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Abstract The k-Nearest Neighbor classification algorithm (kNN) is one of the most

simple yet effective classification algorithms in use. It finds major applications in text

categorization, outlier detection, handwritten character recognition, fraud detection

and in other related areas. Though sound theoretical results exist regarding conver-

gence of the Generalization Error (GE) of this algorithm to Bayes error, these results

are asymptotic in nature. The understanding of the behavior of the kNN algorithm

in real world scenarios is limited. In this paper, assuming categorical attributes, we

provide a principled way of studying the non-asymptotic behavior of the kNN algo-

rithm. In particular, we derive exact closed form expressions for the moments of the

GE for this algorithm. The expressions are functions of the sample, and hence can be

computed given any joint probability distribution defined over the input-output space.

These expressions can be used as a tool that aids in unveiling the statistical behavior

of the algorithm in settings of interest viz. an acceptable value of k for a given sample

size and distribution. Moreover, Monte Carlo approximations of such closed form ex-

pressions have been shown in [6,5] to be a superior alternative in terms of speed and

accuracy when compared with computing the moments directly using Monte Carlo.

This work employs the semi-analytical methodology that was proposed recently to

better understand the non-asymptotic behavior of learning algorithms.

Keywords kNN · moments

1 Introduction

A major portion of the work in Data Mining caters towards building new and improved

classification algorithms. Empirical studies [10,14,8,17,9,20] and theoretical results,

mainly asymptotic [24,19,2] in nature, assist in realizing this endeavor. Though both
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methods are powerful in their own right, results from empirical studies heavily de-

pend on the available datasets and results from the theoretical studies depend on a

large and mostly unknown dataset size after which the asymptotic results reasonably

apply. Keeping these factors in mind, a semi-analytical methodology was proposed in

[6] to study the non-asymptotic behavior of classification algorithms. Previously, the

methodology was applied to characterize the naive bayes classifier and random deci-

sion trees. It was suggested that applying such a methodology to characterize other

commonly used algortihms would be a challenging, but useful endeavour. With this in

mind, we in this paper, characterize the popular k-nearest neighbor (kNN) algorithm

for the discrete case.

The kNN algorithm is a simple yet effective and hence commonly used classification

algorithm in industry and research [7,16,15,3,21,25,13,18]. It is used in many applica-

tions in domains such as bioinformatics [21], time series analysis [25,13], geology [18],

chemical engineering [15], etc.

The kNN algorithm is known to be a consistent estimator [23], i.e. it asymptoti-

cally achieves Bayes error within a constant factor. None of the even more sophisticated

classification algorithms eg. SVM, Neural Networks etc. are known to outperform it

consistently [22]. However, the algorithm is susceptible to noise and choosing an ap-

propriate value of k is more of an art than science.

In the next few subsections, we briefly describe our methodology. We then enumer-

ate the specific contributions that we make in this paper.

1.1 What is the methodology ?

The methodology for studying classification models consists in studying the behavior

of the first two central moments of the GE of the classification algorithm studied. The

moments are taken over the space of all possible classifiers produced by the classification

algorithm, by training it over all possible datasets sampled i.i.d. from some distribution.

The first two moments give enough information about the statistical behavior of the

classification algorithm to allow interesting observations about the behavior/trends of

the classification algorithm with respect to (w.r.t.) any chosen data distribution.

1.2 Why have such a methodology?

The answers to the following questions shed light on why the methodology is necessary

if tight statistical characterization is to be provided for classification algorithms.

1. Why study GE ? The biggest danger of learning is overfitting the training data.

The main idea in using GE – the expected error over the entire input, as a measure

of success of learning, instead of empirical error on a given dataset, is to provide a

mechanism to avoid this pitfall.

2. Why study the moments instead of the distribution of GE ? Ideally, we would study

the distribution of GE instead of moments in order to get a complete picture of

what is its behavior. Studying the distribution of discrete random variables, except

for very simple cases, turns out to be very hard. The difficulty comes from the fact

that even computing the pdf in a single point is intractable since all combinations of

random choices that result in the same value for GE have to be enumerated. On the
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other hand, the first two central moments coupled with distribution independent

bounds such as Chebychev and Chernoff give guarantees about the worst possible

behavior that are not too far from the actual behavior (small constant factor).

Interestingly, it is possible to compute the moments of a random variable like GE

without ever explicitly writing or making use of the formula for the pdf. What

makes such an endeavor possible is extensive use of the linearity of expectation as

explained in [6].

3. Why characterize a class of classifiers instead of a single classifier ? While the use of

GE as the success measure is standard practice in Machine Learning, characterizing

classes of classifiers instead of the particular classifier produced on a given dataset

is not. From the point of view of the analysis, without large testing datasets it

is not possible to evaluate directly GE for a particular classifier. By considering

classes of classifiers to which a classifier belongs, an indirect characterization is

obtained for the particular classifier. This is precisely what Statistical Learning

Theory (SLT) does; there the class of classifiers consists in all classifiers with the

same VC dimension. The main problem with SLT results is that classes based on

VC dimension are too large, thus results tend to be pessimistic. In the methodology

in [6], the class of classifiers consists only of the classifiers that are produced by

the given classification algorithm from datasets of fixed size from the underlying

distribution. This is the probabilistic smallest class in which the particular classifier

produced on a given dataset can be placed in.

1.3 How do we implement the methodology ?

We estimate the moments of GE, by obtaining parametric expressions for them. If this

can be accomplished the moments can be computed exactly. Moreover, by dexterously

observing the manner in which expressions are derived for a particular classification

algorithm, insights can be gained into analyzing other algorithms. Though deriving

the expressions may be a tedious task, using them we obtain highly accurate estimates

of the moments. In this paper, we analyze the kNN algorithm applied to categorical

data. The key to the analysis is focusing on how the algorithm builds its final inference.

In cases where the parametric expressions are computationally intensive to compute

exactly, the approximations proposed in Section 5 can be used to obtain estimates with

small error.

If the moments are to be studied on synthetic data then the distribution is anyway

assumed and the parametric expressions can be directly used. If we have real data an

empirical distribution can be built on the dataset and then the parametric expressions

can be used.

1.4 Applications of the methodology

It is important to note that the methodology is not aimed towards providing a way

of estimating bounds for GE of a classifier on a given dataset. The primary goal is

creating an avenue in which learning algorithms can be studied precisely i.e. studying

the statistical behavior of a particular algorithm w.r.t. a chosen/built distribution.

Below, we discuss the two most important perspectives of applying the methodology.
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1.4.1 Algorithmic Perspective

If a researcher/practitioner designs a new classification algorithm, one needs to validate

it. Standard practice is to validate the algorithm on a relatively small (5-20) number

of datasets and to report the performance. By observing the behavior of only a few

instances of the algorithm the designer infers its quality. Moreover, if the algorithm

under performs on some datasets, it can be sometimes difficult to pinpoint the precise

reason for its failure. If instead one is able to derive parametric expressions for the

moments of GE, the test results would be more relevant to the particular classification

algorithm, since the moments are over all possible datasets of a particular size drawn

independently and identically from some chosen/built distribution. Testing individually

on all these datasets is an impossible task. Thus, by computing the moments using the

parametric expressions the algorithm would be tested on a plethora of datasets with

the results being highly accurate. Moreover, since the testing is done in a controlled

environment i.e. all the parameters are known to the designer while testing, one can

precisely pinpoint the conditions under which the algorithm performs well and the

conditions under which the algorithm under performs.

1.4.2 Dataset Perspective

If an algorithm designer validates his/her algorithm by computing moments as men-

tioned earlier, it can instill greater confidence in the practitioner searching for an

appropriate algorithm for his/her dataset. The reason for this being, if the practitioner

has a dataset which has a similar structure or is from a similar source as the test

dataset on which an empirical distribution was built and favorable results reported by

the designer, then this would mean that the results apply not only to that particular

test dataset, but to other similar type of datasets and since the practitioner’s dataset

belongs to this similar collection, the results would also apply to his. Note that a dis-

tribution is just a weighting of different datasets and this perspective is used in the

above exposition.

1.5 Specific Contributions

In this paper, we develop expressions for the first 2 moments of GE for the k-Nearest

Neighbor classification algorithm built on categorical data. We accomplish this by

expressing the moments as functions of the sample produced by the underlying joint

distribution. In particular, we develop efficient characterizations for the moments when

the distance metric used in the kNN algorithm, is independent of the sample. We also

discuss issues related to the scalability of the algorithm. We use the derived expressions,

to study the classification algorithm in settings of interest (example different values of

k), by visualization. The joint distribution we use in the empirical studies that ensue

the theory, is a multinomial — the most generic data generation model for the discrete

case.

The paper is organized as follows: In Section 2, we first provide the basic techni-

cal background. This is followed by a brief discussion of the kNN algorithm and the

different distance metrics that are used when dealing with categorical attributes. In

Section 3 we characterize the kNN algorithm. In Section 4 we address issues related to

scalability. In Section 5 we report empirical studies, which illustrate the usage of the
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Symbol Meaning
X Random vector modeling input
X Domain of random vector (input space) X
Y Random variable modeling output
Y (x) Random variable modeling output for input x
Y Set of class labels (output space)
ζ Classifier
Z(N) The class of classifiers obtained by application of

classification algorithm to an i.i.d. set of size N
EZ(N)[] Expectation w.r.t. the space of classifiers built

on a sample of size N

Table 1 Notation used in the paper.

expressions, as a tool to delve into the statistical behavior of the kNN algorithm. In

Section 6, we discuss implications of the experiments. In Section 7, we look at possible

extensions to the current work. Finally, we conclude in Section 8.

2 Background

In this section we first discuss the technical framework used in the characterization of

the moments. This is followed by a discussion of different distance metrics used by a

kNN algorithm when trained on categorical data.

2.1 Technical Framework

In this section we present the generic expressions for the moments of GE that were given

in [6]. The moments of the GE of a classifier built over an independent and identically

distributed (i.i.d.) random sample drawn from a joint distribution, are taken over the

space of all possible classifiers that can be built, given the classification algorithm and

the joint distribution. Though the classification algorithm may be deterministic, the

classifiers act as random variables since the sample that they are built on is random.

The GE of a classifier, being a function of the classifier, also acts as a random variable.

Due to this fact, GE of classifier denoted by GE(ζ) has a distribution and consequently

we can talk about its moments. The generic expressions for the first two moments of

GE taken over the space of possible classifiers resulting from samples of size N from

some joint distribution are as follows:

EZ(N) [GE(ζ)] =∑
x∈X

P [X=x]
∑
y∈Y

PZ(N) [ζ(x)=y]P [Y (x) 6=y] (1)

EZ(N)×Z(N)

[
GE(ζ)GE(ζ′)

]
=∑

x∈X

∑
x′∈X

P [X=x]P
[
X=x′

]
·

∑
y∈Y

∑
y′∈Y

PZ(N)×Z(N)

[
ζ(x)=y ∧ ζ′(x′)=y′

]
·

P [Y (x) 6=y]P
[
Y (x′) 6=y′

]
(2)
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X̄ C1 C2 ... Cv

x̄1 N11 N12 ... N1v

x̄2 N21 N22 ... N2v

...
¯xM NM1 NM2 ... NMv

Table 2 Contingency table with v classes, M input vectors and total sample size N =∑M,v
i=1,j=1Nij .

Equation 1 is the expression for the first moment of the GE(ζ). Notice that in-

side the first sum
∑

x∈X the input x is fixed and inside the second sum the output

y is fixed, thus the PZ(N) [ζ(x)=y] is the probability of all possible ways in which

an input x is classified into class y. This probability depends on the joint distri-

bution and the classification algorithm. The other two probabilities are directly de-

rived from the distribution. Thus, customizing the expression for EZ(N) [GE(ζ)], effec-

tively means deciphering a way of computing PZ(N) [ζ(x)=y]. Similarly, customizing

the expression for EZ(N)×Z(N)

[
GE(ζ)GE(ζ′)

]
means finding a way of computing

PZ(N)×Z(N)

[
ζ(x)=y ∧ ζ′(x′)=y′

]
given any joint distribution. In Section 3 we de-

rive expressions for these two probabilities, which depend only on the underlying joint

probability distribution, thus providing a way of computing them analytically.

2.2 k-Nearest Neighbor Algorithm

The k-nearest neighbor (kNN) classification algorithm classifies an input based on the

class labels of the closest k points in the training dataset. The class label assigned to

an input is usually the most numerous class of these k closest points. The underlying

intuition that is the basis of this classification model is that nearby points will tend to

have higher ”similarity” viz. same class, than points that are far apart.

The notion of closeness between points is determined by the distance metric used.

When the attributes are continuous, the most popular metric is the l2 norm or the

Euclidean distance. Figure 1 shows points in R2 space. The points b, c and d are the

3-nearest neighbors (k=3) of the point a. When the attributes are categorical the most

popular metric used is the Hamming distance [12]. The Hamming distance between

two points/inputs is the number of attributes that have distinct values for the two in-

puts. This metric is sample independent i.e. the Hamming distance between two inputs

remains unchanged, irrespective of the sample counts produced in the corresponding

contingency table. For example, Table 2 represents a contingency table. The Ham-

ming distance between x̄1 and x̄2 is the same irrespective of the values of Nij where

i ∈ {1, 2, ...,M} and j ∈ {1, 2, ..., v}. Other metrics such as Value Difference Metric

(VDM) [22], Chi-square [4] etc. exist, that depend on the sample. We now provide a

global characterization for calculating the aforementioned probabilities for both kinds

of metrics. This is followed by an efficient characterization for the sample independent

metrics, which includes the traditionally used and most popular Hamming distance

metric.
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Fig. 1 b, c and d are the 3 nearest
neighbours of a.
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Fig. 2 The Figure shows the extent
to which a point x̄i is near to x̄1. The
radius of the smallest encompassing
circle for a point x̄i is proportional to
its distance from x̄1. x̄1 is the closest
point and ¯xM is the farthest.

3 Computation of Moments

In this section we characterize the probabilities PZ(N) [ζ(x)=y] and

PZ(N)×Z(N)

[
ζ(x)=y ∧ ζ′(x′)=y′

]
required for the computation of the first two mo-

ments. In the case, that the number of nearest neighbors at a particular distance d is

more than k for an input and at any lesser value of distance the number of NN’s is less

than k, we classify the input based on all the NN’s upto the distance d.

3.1 General Characterization

We provide a global characterization for the above mentioned probabilities without

any assumptions on the distance metric in this subsection.

The scenario wherein x̄i is classified into class Cj given i ∈ {1, 2, ...,M} and

j ∈ {1, 2, ..., v} depends on two factors; 1) the kNN’s of x̄i and 2) the class label

of the majority of these kNN’s. The first factor is determined by the distance metric

used, which may be dependent or independent of the sample as previously discussed.

The second factor is always determined by the sample. The PZ(N)

[
ζ(x̄i)=Cj

]
is the

probability of all possible ways that input x̄i can be classified into class Cj , given the

joint distribution over the input-output space. This probability for x̄i is calculated by

summing the joint probabilities of having a particular set of kNN’s and the majority of

this set of kNN’s has a class label Cj , over all possible kNN’s that the input can have.

Formally,

PZ(N)

[
ζ(x̄i)=Cj

]
=∑

q∈Q
PZ(N) [q, c(q, j) > c(q, t),∀t ∈ {1, 2, ..., v}, t 6= j] (3)

where q is a set of kNN’s of the given input and Q is the set containing all possible

q. c(q, b) is a function which calculates the number of kNN’s in q that lie in class
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Cb. For example, from Table 2, if x̄1 and x̄2 are the kNN’s of some input, then q =

{1, 2} and c(q, b) = N1b + N2b. Notice that, since x̄1 and x̄2 are the kNN’s of some

input,
∑2,v

i=1,j=1Nij ≥ k. Moreover, if the kNN’s comprise of the entire input sample,

then the resultant classification is equivalent to classification performed using class

priors determined by the sample. The PZ(N)×Z(N)

[
ζ(x)=y ∧ ζ′(x′)=y′

]
used in the

computation of the second moment is calculated by going over kNN’s of two inputs

rather than one. The expression for this probability is given by,

PZ(N)×Z(N)

[
ζ(x̄i)=Cj ∧ ζ′(x̄l)=Cw

]
=∑

q∈Q

∑
r∈R

PZ(N)×Z(N)[q, c(q, j) > c(q, t), r, c(r, w) > c(r, s)

∀s, t ∈ {1, 2, ..., v}, t 6= j, s 6= w]

(4)

where q and r are sets of kNN’s of x̄i and x̄l respectively.Q and R are sets containing

all possible q and r respectively. c(., .) has the same connotation as before.

As mentioned before the probability of a particular q (or the probability of the

joint q, r), depends on the distance metric used. The inputs (e.g. x̄1, x̄2, ...) that are

the k nearest neighbors to some given input depend on the sample irrespective of the

distance metric i.e. the kNN’s of an input depend on the sample even if the distance

metric is sample independent. We illustrate this fact by an example.

Example 1 Say, x̄1 and x̄2 are the two closest inputs to x̄i where x̄1 is closer than x̄2,

based on some sample independent distance metric. x̄1 and x̄2 are both the kNN’s of x̄i
if and only if

∑2
a=1

∑v
b=1 c(a, b) ≥ k,

∑v
b=1 c({1}, b) < k and

∑v
b=1 c({2}, b) < k. The

first inequality states that the number of copies of x̄1 and x̄2 given by
∑v

j=1N1j and∑v
j=1N2j respectively, in the contingency table 2 is greater than or equal to k. If this

inequality is true, then definitely the class label of input x̄i is determined by the copies

of x̄1 or x̄2 or both x̄1, x̄2. No input besides these two is involved in the classification

of x̄i. The second and third inequality state that the number of copies of x̄1 and x̄2 is

less than k respectively. This forces both x̄1 and x̄2 to be used in the classification of

x̄i. If the first inequality was untrue, then farther away inputs will also play a part in

the classification of x̄i. Thus the kNN’s of an input depend on the sample irrespective

of the distance metric used.

The above example also illustrates the manner in which the set q (or r) can be

characterized as a function of the sample, enabling us to compute the two probabilities

required for the computation of the moments from any given joint distribution over

the data, for sample independent metrics. Without loss of generality (w.l.o.g.) assume

x̄1, x̄2, ..., ¯xM are inputs in non-decreasing order (from left to right) of their distance

from a given input x̄i based on some sample independent distance metric. Then this

input having the kNN given by the set q = { ¯xa1, ¯xa2, ..., ¯xaz} where a1, a2, ..., az ∈
{1, 2, ...,M} and ad < af if d < f is equivalent to the following conditions on the

sample being true:
∑z

l=1

∑v
j=1 c({x̄al}, j) ≥ k, ∀l ∈ {1, 2, ..., z}

∑v
j=1 c({x̄al}, j) > 0,

∀l ∈ 2q where 2q is the power set of q and cardinality of l = z−1 denoted by |l| = z−1,∑v
j=1 c(l, j) < k and ∀x̄h ∈ {x̄1, x̄2, ..., ¯xM} − q where h < az

∑v
j=1 c({x̄h}, j) = 0.

The conditions imply that for the elements of q to be the kNN’s of some given input,

the sum of their counts should be greater than or equal to k, the sum of any subset

of the counts (check only subsets of q of cardinality |q| − 1) should be less than k, the
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count of each element of q is non-zero and the other inputs that are not in q, but are no

farther to the given input than the farthest input in q should have counts zero. Notice

that all of these conditions are functions of the sample.

The other condition in the probabilities is that a particular class label is the most

numerous among the kNNs, which is also a function of the sample. In case of sam-

ple dependent metrics, the conditions that are equivalent to having a particular set q

as kNN, are totally dependent on the specific distance metric used. Since these dis-

tance metrics are sample dependent, we can certainly write these conditions as the

corresponding functions of the sample. Since all the involved conditions in the above

probabilities can be expressed as functions of the sample, we can be compute them

over any joint distribution defined over the data.

3.2 Efficient Characterization for Sample Independent Distance Metrics

In the previous subsection we observed the global characterization for the kNN algo-

rithm. Though this characterization provides insight into the relationship between the

moments of GE, the underlying distribution and the kNN classification algorithm, it

is inefficient to compute in practical scenarios. This is due to fact that any given input

can have itself and/or any of the other inputs as kNN. Hence, the total number of

terms in finding the probabilities in equations 3 and 4 turns out to be exponential in

the input size M . Considering these limitations, we provide alternative expressions for

computing these probabilities efficiently for sample independent distance metrics, viz.

Manhattan distance [11], Chebyshev distance [1], Hamming distance. The number of

terms in the new characterization we propose, is linear in M for PZ(N) [ζ(x)=y] and

quadratic in M for PZ(N)×Z(N)[ζ(x)=y ∧ ζ′(x′)=y′].
The characterization we just presented, computes the probability of classifying an

input into a particular class for each possible set of kNN’s separately. What if we in

some manner, combine disjoint sets of these probabilities into groups, and compute

a single probability for each group ? This would reduce the number of terms to be

computed, thus speeding up the process of computation of the moments. To accomplish

this, we use the fact that the distance between inputs is independent of the sample. A

consequence of this independence is that all pairwise distances between the inputs are

known prior to the computation of the probabilities. This assists in obtaining a sorted

ordering of inputs from the closest to the farthest for any given input. For example, if

we have inputs a1b1, a1b2, a2b1 and a2b2, then given input a1b1, we know that a2b2
is the farthest from the given input, followed by a1b2, a2b1 which are equidistant and

a1b1 is the closest in terms of Hamming distance.

Before presenting a full-fledged characterization for computing the two probabili-

ties, we explain the basic grouping scheme that we employ with the help of an example.

Example 2 W.l.o.g. let x̄1 be the given input, for which we want to find PZ(N) [ζ(x̄1)=C1].

Let x̄1, x̄2,..., ¯xM be inputs arranged in increasing order of distance from left to right.

This is shown in Figure 2. In this case, the number of terms we need, to compute

PZ(N) [ζ(x̄1)=C1] is M . The first term calculates the probability of classifying x̄1 into

C1 when the kNN are multiple instances of x̄1 (i.e.
∑v

j=1N1j ≥ k). Thus, the first

group contains only the set {x̄1}. The second term calculates the probability of classi-

fying x̄1 into C1 when the kNN are multiple instances of x̄2 or x̄1, x̄2. The second group

thus contains the sets {x̄2} and {x̄1, x̄2} as the possible kNN’s to x̄1. If we proceed in
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this manner, eventually we have M terms and consequently M groups. The M th group

will contain sets in which ¯xM is an element of every set and the other elements in

different sets are all possible combinations of the remaining M − 1 inputs. Notice that

this grouping scheme covers all possible kNN’s as in the general case, stated previously

i.e. ∪Mi=1gi = 2S − φ where gi denotes the ith group, S = {x̄1, x̄2, ..., ¯xM}, φ is the

empty set and any two groups are disjoint i.e. ∀ i, j ∈ {1, 2, ...,M}, i 6= j gi ∩ gj = φ

preventing multiple computations of the same probability. The rth (r > 1) term in the

expression for PZ(N) [ζ(x̄1)=C1] given the contingency table 2 is,

PZ(N) [ζ(x̄1)=C1, sets in gr ∈ kNN ] =

PZ(N)[

r∑
i=1

Ni1 ≥
r∑

i=1

Nij ,∀ j ∈ {2, 3, ..., v},

r∑
i=1

v∑
l=1

Nil ≥ k,
r−1∑
i=1

v∑
l=1

Nil < k]

(5)

where the last two conditions force only sets in gr to be among the kNN’s. The first

condition ensures that C1 is the most numerous class among the given kNN’s. For r = 1

the last condition becomes invalid and unnecessary, hence it is removed. The probability

for the second moment is the sum of probabilities which are calculated for two inputs

rather than one and over two groups, one for each input. W.l.o.g. assume that x̄1 and

x̄2 are 2 inputs with x̄1 being the closest input of x̄2 and sets in gr ∈ kNN (1) i.e. kNN’s

for input x̄1 and sets in gs ∈ kNN (2) i.e. kNN’s for input x̄2 where r, s ∈ {2, 3, ...,M}
then the rsth term in PZ(N)×Z(N) [ζ(x̄1)=C1, ζ(x̄2)=C2] is,

PZ(N)×Z(N)[ζ(x̄1)=C1, sets in gr ∈ kNN (1),

ζ(x̄2)=C2, sets in gs ∈ kNN (2)] =

PZ(N)×Z(N)[

r∑
i=1

Ni1 ≥
r∑

i=1

Nij , ∀ j ∈ {2, 3, ..., v},

r∑
i=1

v∑
l=1

Nil ≥ k,
r−1∑
i=1

v∑
l=1

Nil < k,

s∑
i=1

Ni2 ≥
s∑

i=1

Nij , ∀ j ∈ {1, 3, ..., v},

s∑
i=1

v∑
l=1

Nil ≥ k,
s−1∑
i=1

v∑
l=1

Nil < k]

(6)

In this case, when r = 1 remove
∑r−1

i=1

∑v
l=1Nil < k condition from the above

probability. If s = 1 remove
∑s−1

i=1

∑v
l=1Nil < k condition from the above probability.

In the general case, there may be multiple inputs that lie at a particular distance

from any given input; i.e. the concentric circles in Figure 2 may contain more than one

input. To accommodate this case, we extend the grouping scheme previously outlined.

Previously, the group gr contained all possible sets formed by the r− 1 distinct closest
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inputs to a given input, with the rth closest input being present in every set. Realize

that the rth closest input doesn’t necessarily mean it is the rth NN, since there may

be multiple copies of any of the r − 1 closest inputs. In our modified definition, the

group gr contains all possible sets formed by the r− 1 closest inputs, with at least one

of the rth closest inputs being present in every set. We illustrate this with an example.

Say, we have inputs a1b1, a1b2, a2b1 and a2b2, then given input a1b1, we know that

a2b2 is the farthest from the given input, followed by a1b2, a2b1 which are equidistant

and a1b1 is the closest in terms of Hamming distance. The group g1 contains only a1b1
as before. The group g2 in this case contains the sets {a1b2}, {a2b1}, {a1b2, a2b1},
{a1b2, a1b1} and {a2b1, a1b1}. Observe that each set has at least one of the 2 inputs

a1b2, a2b1. We now characterize the probabilities in equations 5 and 6 for this general

case. Let qr denote the set containing inputs from the closest to the rth closest, to

some input x̄i. The function c(., .) has the same connotation as before. With this the

rth term in the PZ(N)

[
ζ(x̄i)=Cj

]
where r ∈ {2, 3, ..., G} and G ≤ M is number of

groups is,

PZ(N)

[
ζ(x̄i)=Cj , sets in gr ∈ kNN

]
=

PZ(N)[c(qr, j) > c(qr, l), ∀ l ∈ {1, 2, ..., v} l 6= j,

v∑
t=1

c(qr, t) ≥ k,
v∑

t=1

c(qr−1, t) < k]

(7)

where the last condition is removed for r = 1. Similarly, the rsth term in PZ(N)×Z(N)

[
ζ(x̄i)=Cj , ζ

′(x̄p)=Cw
]

where r, s ∈ {2, 3, ..., G} is,

PZ(N)×Z(N)[ζ(x̄i)=Cj , sets in gr ∈ kNN (i),

ζ(x̄p)=Cw, sets in gs ∈ kNN (p)] =

PZ(N)×Z(N)[c(qr, j) > c(qr, l),∀ l ∈ {1, 2, ..., v} l 6= j,

v∑
t=1

c(qr, t) ≥ k,
v∑

t=1

c(qr−1, t) < k,

c(qs, w) > c(qs, l),∀ l ∈ {1, 2, ..., v} l 6= w,

v∑
t=1

c(qs, t) ≥ k,
v∑

t=1

c(qs−1, t) < k]

(8)

where
∑v

t=1 c(qr−1, t) < k and
∑v

t=1 c(qs−1, t) < k are removed when r = 1 and

s = 1 respectively. From equation 7 the PZ(N)

[
ζ(x̄i)=Cj

]
is given by,

PZ(N)

[
ζ(x̄i)=Cj

]
=

G∑
r=1

Tr (9)

where Tr is the rth term in PZ(N)

[
ζ(x̄i)=Cj

]
. From equation 8 the

PZ(N)×Z(N)

[
ζ(x̄i)=Cj , ζ

′(x̄p)=Cw
]

is given by,

PZ(N)×Z(N)

[
ζ(x̄i)=Cj , ζ

′(x̄p)=Cw
]

=

G∑
r,s=1

Trs (10)
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where Trs is the rsth term in PZ(N)×Z(N)

[
ζ(x̄i)=Cj , ζ

′(x̄p)=Cw
]
.

With this grouping scheme we have been able to reduce the number of terms in

the calculation of PZ(N)

[
ζ(x̄i)=Cj

]
and PZ(N)×Z(N)[ζ(x̄i) =Cj , ζ

′(x̄p) =Cw] from

exponential in M (the number of distinct inputs), to manageable proportions of Ω(M)

terms for the first probability and Ω(M2) terms for the second probability. Moreover,

we have accomplished this without compromising on the accuracy.

4 Scalability Issues

In the previous section we provided the generic characterization and the time efficient

characterization for sample independent distance metrics, relating the two probabil-

ities required for the computation of the first and second moments, to probabilities

that can be computed using the joint distribution. In this section we discuss approxi-

mation schemes that may be carried out, to further speed up the computation. There

are two factors on which the time complexity of calculating PZ(N)

[
ζ(x̄i)=Cj

]
and

PZ(N)×Z(N)[ζ(x̄i)=Cj , ζ
′(x̄p)=Cw] depends,

1. the number of terms (or smaller probabilities) that sum up to the above probabil-

ities,

2. the time complexity of each term.

Reduction in number of terms: In the previous section we reduced the number

of terms to a small polynomial in M for a class of distance metrics. The current en-

hancement we propose, further reduces the number of terms and works even for the

general case at the expense of accuracy, which we can control. The rth term in the

characterizations has the condition that the number of the closest r− 1 distinct inputs

is less than k. The probability of this condition being true monotonically reduces with

increasing r. After a point, this probability may become ”small enough”, so that the

total contribution of the remaining terms in the sum is not worthwhile finding, given

the additional computational cost. We can set a threshold below which, if the proba-

bility of this condition diminishes, we avoid computing the terms that follow.

Reduction in term computation: Each of the terms can be computed directly from

the underlying joint distribution. Different tricks can be employed to speed up the com-

putation such as collapsing cells of the table etc., but even then the complexity is still

a small polynomial in N . For example, using a multinomial joint distribution, the time

complexity of calculating a term for the probability of the first moment is quartic in N

and for the probability of the second moment it is octic in N . This problem can be ad-

dressed by using the approximation techniques proposed in [6]. Using techniques such

as optimization, we can find tight lower and upper bounds for the terms in essentially

constant time.

Parallel computation: Note that each of the terms is self contained and not depen-

dent on the others. This fact can be used to compute these terms in parallel, eventually

merging them to produce the result. This will further reduce the time of computation.

With this we have not only proposed analytical expressions for the moments of

GE for the kNN classification model applied to categorical attributes, but have also

suggested efficient methods of computing them.
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Fig. 3 Behavior of the GE for different values of k with sample size N = 1000 and the
correlation between the attributes and class labels being 1 in (a), 0.5 in (b) and 0 in (c). Std()
denotes standard deviation.
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Fig. 4 Convergence of the GE for different values of k when the sample size (N) increases
from 1000 to 100000 and the correlation between the attributes and class labels is 1 in (a), 0.5
in (b) and 0 in (c). Std() denotes standard deviation. In (b) and (c), after about N = 1500
large, mid-range and small values of k give the same error depicted by the dashed line.

5 Experiments

In this section we portray the manner in which the characterizations can be used to

study the kNN algorithm in conjunction with the model selection measures (viz. cross-

validation). Generic relationships between the moments of GE and moments of CE

(cross-validation error) that are not algorithm specific are given in [6]. We use the

expressions provided in this paper and these relationships to conduct the experiments

described below. The main objective of the experiments we report, is to provide a flavor

of the utility of the expressions as a tool to study this learning method.

5.1 General Setup

We mainly conduct 4 studies. The first three studies are on synthetic data and the

fourth on 5 real datasets. In our first study, we observe the performance of the kNN

algorithm for different values of k. In the second study, we observe the convergence
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behavior of the algorithm with increasing sample size. In our third study, we observe

the relative performance of cross-validation in estimating the GE for different values

of k. In the three studies we vary the correlation (measured using Chi-square [4]) be-

tween the attributes and the class labels to see the effect it has on the performance

of the algorithm. In our fourth study, we choose 2 UCI datasets and 3 real industrial

datasets, and observe the estimates of cross-validation with the true error estimates.

We also explain how a multinomial distribution can be built over these datasets. The

same idea can be used to build a multinomial over any discrete dataset to represent it

precisely.

Setup for studies 1-3: We set the dimensionality of the space to be 8. The number

of classes is fixed to two, with each attribute taking two values. This gives rise to a

multnomial with 29 = 512 cells. If we fix the probability of observing a datapoint in cell

i to be pi such that
∑512

i=1 pi = 1 and the sample size to N , we then have a completely

specified multinomial distribution with parameters N and the set of cell probabilities

{p1, p2, ..., p512}. The distance metric we use is Hamming distance and the class prior

is 0.5.

Setup for study 4: In case of real data, we choose 2 UCI datasets whose attributes

are not limited to having binary splits. One of the proprietary industrial datasets is

a supply chain dataset, while the others are an automobile dataset and an invoice

amounts dataset.

The supply chain dataset is obtained from an actual manufacturer and contains

data at two levels namely; at the (finer) distribution center (DC) level and at the

(coarser) manufacturer level. Using the data for a particular DC we predict its inventory

position as low, sufficient or excess given past inventory positions and other attributes

such as age of the inventory and product type (viz. egg beaters, pasta etc.). The data

was collected daily for about a year and hence, the dataset size is 357.

The automobile dataset is obtained from a car manufacturer. This dataset has

(quantized) information about the amount of power that a car uses every one tenth

of a second, the battery current, the battery voltage, the throttle position, the brake

torque and the speed of the car at the corresponding instance. The dataset size is

28127. The goal is to predict the time instants when the (hybrid) car will run on gas

and the time instants when it will run on electricity.

The invoice amounts dataset is obtained from a large tech company. Corporations

have many of business units (BUs) viz. travel, marketing, auditing, information tech-

nology etc. with each BU consisting of various commodity counsils (CCs) viz. office

supplies, tech services, communication services, etc. Throughout a calendar year each

of the commodity counsils carry out multiple transactions and record the corresponding

invoices. It is extremely useful for these CCs and BUs at large, to estimate in advance

the invoice amounts that are likely to be registered in the near future. This dataset

has 8 BUs with each BU consisting of 150 CCs, leading to a total of 150 × 8 = 1200

attributes. The data was collected daily for a year and hence, the dataset has only

365 datapoints. Our target is the CC communication services under the BU informa-

tion technology which has one of the highest invoice amounts and hence, is critical to

business.

All the above datasets can be represented in the form of a contingency table where

each cell in the table contains the count of the number of copies of the corresponding

input belonging to a particular class. These counts in the individual cells divided by
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Fig. 5 Comparison between the GE and 10 fold Cross validation error (CE) estimate for
different values of k when the sample size (N) is 1000 and the correlation between the attributes
and class labels is 1 in (a), 0.5 in (b) and 0 in (c). Std() denotes standard deviation.

the dataset size provide us with empirical estimates for the individual cell probabilities

(pi’s). Thus, with the knowledge of N (dataset size) and the individual pi’s we have a

multinomial distribution whose representative sample is the particular dataset. Using

this distribution we observe the estimates of the true error (i.e. moments of GE) and

estimates given by cross-validation for different values of k. Notice that these estimates

are also applicable (with high probability) to other datasets that are similar to the

original.

A detailed explanation of these 4 studies is given below. The expressions in equa-

tions 9, 10 are used to produce the plots.

5.2 Study 1: Performance of the kNN algorithm for different values of k.

In the first study we observe the behavior of the GE of the kNN algorithm for different

values of k and for a sample size of 1000.

In Figure 3a the attributes and the class labels are totally correlated (i.e. correlation

= 1). We observe that for a large range of values of k (from small to large) the error

is zero. This is expected since any input lies only in a single class with the probability

of lying in the other class being zero.

In Figure 3b we reduce the correlation between the attributes and class labels from

being totally correlated to a correlation of 0.5. We observe that for low values of k the

error is high, it then plummets to about 0.14 and increases again for large values of k.

The high error for low values of k is because the variance of GE is large for these low

values. The reason for the variance being large is that the number of points used to

classify a given input is relatively small. As the value of k increases this effect reduces

upto a stage and then remains constant. This produces the middle portion of the graph

where the GE is the smallest. In the right portion of the graph i.e. at very high values

of k, almost the entire sample is used to classify any given input. This procedure is

effectively equivalent to classifying inputs based on class priors. In the general setup

we mentioned that we set the priors to 0.5, which results in the high errors.

In Figure 3c we reduce the correlation still further down to 0 i.e. the attributes

and the class labels are uncorrelated. In here we observe that the error is initially high,
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then reduces and remains unchanged. As before the initial upsurge is due to the fact

that the variance for low values of k is high, which later settles down.

From the three figures, Figure 3a, Figure 3b and Figure 3c we observe a gradual

increase in GE as the correlation reduces. The values of k that give low error for

the three values correlation and a sample size of 1000 can be deciphered from the

corresponding figures. In Figure 3a, we notice that small, mid-range and large values

of k are all acceptable. In Figure 3b we find that mid-range values (200 to 500) of k

are desirable. In the third figure, i.e. Figure 3c we discover that mid-range and large

values of k produce low error.

5.3 Study 2: Convergence of the kNN algorithm with increasing sample size.

In the second study we observe the convergence characteristics of the GE of the kNN

algorithm for different values of k, and with increasing sample size going from 1000 to

100000.

In Figure 4a the attributes and class labels are completely correlated. The error

remains zero for small, medium and large values of k irrespective of the sample size.

In this case any value of k is suitable.

In Figure 4b the correlation between the attributes and the class labels is 0.5. For

small sample sizes (less and close to 1000), large and small values of k result in high

error while moderate values of k have low error throughout. The initial high error for

low values of k is because the variance of the estimates is high. The reason for high

error at large values of k is because it is equivalent to classifying inputs based on priors

and the prior is 0.5. At moderate values of k both these effects are diminished and

hence the error produced by them is low. From the figure we see that after around

1500 the errors of the low and high k converge to the error of moderate k’s. Thus here

a k within the range 200 to 0.5N would be appropriate.

In Figure 4c the attributes and the class labels are uncorrelated. The initial high

error for low k’s is again because of the high variance. Since the attributes and class

labels are uncorrelated with a given prior, the error is 0.5 for moderate as well as high

values of k. Here large values of k don’t have higher error than the mid-range values

since the prior is 0.5. The low value of k converges to the errors of the comparatively

larger values at around a sample size of 1500.

Here too from the three figures, Figure 4a, Figure 4b and Figure 4c we observe

a gradual increase in GE as the correlation reduces. At sample sizes of greater than

about 1500, large, medium and small values of k all perform equally well.

5.4 Study 3: Relative performance of 10-fold cross validation on synthetic data.

In the third and final study on synthetic data we observe the performance of 10-fold

Cross validation in estimating the GE for different values of k and sample sizes of 1000

and 10000. The plots for the moments of cross validation error (CE) are produced using

the expressions we derived and the relationships between the moments of GE and the

moments of CE for deterministic classification algorithms given in [6].

In Figure 5a the correlation is 1 and the sample size is 1000. Cross validation exactly

estimates the GE which is zero irrespective of the value of k. When we increase the
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Fig. 6 Comparison between the GE and 10 fold Cross validation error (CE) estimate for dif-
ferent values of k when the sample size (N) is 10000 and the correlation between the attributes
and class labels is 1 in (a), 0.5 in (b) and 0 in (c). Std() denotes standard deviation.

sample size to 10000, as shown in Figure 6a Cross validation still does a pretty good

job in estimating the actual error (i.e. GE) of kNN.

In Figure 5b the correlation is set to 0.5 and the sample size is 1000. We observe

that cross validation initially, i.e. for low values of k underestimates the actual error,

performs well for moderate values of k and grossly overestimates the actual error for

large values of k. At low values of k the actual error is high because of the high variance,

which we have previously discussed. Hence, even-though the expected values of GE

and CE are close-by, the variances are far apart, since the variance of CE is low. This

leads to the optimistic estimate made by cross validation. At moderate values of k the

variance of GE is reduced and hence cross validation produces an accurate estimate.

When k takes large values most of the sample is used to classify an input, which is

equivalent to classification based on priors. The effect of this is more pronounced in

the case of CE than GE, since a higher percentage of the training sample ( 9
10th

N) is

used for classification of an input for a fixed k, than it is when computing GE. Due to

this, CE rises more steeply than GE. When we increase the sample size to 10000, as is

depicted in Figure 6b, the poor estimate at low values of k that we saw for a smaller

sample size of 1000 vanishes. The reason for this is that the variance of GE reduces

with the increase in sample size. Even for moderate values of k the performance of cross

validation improves though the difference in accuracy of estimation is not as vivid as

in the previous case. For large values of k though the error in estimation is somewhat

reduced it is still noticeable. It is advisable that in the scenario presented we should

use moderate values of k ranging from about 200 to 0.5N to achieve reasonable amount

of accuracy in the prediction made by cross-validation.

In Figure 5c the attributes are uncorrelated to the class labels and the sample size

is 1000. For low values of k the variance of GE is high while the variance of CE is low

and hence, the estimate of cross validation is off. For medium and large values of k,

cross validation estimates the GE accurately, which has the same reason mentioned

above. On increasing the sample size to 10000, shown in Figure 6c the variance of GE

for low values of k reduces and cross validation estimates the GE with high precision.

In general, the GE for any value of k will be estimated accurately by cross validation

in this case, but for lower sample sizes (below and around 1000) the estimates are

accurate for moderate and large values of k.



18

Fig. 7 Comparison between true error (TE) and CE on 2 UCI datasets and 3 industrial
datasets obtained from diverse domains.

5.5 Study 4: Relative performance of 10-fold cross validation on real datasets.

In our fourth and final study we observe the behavior of the true error (E[GE] +

Std(GE)) and the error estimated by cross-validation on 2 UCI datasets. On the Bal-

loon dataset and the Automobile dataset in figure 7 we observe that cross-validation

estimates the true error accurately for a k value of 2. Increasing the k to 5 the cross-

validation estimate becomes pessimistic. This is because of the increase in variance of

CE. We also observe that the true error is lower for k equal to 2. The reason for this

is the fact that the expected error is much lower for this case than that for k equal to

5, even-though the variance for k equal to 2 is comparatively higher.

For the Shuttle Landing Control dataset, Supply Chain dataset and Invoice Amounts

dataset in figure 7, cross-validation does a good job for both, the small value of k and

the larger value of k. The true error in this case is lower for the higher k since the

expectations for both the k’s is roughly the same but the variance for the smaller k

is larger. This is mainly due to the high covariance between the successive runs of

cross-validation.
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6 Discussion

From the previous section we see that the expressions for the moments assist in provid-

ing highly detailed explanations of the observed behavior. Mid-range values of k were

the best in studies 1 and 2 for small sample sizes. The reason for this is the fact that at

small values of k the prediction was based on individual cells and having a small sample

size the estimates were unstable, producing a large variance. For high values of k the

classification was essentially based on class priors and hence the expected error was

high, even-though the variance in this case was low. In the case of mid-range values of

k, the pitfalls of the extreme values of k were circumvented (since k was large enough

to reduce variance but small enough so as to prevent classification based on priors)

and hence the performance was superior. 10-fold cross-validation which is considered

to be the ”holy-grail” in error estimation, is not always ideal as we have seen in the ex-

periments. The most common reason why cross-validation under performed in certain

specific cases, was that its variance was high, which in turn was due to the covariance

between successive runs of cross-validation was high. The ability to make such subtle

observations and provide meticulous explanations for them, is the key strength of the

deployed methodology – developing and using the expressions.

Another important aspect is that, in the experiments, we built a single distribution

on each test dataset to observe the best value of k. Considering the fact that data can

be noisy we can build multiple distributions with small perturbations in parameters

(depending on the level of noise) and observe the performance of the algorithm for

different values of k using the expressions. Then we can choose a robust value of k for

which the estimates of the error are acceptable on most (or all) built distributions.

Notice that this value of k may not be the best choice, on the distribution built with-

out perturbations. We can thus use the expressions to make these type of informed

decisions.

As we can see, by building expressions for the moments of GE in the manner por-

trayed, classification models in conjunction with popular model selection measures can

be studied in detail. The expressions can act as a guiding tool in making the appropriate

choice of model and model selection measure in desired scenarios. For example, in the

experiments we observed that 10-fold cross-validation did not perform well in certain

cases. In these cases we can use the expressions to study cross-validation with different

number of folds and attempt to find the ideal number of folds for our specific situation.

Moreover, such characterizations can aid in finding answers or challenging the appro-

priateness of questions such as, What number of v in v-fold cross-validation gives the

best bias/variance trade-off?. The appropriateness of some queries has to be sometimes

challenged since it may very well be the case that no single value of v is truly optimal.

In fact depending on the situation, different values of v or may be even other model se-

lection measures (viz. hold out set etc.) may be optimal. Analyzing such situations and

finding the appropriate values of the parameters (i.e. v for cross-validation, f–fraction

of hold-out, for hold out set validation) can be accomplished using the methodology we

have deployed in the paper. Sometimes, it is intuitive to anticipate the behavior of a

learning algorithm in extreme cases, but the behavior at the non-extreme cases is not

as intuitive. Moreover, the precise point at which the behavior of an algorithm starts

to emulate the particular extreme case is a non-trivial task. The methodology can be

used to study such cases and potentially a wide range of other relevant questions. Es-

sentially, the studies 1 and 2 in the experimental section are examples of such studies.
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In those experiments, at extreme correlations the behavior is more or less predictable

but at intermediate correlations it is not.

What the studies in the experimental section and the discussion above suggest is

that the method in [6] and developments such as the ones introduced in this paper

open new avenues in studying learning methods, allowing them to be assessed for their

robustness, appropriateness for a specific task, with lucid elucidations being given for

their behavior. These studies do not replace but complement purely theoretical and

empirical studies usually carried out when evaluating learning methods.

7 Possible Extensions

We discussed the importance of the methodology in the previous section. Below, we

touch upon ways of extending the analysis provided in this paper. An interesting line

of future research would be to efficiently characterize the sample dependent distance

metrics. Another interesting line would be to extend the analysis to the continuous

kNN classification algorithm. A possible way of doing this would be to consider a set

of k points that would be kNN to a given input (recollect that to characterize the

moments, we only need to characterize the behavior of the algorithm on individual

inputs e.g. PZ(N)

[
ζ(x̄i)=Cj

]
) and consider the remaining N-k points to lie outside

the smallest ball encompassing the kNN. Under these conditions we would integrate

the density defined on the input/output space over all possible such N (i.e. k which

are kNN and the remaining N-k) with the appropriate condition for class majority (i.e.

to classify an input in Ci, we would have the condition that, at least bkv c + 1 points

that are kNN lie in class Ci). A rigorous analysis using ideas from this paper would

have to be performed and the complexity discussed for the continuous kNN. We plan

to address these issues in the future.

8 Conclusion

In this paper, we provided a general characterization for the moments of GE of the

kNN algorithm applied to categorical data. In particular, we developed an efficient

characterization for the moments when the distance metric was sample independent.

We discussed issues related to scalability in using the expressions and suggested opti-

mizations to speedup the computation. We later portrayed the usage of the expressions

and hence the methodology with the help of empirical studies. It remains to be seen

how extensible such an analysis is, to other learning algorithms. However, if such an

analysis is in fact possible, it can be deployed as a tool to better understanding the

statistical behavior of learning models in the non-asymptotic regime.
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