro-
gram with O(m2) constraints.
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min
m∑

k=0

ykμk

subject to :
∑

i+ j=2l−1

G(i, j ) = 0; l = 1, . . . , m

l∑
k=1

k+m−l∑
r=k

yrrCk(m − r)Cl−kar−kbk

+
m−l∑
r=1

yr (m − r)Cl ar + y0 − 1 =
∑

i+ j=2l

G(i, j ); l = 1, . . . , m

m∑
r=1

yrar + y0 − 1 = G(0, 0)

∑
i+ j=2l−1

Z (i, j ) = 0; l = 1, . . . , m

l∑
k=0

k+m−l∑
r=k

yrrCk(m − r)Cl−kbr−kck =
∑

i+ j=2l

Z (i, j ); l = 0, . . . , m

G � 0, Z � 0

Here G and Z are m + 1 × m + 1 positive semidefinite matrices. The domain of
the random variable is [a, c]. Solving this semidefinite program yields an upper
bound on the cdf P [X <= b], where a ≤ b ≤ c. We used a free online SDP solver
[Wu and Boyd 1996] to solve the preceding semidefinite program. Through
empirical studies that follow we found this approach to be the best in solving
the optimization problem in terms of a balance between speed, reliability, and
accuracy.

5.3.3 Random Sampling Using Formulations (RS). Random sampling is
a sampling technique in which we select a sample from a larger population,
wherein each individual is chosen entirely by chance and each member of the
population has possibly an unequal chance of being included in the sample.
Random sampling reduces the likelihood of bias. It is known that asymptotically
the estimates found using random sampling converge to their true values.

For our problem the cdf ’s can be computed using this sampling procedure.
As we will see in the experiments, only sampling in conjunction with our

formulations for the moments makes for an efficient method. If we directly use
sampling without using the formulations, we would first need to sample for
building a set of classifiers, and then for each classifier built we would need to
sample test sets from the distribution. The reason is that the expectation in the
moments is with respect to all possible datasets of size N . This process can prove
computationally intensive for acquiring accurate estimates of the moments.

5.4 Empirical Comparison of the CDF Computing Methods

Consider the two-dimensional case in Figure 2. We instantiated all the cell
probabilities to be equal. We found the probability P [N2N x

11N y
11 > N1N x

12N y
12]
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Table IV. Empirical Comparison of the CDF Computing Methods in

Terms of Execution Time

Method Dataset Size 10 Dataset Size 100 Dataset Size 1000

Direct 25 hrs 200 centuries 200 billion yrs

SA 0.1 msec 0.1 msec 0.1 msec

LP 3.5 sec 2 min 2:30 hrs

GD 0.13 sec 0.13 sec 0.13 sec

PA 1 sec 25 sec 5 min

GDTS 3.5 sec 3.5 sec 3.5 sec

SQP 3.5 sec 3.5 sec 3.5 sec

SDP 0.1 sec 0.1 sec 0.1 sec

RS100 0.08 sec 0.08 sec 0.1 sec

RS1000 0.65 sec 0.66 sec 0.98 sec

RS10000 6.3 sec 6.5 sec 9.6 sec

RSn denotes the random sampling procedure using n samples to estimate the prob-

abilities.

by the methods suggested, varying the dataset size from 10–1000 in multiples
of 10 and having knowledge of the first six moments of the random variable
X = N2N x

11N y
11 − N1N x

12N y
12. The actual probability in all the three cases is

around 0.5 (actually just less than 0.5). The execution speeds for the various
methods are given in Table IV. All the methods were run on the same computer.
We used Matlab to implement all the methods, except SDP for which we used
a SDP solver [Wu and Boyd 1996]. From the table we see that the SDP and
gradient descent methods, are lightning fast. The SQP and gradient descent
with topology search methods take a couple of seconds to execute. The thing to
notice here is that SDP, SQP, the two gradient descent methods, and the series
approximation method are oblivious to the size of dataset with regard to exe-
cution time. In terms of accuracy the gradient descent method is sensitive to
initialization and the series approximation method to the choice of distribution,
as previously stated. A normal distribution gives an estimate of 0.5, which is
good in this case since the original distribution is symmetric about the origin.
But for finding cdf ’s near the extremeties of the domain of X the error can be
considerable. Since the domain of X is finite, variants of the beta distribution
with a change of variable (i.e., shifting and scaling the distribution) can provide
better approximation capabilities. The SQP and SDP methods are robust and
insensitive to initialization (as long as the initial point is feasible). The bound
found by SQP is 0.64–0.34 and that found by SDP is 0.62–0.33. The LP solver
also finds a similar bound of 0.62–0.34 but the execution time scales quadrati-
cally with the size of the input. On increasing the number of moments to 9, the
bounds become tighter and essentially require the same execution time. The
SDP, SQP, and LP methods all give a bound of 0.51–0.48. Thus by increasing
the number of moments we can get arbitrarily tight bounds. For RS we observe
from Table IV and Table V that the method does not scale much in time with the
size of dataset, but produces extremely good confidence bounds as the number
of samples increases. With 1000 samples we already have pretty tight bounds
with time required being just over half a second. Also as previously stated the
cdf ’s can be calculated together rather than independently.
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Table V. 95% Confidence Bounds for Random Sampling

Samples Dataset Size 10 Dataset Size 100 Dataset Size 1000

100 0.7–0.23 0.72–0.26 0.69–0.31

1000 0.54–0.4 0.56–0.42 0.57–0.42

10000 0.5–0.44 0.51–0.47 0.52–0.48

Table VI. Comparison of Methods for Computing the CDF

Method Accuracy Speed

Direct Exact solution Low

Series Approximation Variable High

Standard LP solvers High Low

Gradient descent Low High

Prekopa’s Algorithm High Low-Moderate

Gradient descent (topology search) Moderate Moderate

Sequential Quadratic Programming High Moderate

Semi-definite Programming High High

Random Sampling High Moderate

Recommendation. The SDP method is the best but SQP and RS are also
acceptable.

6. CALCULATION OF CUMULATIVE JOINT PROBABILITIES

Cumulative joint probabilities need to be calculated for computation of higher
moments. Using the random sampling method, these probabilities can be com-
puted in similar fashion as the single probabilities shown before. But for
the other methods, knowledge of the moments is required. Cumulative joint
probabilities are defined over multiple random variables, wherein each ran-
dom variable satisfies some inequality or equality. In our case, for the second
moment we need to find the following kind of cumulative joint probabilities
P [X > 0, Y > 0], where X and Y are random variables (overriding their
definition in Table I). Since the probability is of an event over two distinct ran-
dom variables, the previous method of computing moments cannot be directly
applied. An important question is: Can we somehow through certain transfor-
mations reuse the previous method? Fortunately, the answer is affirmative. The
intuition behind the technique we propose is as follows. We find another random
variable Z = f (X , Y ) (polynomial in X and Y ) such that Z > 0 iff X > 0 and
Y > 0. Since the two events are equivalent their probabilities are also equal.
By taking derivatives of the MGF of the multinomial we get expressions for the
moments of polynomials of the multinomial random variables. Thus, f (X , Y )
is required to be a polynomial in X and Y . We now discuss the challenges in
finding such a function and eventually suggest a solution.

Geometrically, we can consider the random variables X , Y , and Z to denote
the three coordinate axes. Then the function f (X , Y ) should have a positive
value in the first quadrant and negative in the remaining three. If the domains
of X and Y were infinite and continuous then this problem is potentially in-
tractable, since the polynomial needs to have a discrete jump along the X and Y
axes. Such behavior can be emulated at best approximately by polynomials. In
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Fig. 4. The plot is of the polynomial (x + 10)4x2 y + ( y + 10)4 y2x − z = 0. We see that it is positive

in the first quadrant and nonpositive in the remaining three.

our case, though, the domains of the random variables are finite, discrete, and
symmetric about the origin. Therefore, what we care about is that the function
behaves as desired only at these finite number of discrete points. One simple
solution is to have a circle covering the relevant points in the first quadrant
and with appropriate sign the function would be positive for all the points en-
compassed by it. This works for small domains of X and Y . As the domain size
increases the circle intrudes into the other quadrants and no longer satisfies
the conditions. Other simple functions such as X Y or X + Y or a product of
the two also do not work. We now give a function that does work.5 Consider the
domain of X and Y to be integers in the interval [−a,a].6 Then the polynomial
is given by

Z = (X + a)r X 2Y + (Y + a)rY 2 X , (14)

where r = maxb� ln[b]

ln[ a+1
a−b ]

� + 1, 1 < b < a, and b ∈ N. The value of r can be

found numerically by finding the corresponding value of b which maximizes
that function. Figure 4 depicts the polynomial for a = 10 where r = 4. The
general shape remains the same for higher values of a.

Recommendation. If the degree of the polynomial is large, use the RS method
for convenience, else use SDP or SQP for high accuracy.

With this we have all the ingredients necessary to perform experiments rea-
sonably fast. This is exactly what we report in the next section.

5Proof in Appendix.
6In our problem X and Y have the same domain.
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7. EXPERIMENTS

The experimental section is divided into three parts. In each part we accomplish
a particular objective.

(1) In the first part we test if random sampling using our formulations is more
accurate than random sampling used to directly estimate the moments. We
also explain the reasons for the observed behavior.

(2) In the second part we depict the manner in which the formulations can
be used as an exploratory tool in studying learning methods. In particular
we report certain interesting observations regarding the model selection
measures, namely HOS and CV.

(3) In the last part we build distributions on three UCI datasets and use the
formulations for the moments to study the behavior of NBC on these built
distributions. Since the moments are over all possible datasets, they provide
information about the behavior of NBC, not only on the specific UCI datasets
but rather on a class of datasets that are similar to and contain the UCI
datasets.

7.1 Part 1: Monte Carlo (MC) vs. Random Sampling Using Formulations (RS)

In the previous section we proposed methods for efficiently and accurately com-
puting the cdf ’s that are used in the computation of the moments. A natural
question is: Why not use simple Monte Carlo to directly estimate the moments
rather than derive the formulations and then perform random sampling? In
this section, we show that MC fails to provide accurate estimates even in a
simple scenario, while RS does an extremely good job for the same amount of
computation (i.e., 10000 samples). Notice that N the training set size and the
sample size have different semantics. Since the expectations are over all datasets
of size N, the sample size is the number of datasets of size N. More precisely,
the sample size is the number of training sets of size N and not the value of N
itself. We first explain the plots and later discuss their implications.

General setup. We fix the total number of attributes to 2. Each attribute has
two values with the number of classes also being 2. The five Figures 5, 6, 7, 8,
and 9 depict the estimates of MC and RS for different amounts of correlation
(measured using chi-square [Connor-Linton 2003]) between the attributes and
the class labels, with increasing training set size.

Observations. From the Figure 5 we observe that when the attributes and
class labels are uncorrelated, with increasing training set size the estimates of
both MC and RS are accurate. Similar qualitative results are seen in Figure 9
when the attributes and class labels are totally correlated. Hence, for ex-
tremely low and high correlations both methods produce equally good esti-
mates. The problem arises for the MC method when we move away from
these extreme correlations. This is seen in Figures 6, 7, and 8. Both the
MC and RS methods perform well initially, but at higher training set sizes
(around 10000 and greater) the estimates of the MC method become grossly
incorrect, while the RS method still performs exceptionally well. In fact, the
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Fig. 5. Estimates of ED(N )[GE(ζ )] by MC and RS with increasing training set size N . The at-

tributes are uncorrelated with the class labels. True value of ED(N )[GE(ζ )] is 0.5.
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Fig. 6. Estimates of ED(N )[GE(ζ )] by MC and RS with increasing training set size N . The corre-

lation between the attributes and the class labels is 0.25. True value of ED(N )[GE(ζ )] is 0.24.
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Fig. 7. Estimates of ED(N )[GE(ζ )] by MC and RS with increasing training set size N . The corre-

lation between the attributes and the class labels is 0.5. True value of ED(N )[GE(ζ )] is 0.14.
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Fig. 8. Estimates of ED(N )[GE(ζ )] by MC and RS with increasing training set size N . The corre-

lation between the attributes and the class labels is 0.75. True value of ED(N )[GE(ζ )] is 0.068.
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Fig. 9. Estimates of ED(N )[GE(ζ )] by MC and RS with increasing training set size N . The at-

tributes are totally correlated to the class labels. True value of ED(N )[GE(ζ )] is 0.

estimates of RS become increasingly accurate with increasing training set
size.

Justifications and implications. An explanation of the aforesaid phenomena
is as follows: The term ED(N )[GE(ζ )] denotes the expected GE of all classifiers
that are induced by all possible training sets drawn from some distribution.
In the continuous case the number of possible training sets of size N is infi-
nite, while in the discrete case it is O(Nm−1), where m is the total number of
cells in the contingency table. As N increases the number of possible training
sets increases rapidly even for small values of m. Thus, with increasing N the
complexity of ED(N )[GE(ζ )] also increases. In the experiments we reported pre-
viously, the value of m is 8 (2 × 2 × 2) and with increasing N from 10–10000
the upsurge in the number of possible training sets is steep. Since we fix the
amount of computation (i.e., the number of samples), the MC method is un-
able to get enough samples so as to accurately estimate (except at extreme
correlations where almost each sample is representative of the underlying dis-
tribution) ED(N )[GE(ζ )] at higher values of N (e.g., 10000). The MC method
estimates are based on samples from a small subspace of the entire sample
space. Hence, with increasing number of possible datasets we would have to
proportionately increase the number of samples to get good estimates. The RS
method is not as affected by increasing training set size. The reason for this is
that the complexity (i.e., the parameter space) of the cdf ’s doesn’t scale as much
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with increasing N (O(N O(d )) where d is the dimension as against O(Nm−1)).
Thus, in the case of the RS method, the high accuracy is sustained.

On increasing m, the number of possible training sets increases by a factor
of N for each cell added and hence direct MC is intractable to get accurate
estimates. The RS method does not scale likewise, since the number of terms
(cdf ’s) is linear in m and the complexity of each term remains the practically
unchanged for a fixed dimension. Since computing the first moment is a great
challenge for the MC method, computing the second moment, which is over the
D(N )×D(N ) space, looks ominous. For the RS and the other suggested methods
(e.g., optimization) this is equivalent to finding joint probabilities, which is not
that hard a task.

7.2 Part 2: Formulations as an Exploratory Tool

In the previous sections we pointed out how the moments of the generalization
error can be computed. In Section 3 we established connections between the mo-
ments of the generalization error (GE) and the moments of Hold-out-set Error
(HE) and Cross-validation Error (CE). In this section we provide a graphical,
simple to interpret representation of these moments for specific cases. While
these visual representations do not replace general facts, they greatly improve
our understanding, allowing rediscovery of empirically discovered properties of
the error metrics and portraying the flexibility of the method to model different
scenarios.

General setup. We study the behavior of the moments of HE, CE, and GE in
one as well as multiple dimensions. The data distribution we use is a multino-
mial with a class prior of 0.4. The dataset size is set to 100, namely N = 100 for
the first two studies and is varied for the third. We set N = 100 (and not higher)
to clearly observe the effects of an increase in dimensionality on the behavior
of these error metrics. The third study varies N, and studies the convergence
behavior of these error metrics.

7.2.1 HOS. Our first study involves the dependency of the hold-out-set
error on the splitting of the data into testing (the hold-out-set) and training. To
get insight into the behavior of HE, we plotted the expectation in Figures 10
and 13, the variance in Figures 11 and 14, and the sum of the expectation and
standard deviation in Figures 12 and 15 for single and multiple dimensions,
respectively. As expected, the expectation of HE grows as the size of the training
dataset reduces. On the other hand, the variance is reduced until the size of
test data is 50%, then it increases slightly for the one-dimensional case. The
general downwards trend is predictable using intuitive understanding of the
naive Bayes classifier, but the fact that the variance has an upwards trend is not.
We believe that the behavior on the second part of the graph is due to the fact
that the behavior of the classifier becomes unstable as the size of the training
dataset is reduced and this competes with the reduction due to the increase in
the size of testing data. In higher dimensions the test data size is insufficient
even for large test set fractions (as N is only 100) and so any increase in test size
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Fig. 10. HE expectation in single dimension.
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Fig. 11. HE variance in single dimension.

is desirable, leading to reduced variance. Our methodology established this fact
exactly, without the doubts associated with intuitively determining the distinct
behavior in different dimensions.

From the plots for the sum of the expectation and the standard deviation of
HE, which indicate the pessimistic expected behavior, a good choice for the size
of the test set is 40–50% for this particular instance. This best split depends on
the size of the dataset and it is hard to select only based on intuition.

7.2.2 Cross-Validation. In our second study we observed the behavior of
CV with varying number of folds. Here we observe the similar qualitative re-
sults in both lower and higher dimensions. As the number of folds increases, the
following trends are observed: (a) The expectation of CE reduces (Figures 16,
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Fig. 12. E[] + Std() of HE in single dimension.
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Fig. 13. HE expectation in multiple dimensions.

22) since the size of training data increases; (b) the variance of the classifier
for each of the folds increases (Figures 17, 23) since the size of the test data
decreases; (c) the covariance between the estimates of different folds decreases
first, then increases again (Figures 18, 24). We explain this behavior next and
the same trend is observed for the total variance of CE (Figures 19, 25) and
the sum of the expectation and the standard deviation of CE (Figures 20, 26).
Observe that the minimum of the sum of the expectation and the standard
deviation (which indicates the pessimistic expected behavior) is around 10–20
folds, which coincides with the number of folds usually recommended.

A possible explanation for the behavior of the covariance between the esti-
mates of different folds is based on the following two observations. First, when
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Fig. 14. HE variance in multiple dimensions.
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Fig. 15. E[] + Std() of HE in multiple dimensions.

the number of folds is small, the errors of the estimates have large correlations
despite the fact that the classifiers are negatively correlated. This happens be-
cause almost the entire training dataset of one classifier is the test set for the
other, two-fold cross-validation in the extreme. Due to this, though the clas-
sifiers built may be similar or different, their errors are strongly positively
correlated. Second, for large number of folds (leave-one-out situation in the ex-
treme), there is a huge overlap between the training sets; thus, the classifiers
built are almost the same and so the corresponding errors they make are highly
correlated again. These two opposing trends produce the U-shaped curve of the
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Fig. 16. Expectation of CE.
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Fig. 17. Individual run variance of CE.

covariance. This has a significant effect on the overall variance and so the vari-
ance also has a similar form with the minimum around 10 folds. Predicting
this behavior using only intuition, a reasonable number of experiments, or just
theory is unlikely, since the interaction between the two trends is not clear.

Such insight is possible only because we are able to observe with high accu-
racy the factors that affect the behavior of these measures.

7.2.3 Comparison of GE, HE, and CE. The purpose of our last study we
report was to determine the dependency of the three errors on the size of the
dataset, which indicates the convergence behavior and relative merits of hold-
out-set and cross-validation. In Figures 21 and 27 we plotted the moments of
GE, HE, and CE, the size of the hold-out-set for HE was set to 40% and 20
folds for CE. As can be observed from the figure, the error of hold-out-set is
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Fig. 18. Pairwise covariances of CE.
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Fig. 19. Total variance of CE.

significantly larger for small datasets. The error of cross-validation is almost
on par with the the generalization error. This property of cross-validation to
reliably estimate the generalization error is known from empirical studies. But
the method can be used to estimate how quickly (at what dataset size) HE and
CE converge to GE.

This type of study can be used to observe the nonasymptotic convergence
behavior of errors.

7.3 Part 3: Behavior of NBC on Real Data

In the case of real data, we observe the behavior of the moments of GE
(i.e., expected value + standard deviation) on distributions built from three
UCI datasets, shown in Figure 28. The results reported give an idea of the
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Fig. 20. E[] + √
Var() of CE.
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Fig. 21. Convergence behavior.

performance of NBC on datasets that are same as and similar to the original
three datasets.

General setup. The datasets (Shuttle Landing Control, Pima Indians, and
Balloon) we build distributions on have discrete as well as continuous at-
tributes. We discretize the continuous attributes by splitting them at the mean
of the given data. We then form a contingency table representing each of the
datasets. The counts in the individual cells divided by the dataset size provide
us with empirical estimates for the individual cell probabilities (pi ’s). Thus,
with the knowledge of N (dataset size) and the individual pi ’s we have a multi-
nomial distribution. Using this distribution we observe the behavior of NBC.

Observations and implications. We observe that the NBC has low error on
the Shuttle Landing Control dataset, which implies that on datasets from a
similar source the NBC has low error with high probability. On the other hand,
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Fig. 22. CE expectation.
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Fig. 23. Individual run variance of CE.

on the Balloon dataset the error is high, which implies that on the same and
other similar datasets the performance of NBC is poor. On the Pima Indians
dataset the performance of NBC lies somewhere in between the performance
for the other two datasets.

Though the metric estimated here is moments of the GE taken over all clas-
sifers trained on datasets of a particular size while standard validation tech-
niques such as cross-validation aim at estimating the GE of a particular clas-
sifier trained on a specific dataset, it is interesting to compare the estimates
of these two estimators. The ten-fold cross-validation estimates for the three
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Fig. 24. Pairwise covariances of CE.
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Fig. 25. Total variance of CE.
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Fig. 26. E[] + √
Var() of CE.
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Fig. 28. Behavior of NBC on distributions built on three UCI datasets.

datasets are: 0.26 (Pima Indians), 0.38 (Balloon), and 0.12 (Shuttle Landing
Control). In this case the cross-validation errors are qualitatively similar to the
estimated moments, which implies that the different classifiers over which the
moments are computed are reasonably alike. This, however, may not always oc-
cur since the performance on a particular dataset may vary considerably from
the performance on other datasets from a similar source.

8. EXTENSION

We have laid down the basic groundwork necessary for characterizing classifica-
tion models and model selection measures. In particular, we have characterized
the NBC model applied to categorical data of arbitrary dimension and with bi-
nary class labels. In this section we discuss extensibility of the analysis and the
methodology.

The extension of the analysis to NBC with multiple classes is straightfor-
ward. We adopt the “winner takes all” policy to classify a datapoint, that is, we
classify the datapoint in the class that has the highest corresponding polyno-
mial (of the form N (d−1)

2 N x1
11 N x2

11 . . . N xd
11 ) value. The approximation techniques

employed for speedup are applicable to this scenario, too. In fact, the series
approximation and the optimization techniques can be used to bound the cdf
in any application where k (some integer) moments of the random variable
are known. As mentioned before, the generalized expressions for the moments
and the relationships of the moments of GE to the moments of the CE, LE,
and HE hold even for the continuous case by switching from counting mea-
sure to Lebesgue measure. The challenge in this case, too, is to character-
ize the probabilities PZ(N )[ζ (x) = y] and PZ(N )×Z(N )[ζ (x) = y ∧ ζ ′(x ′) = y ′] for
the model at hand. The essence in characterizing these probabilities for par-
ticular inputs (x) is expressing them as probabilities of the function of the
training sample satisfying some condition. The function is determined by the
model that is chosen, by prudently looking at the training algorithm in rela-
tion with the classifiers it outputs. For example, in the NBC case the function
was N (d−1)

2 N x1
11 N x2

11 . . . Nxd
11 −N (d−1)

1 N x1
12 N x2

12 . . . N xd
12 for multiple dimensions and

N x1
1 − N x1

2 for a single dimension. The probability of this function being greater
than zero is computed from any joint distribution that may specified over the
data and the class labels. This observation directs us in characterizing other
models of interest.
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Analyzing NBC in the continuous case. In the continuous case, the NBC
classifies an input based on the training sample class prior and the class con-
ditionals, just as for the discrete case. The class label assigned to an input
z1, z2, . . . , zd is given by

class label(z1, z2, . . . , zd ) = argmaxCi
P [Ci]

d∏
j=1

P [z j |Ci],

where Ci denotes the class i. The NBC estimates the prior and the condition-
als from the training sample. The prior is straightforward to estimate. For the
conditionals a parametric model is chosen, usually a normal (could be some
other choice). The parameters of the normal (mean and variance) can be esti-
mated in closed form using parameter estimation methods such as Maximum
Likelihood Estimate (MLE). Thus, each of the conditionals can be represented
as a function of the sample and so can the prior. The term P [Ci]

∏d
j=1 P [z j |Ci]

is hence a function of the sample. Since the classification occurs by taking the
argmax of this term over all classes that is, by classifying the input in the class
for which this term is the greatest (ignoring ties which can easily be accounted
for), we arrive at a situation wherein the classification process is expressed as
a function of the sample. Densities other than normal may be used; the key is
to represent the preceding term as a function of the sample. With the initially
chosen joint density over the data and the class labels, which may be different
from the density for the conditionals, the probability of a classifier classifying
an input into a particular class can be computed.

Extension to other classification algorithms. When we consider other classifi-
cation models, the basic theme of characterizing them remains unchanged. We
discuss possible ways of extending the analysis to some of these other models.

Decision trees. In the case of decision trees, for example, the classification
occurs at the leaf nodes by choosing the most numerous class label. If no stop-
ping criterion is enforced, all paths from root to leaf contain all attributes. If
stopping criteria are enforced then the paths may contain smaller subsets of
the available attributes. Thus, to classify an input into a particular class, we
have to check the path in which it lies and that the corresponding class label
is most numerous in this path. Formally, the expressions for the probabilities
PZ(N )[ζ (x)= y] and PZ(N )×Z(N )[ζ (x)= y ∧ ζ ′(x ′)= y ′] are given by

PZ(N )[ζ (x)= y]

=
∑

p
PZ(N )[ct(pathp y) > ct(pathp y ′), pathpexists, ∀ y ′ ∈ Y , y ′ �= y],

where p indexes allowed paths by the tree algorithm in classifying input x, Y is
the set of class labels, and the function ct(.) counts the number of datapoints in a
particular path with the corresponding class label. Thus, ct(pathp y) is the count
of the number of datapoints lying in pathp having class label y . After the sum-
mation, the previously given righthand-side term is the probability that pathp
is present in the tree and the number of datapoints in pathp with class label y
is greater than the number of datapoints in pathp with any other class label.
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The probability that we need to find for the second moment is

PZ(N )×Z(N )[ζ (x)= y ∧ ζ ′(x ′)= y ′]

=
∑
p,q

PZ(N )×Z(N )[ct(pathp y) > ct(pathp y ′′), pathpexists,

ct(pathq y ′) > ct(pathq y ′′′), pathqexists,

∀ y ′′, y ′′′ ∈ Y , y �= y ′′, y ′ �= y ′′′]

where p and q index all allowed paths by the tree algorithm in classifying input
x and x ′, respectively. The aforesaid two equations are generic in analyzing
decision tree algorithms with any reasonable stopping criteria (e.g., for fixed-
height trees of height h we would have the condition that a particular set of h
attributes is chosen) and classification based on the most numerous class in the
leaves. The approximation methods described before can be used to compute
these probabilities. It is not difficult to generalize it further when the decision in
leaves is some other measure than majority. In that case, we would just include
that measure in the probability in place of the inequality.

k-Nearest Neighbor (kNN). In kNN, to compute P[ζ (x) = y], the probability
that majority of the k-nearest neighbors of x belong to class y is found. To
compute P[ζ (x) = y ∧ ζ ′(x ′) = y ′] the probability that the majority of the k-
nearest neighbors of x belong to class y and majority of the k-nearest neighbors
of x ′ belong to class y ′ is found.

The scenario wherein x is classified into class y depends on two factors:
(1) the kNN’s of x and (2) the class label of the majority of these kNN’s. The
first factor is determined by the distance metric used, which may be dependent
or independent of the sample. The second factor is always determined by the
sample. The PZ(N )[ζ (x)= y] is the probability of all possible ways that input x
can be classified into class y , given the joint distribution over the input-output
space. This probability for x is calculated by summing (or integrating for the
continuous case) the joint probabilities of having a particular set of kNN’s and
the majority of this set of kNN’s has a class label y , over all possible kNN’s that
the input can have. Formally,

PZ(N )[ζ (x)= y]

=
∑
q∈Q

PZ(N )[q, c(q, y) > c(q, y ′), ∀ y ′ ∈ Y , y ′ �= y],

where q is a set of kNN’s of the given input and Q is the set containing all
possible q. c(q, t) is a function which counts the number of kNN’s in q that lie
in class t. The PZ(N )×Z(N )[ζ (x)= y ∧ ζ ′(x ′)= y ′] used in the computation of the
second moment is calculated by going over kNN’s of two inputs rather than one.
The expression for this probability is given by

PZ(N )×Z(N )[ζ (x)= y ∧ ζ ′(x ′)= y ′]

=
∑
q∈Q

∑
r∈R

PZ(N )×Z(N )[q, c(q, y) > c(q, y ′′), r, c(r, y ′) > c(r, y ′′′)

∀ y ′′, y ′′′ ∈ Y , y �= y ′′, y ′ �= y ′′′]
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where q and r are sets of kNN’s of x and x ′, respectively. Q and R are sets
containing all possible q and r, respectively. Finally, c(., .) has the same conno-
tation as before. Here again we can use the approximation methods described
before to estimate the relevant probabilities.

In this manner, by understanding the training and the functionality of the
model, characterizations can be developed. It may not always be possible to do
this, but if possible the characterizations developed aid in providing an accurate
(if not exact) representation of the behavior of the learning model and the model
selection measures, all in a short amount of time (for that accuracy).

9. CONCLUSION

In this section we summarize the major developments in this work and mention
a future line of research.

The major contributions in this article are: (a) We developed general relation-
ships between the moments of GE, HE, CE; (b) we reduced the time complexity
by shifting the focus from looking at the entire input at one time to looking at
only particular inputs; (c) we developed efficient formulations for the moments
of the errors for the NBC using the fact in (b); (d) we proposed a plethora of
strategies to efficiently compute cdf ’s required for the moment computation in
higher dimensions for the NBC, thus making our method scalable, with a fi-
nal recommendation of using SDP (or SQP) for single cdf computation and RS
for joint cdf computation; and (e) we showed that if RS is used, then RS using
our formulations is more efficient and accurate than estimating the moments
directly using Monte Carlo. The reason is that the parameter space of the in-
dividual terms is much smaller than the entire space over which the moments
have to be computed. Finally (f) We plotted our formulations on synthetic dis-
tributions as well as those built on real data portraying the manner in which
the formulations can be used as an analysis tool. The major challenge in the
future is to extend the analysis to other classification models such as k-nearest
neighbors, decision trees, neural nets, etc. We have, however, taken an initial
step in this direction by laying out the basic framework and characterizing the
NBC, which is important in its own right. It is a model which is extensively
used in industry, due to its robustness outperforming its more sophisticated
counterparts in some real-world applications (e.g., spam filtering in Mozilla
Thunderbird and Microsoft Outlook, bio-informatics, etc.).

In conclusion, we proposed a methodology to observe and understand
nonasymptotic behavior of errors for the classification model at hand by mak-
ing as much progress as possible in theory, in view of reducing the computation
required for experiments. We then performed experiments to study specific sit-
uations that we are interested in. The extent to which this methodology can
be used for studying learning methods is a part of our current investigation;
however, we feel the method has promise.
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10. APPENDIX

PROOF OF THEOREM 1.

EZ(N )[GE(ζ )] = EZ(N )[E[λ(ζ (X ), Y )]]

= E[EZ(N )[λ(ζ (X ), Y )]]

=
∑
x∈X

P [X =x]
∑

ζ∈Z(N )

PZ(N )[ζ ]P [ζ (x) �=Y (x)|ζ ]

=
∑
x∈X

P [X =x]
∑

ζ∈Z(N )

PZ(N )[ζ ]P [ζ (x) = y , Y (x) �= y |ζ ]

=
∑
x∈X

P [X =x]
∑
y∈Y

∑
ζ∈Z(N )|ζ (x)= y

PZ(N )[ζ ]P [ζ (x) = y , Y (x) �= y |ζ ]

=
∑
x∈X

P [X =x]
∑
y∈Y

PZ(N )[ζ (x)= y]P [Y (x) �= y]

EZ(N )×Z(N )[GE(ζ )GE(ζ ′)]
= EZ(N )×Z(N )[E[λ(ζ (X ), Y )]E[λ(ζ ′(X ), Y )]]

=
∑

(ζ,ζ ′)∈Z(N )×Z(N )

PZ(N )×Z(N )[ζ, ζ ′]

(∑
x∈X

P [X =x]P [ζ (x) �=Y (x)]

)
(∑

x∈X
P [X =x]P [ζ ′(x) �=Y (x)]

)

=
∑
x∈X

∑
x ′∈X

P [X =x]P [X =x ′]
∑

(ζ,ζ ′)∈Z(N )×Z(N )

PZ(N )×Z(N )[ζ, ζ ′]

P [ζ (x) �=Y (x)]P [ζ ′(x ′) �=Y (x ′)]

=
∑
x∈X

∑
x ′∈X

P [X =x]P [X =x ′]

∑
y∈Y

∑
y ′∈Y

PZ(N )×Z(N )[ζ (x)= y ∧ ζ ′(x ′)= y ′]

P [Y (x) �= y]P [Y (x ′) �= y ′]

PROOF OF PROPOSITION 1. Using the notation in Table I and realizing that all
the datapoints are i.i.d. we derive the following result we have.

EDt (Nt )×Ds(Ns)[HE] = EDt (Nt )

[
EDs(Ns)

[∑
(x, y)∈Ds

λ(ζ [Dt](x), y)

Ns

]]

= EDt (Nt )[EDs(Ns)[P [ζ [Dt](x) �= y |Ds]]]

= EDt (Nt )

[∑
Ds

P [ζ [Dt](x) �= y |Ds]P [Ds]

]
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= EDt (Nt )

[∑
Ds

P [ζ [Dt](x) �= y , Ds]

]

= EDt (Nt )[P [ζ [Dt](x) �= y]]

= EDt (Nt )[GE(ζ [Dt])]

where we used the fact that by going over all values of one random variable we
get the probability for the other.

PROOF OF LEMMA 1. To compute the second moment of HE, from the definition
in Eq. (8) from the article we have

EDt (Nt )×Ds(Ns)[HE2]

= 1

N 2
s

EDt (Nt )×Ds(Ns)

[ ∑
(x, y)∈Ds

∑
(x ′, y ′)∈Ds

λ(ζ [Dt](x), y)λ(ζ [Dt](x ′), y ′)

]

The expression under the double sum depends on whether (x, y) and (x ′, y ′)
are the same. When they are the same, we are precisely in the case we derived
for EDt (Nt )×Ds(Ns)[HE] earlier, except that we have N 2

s in the denominator. This
gives us the following term: 1

Ns
EDt (Nt )[GE(ζ [Dt])]. When they are different, that

is, when (x, y) �= (x ′, y ′), then we get

1

N 2
s

EDt (Nt )×Ds(Ns)

[ ∑
(x, y)∈Ds

∑
(x ′, y ′)∈Ds\(x, y)

λ(ζ [Dt](x), y)λ(ζ [Dt](x ′), y ′)

]

= Ns − 1

Ns
EDt (Nt )×Ds(Ns)

[∑
(x, y)∈Ds

λ(ζ [Dt](x), y)

Ns

∑
(x ′, y ′)∈Ds\(x, y) λ(ζ [Dt](x ′), y ′)

Ns − 1

]

= Ns − 1

Ns
EDt (Nt )×Ds(Ns)[P [ζ [Dt](x) �= y |(x, y) ∈ Ds]P [ζ [Dt](x ′) �= y ′|(x ′, y ′)

∈ Ds \ (x, y)]] = Ns − 1

Ns
EDt (Nt )[EDs [P [ζ [Dt](x) �= y |(x, y)

∈ Ds]]EDs [P [ζ [Dt](x ′) �= y ′|(x ′, y ′) ∈ Ds \ (x, y)]]]

= Ns − 1

Ns
EDt (Nt )[GE(ζ [Dt])

2]

where we used the primary fact that since the samples are i.i.d. any function
applied on two distinct inputs is also independent. This the reason why the
EDs [] factorizes.

Putting everything together, and observing that terms inside summations
are constants, we have

EDt (Nt )×Ds(Ns)[HE2] = 1

Ns
EDt (Nt )[GE(ζ [Dt])] + Ns − 1

Ns
EDt (Nt )[GE(ζ [Dt])

2].
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PROOF OF LEMMA 2.

E
Dij

t

(
v−2

v N
)
×Di (

N
v )×D j (

N
v )

[HEiHE j ]

= E
Dij

t

(
v−2

v N
)
×Di (

N
v )

[
HEi ED j (

N
v )

[∑
(x j , y j )∈D j

λ(ζ [D j
t ](x j ), y j )

Ns

]]

= E
Dij

t

(
v−2

v N
) [

GE(ζ [D \ D j ])EDi (
N
v )[HEi]

]
= E

Dij
t

(
v−2

v N
)[GE(ζ [D \ D j ])GE(ζ [D \ Di])]

where we used the fact that the datasets Di and D j are disjoint and drawn
i.i.d. It is important to observe that due to the fact that D \ Di and D \ D j
intersect (the intersection is D \ (Di ∪ D j )), the two classifiers will neither be
independent nor identical. As was the case for the first and second moment of
GE, this moment will depend only on the size of the intersection and the sizes
of the two sets, since all points are i.i.d. This means that the expression has the
same value for any pair i, j , i �= j .

PROPOSITION 3. The polynomial (x + a)r x2 y + ( y + a)r y2x > 0 iff x > 0 and
y > 0, where x, y ∈ [−a, −a + 1, . . . , a], r = maxb� ln[b]

ln[ a+1
a−b ]

� + 1, a ∈ N, 1 < b < a

and b ∈ N.

PROOF. One direction is trivial. If x > 0 and y > 0 then definitely the
polynomial is greater than zero for any value of r. Now lets prove the other
direction, namely if (x + a)r x2 y + ( y + a)r y2x > 0 then x > 0 and y > 0 where
x, y ∈ [−a, . . . , a], r = maxb� ln[b]

ln[ a+1
a−b ]

� + 1, 1 < b < a and b ∈ N. In other words,

if x ≤ 0 or y ≤ 0 then (x + a)r x2 y + ( y + a)r y2x ≤ 0. We prove this result by
forming cases.

Case 1. Both x and y are zero.
The value of the polynomial is zero.

Case 2. One of x or y is zero.
The value of the polynomial again is zero, since each of the two terms separated
by a sum have x y as a factor.

Case 3. Both x and y are less than zero.
Consider the first term (x+a)r x2 y . This term is nonpositive since x+a is always
non-negative (since x ∈ [−a, . . . , a]) and x2 is always positive but y is nonpos-
itive. Analogous argument for the second term and so it, too, is nonpositive.
Thus their sum is nonpositive.

Case 4. One of x or y is negative and the other is positive. Assume without
loss of generality that x is positive and y is negative.

(x + a)r x2 y + ( y + a)r y2x ≤ 0

only if (x + a)r x + ( y + a)r y ≥ 0

only if r ≥ ln[− y
x ]

ln[ x+a
y+a ]
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On fixing the value of y the value of x at which the righthand side of the
aforesaid achieves maximum is 1 (since we lower the value of x higher the
righthand side but x is positive by our assumption and x ∈ [−a, . . . , a]). Thus
we have the previous inequality true only if

r ≥ ln[− y]

ln[ a+1
y+a ]

.

Let b = − y then 1 ≤ b ≤ a since y is negative. Hence, if r satisfies the inequality
for all possible allowed values of b, then only will it imply that the polynomial
is less than or equal to zero in the specified range. For r to satisfy the inequality
for all allowed values of b, it must satisfy the inequality for the value of b that
the function is maximum. Also, for b = 1 and b = a the righthand side is zero.
So the range of b over which we want to find the maximum is 1 < b < a. With
this the minimum value of r that satifies the previous inequality in order for
the polynomial to be less than or equal to zero is

r = maxb� ln[b]

ln[a+1
a−b ]

� + 1

The four cases cover all the possibilities and thus we have shown that if
x ≤ 0 or y ≤ 0 then (x +a)r x2 y + ( y +a)r y2x ≤ 0. Having also shown the other
direction we have proved the proposition.
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