
Classifier Invariant Approach to Learn from
Positive-Unlabeled Data

Amit Dhurandhar
IBM Research

Yorktown Heights, U.S.A.
adhuran@us.ibm.com

Karthik S. Gurumoorthy
Amazon Development Center

Bangalore, India
gurumoor@amazon.com

Abstract—Learning from positive (P) and unlabeled (U) data
has a rich history as it finds use in multiple applications. In this
paper, we provide a novel framework to tackle this problem in a
model agnostic fashion. We say model agnostic since, our solution
involves identifying and weighting positive as well as negative
examples in an unsupervised manner which could then be passed
as input to any standard classification algorithm. Moreover, based
on our framework we provide approximation guarantees for our
algorithm in terms of how well the identified positive examples
from U along with their weights match the distribution of P .
Such a principled approach has been missing for other methods
that belong to the model agnostic category, not to mention that
the current state-of-the-art are model dependent strategies that
involve modifying the training algorithm. For Kernel Support
Vector Machines, trained on a (non-negative) weighted dataset
that as such is the output of our method, we derive generalization
bounds. Given the advantages of having model agnostic methods
(viz. use with (almost) any classifier, one time running cost),
we show that our algorithm which possesses these benefits, is
competitive with the best methods based on experiments on
three real datasets. In fact, in a couple of cases we observe that
our approach has better test performance than even standard
supervised learning which has access to all positive as well as
negative labels.

Index Terms—model agnostic, pu learning

I. INTRODUCTION

Learning effectively from positive (P) and unlabeled (U)
data, commonly referred to as PU learning, is important in
many applications such as outlier detection, text classification,
information retrieval and even matrix completion [1], [2], [3],
[4]. Many times, one type of labeled data is easier to gather
than having labelled data points from both the positive and
negative (N) classes as in the traditional supervised learning set
up, referred to as the PN learning in our context. For instance
in remote sensing applications [5], data samples collected
from urban areas are easier to categorize and label than those
collected from multiple rural areas. PU learning also from
the unsupervised setting, which is effectively U learning with
no labelled information and also from the partially labelled
semi-supervised approaches, which could be termed as PNU
learning.

The techniques developed to handle PU data can be broadly
classified into two kinds. The first [3], [6] tries to identify
negative (N) examples in U , following which any binary
classifier can applied to the new PN data. The second [1],
models the U data as weighted N data. A subclass of the second

strategy is the unbiased PU learning [7], [8] which are regarded
as the state-of-the-art methods. Although the first strategy has
been out of favor in recent years, mainly due to the presence
of heuristics which makes them less preferred compared to
the second strategy [7], it still has certain advantages over
the latter. For instance, the second strategy invariable involves
modifying the learning algorithm, while for the first any off-
the-shelf binary classification method could potentially be
used. While the techniques in the second category require
estimation/knowledge of the prior distribution of P or N data
in U , no such requirement exists for methods in the first
category.

Given these favorable aspects of approaches in the first
category, we would like to revive interest in this space by
proposing a novel method with strong theoretical grounding
for PU learning that belongs to this group of model agnostic
algorithms. Our framework involves the following two steps:

(i) Define a maximum mean discrepancy (MMD) objective
function [9] that can be used to select examples from
U that best match the distribution of the P data, thus
identifying candidate P (and consequently N) in U .

(ii) Learn non-negative weights for each selected example
indicative of its likelihood of being a representative
example of P . Non-negativity is desirable as it is counter-
intuitive to have an example selected as a representative
for the P class but have a (large) negative weight
associated with it.

A. Advantages of our framework

Our approach hence has the following advantages over
methods in the second category:

(i) Knowledge/estimation of class priors in U are not needed.
It is important to note here that our approach actually
creates a labeled dataset with weights from U and as
such is distinct and more informative than just a prior
estimation procedure [10].

(ii) A classification algorithm of one’s own choice can be
used to learn from the weighted labeled data created by
our method. The learned weights could either be used to
weight the loss of the classifier or create an expanded
training set where the number of copies of an example
is proportional to its weight.

(iii) Weights for examples that are known or identified to be
positive are classifier agnostic. As such, this makes sense
since labelling an example as positive should be indepen-
dent of the learning algorithm chosen subsequently for
classification.

(iv) Computation of weights is more efficient as it does not
depend on the learning algorithm and is a one time cost.
Moreover, as we will see, our algorithm only performs
gradient evaluations and not function evaluations which
is known to have significantly lower computational cost
[11].

(v) In addition to being formal, we provide constant factor
approximation guarantees for our method and thereby
drawing a clear distinction with prior work on methods
in this first category. We also derive a generalization
bound for kernel support vector machines trained using
the weighted labelled dataset output by our method.

(vi) Last but not the least, our method could be used in both
case-control and censoring settings [12] as we do not
make any assumptions on the distribution of U in relation
to the true data distribution.

We show that along with these advantages, our method
empirically achieves state-of-the-art performance on the Image
Segment dataset, while being competitive with the best on
MNIST and Letters datasets, thus possibly reviving interest in
the first category methods.

II. PROBLEM DEFINITION

Let X × Y denote the input-output space, where for any
positive integer d, X ∈ Rd and Y ∈ {+1,−1}. Given an
underlying joint distribution p(x, y) on this space, let p+(x) =
p(x|y = +1).

In the case-control PU learning setting we have two
datasets: the first dataset denoted by P contains n+ inde-
pendent and identically distributed (i.i.d.) samples such that
P = {x+

1 , ..., x
+
n+
} ∼ p+(x) and a second dataset denoted by

U which contains nu i.i.d. samples where U = {xu1 , ..., xunu
} ∼

p(x). Thus, the first dataset has only samples from the positive
class, while the second dataset has a mixture of the two classes
with no information about which examples belong to which
particular class. The censoring PU setting is similar except
that the U dataset may not be a representative sample from
p(x) and hence may contain significantly different proportion
of positive and negative examples compared to a representative
set. Given these datasets P and U , our goal is to learn a binary
classifier h : X → Y that has low expected error, in other
words generalizes well.

III. METHODOLOGY

We now provide our solution to tackle the PU learning
problem from a model agnostic standpoint, in the sense that
we identify potentially positive and negative examples and also
associate non-negative weights with each of them that can
then be passed to any binary classification algorithm of one’s
choice. The identified examples and the associated weights
are thus fixed irrespective of the classification algorithm used.

We first define our framework followed by a description of
our algorithm. We then prove constant factor bounds for the
quality of our selection as well as providing a generalization
bound.

A. Framework

Let P,U ∈ X be two datasets and K be the Reproducing
Kernel Hilbert Space (RKHS) corresponding to a kernel k :
X ×X → R. Considering the function φx(y) = k(x, y) ∈ K,
the kernel inner product between two data points xi and xj is
then defined as k(xi, xj) = 〈φxi

, φxj
〉.

The maximum mean discrepancy (MMD) is a measure of
difference between two distributions p and q. Letting µp =
Ex∼p[φx], MMD is defined as:

MMD(K, p, q)
≡ sup
ψ∈K

(Ex∼p[ψ(x)]− Ey∼q[ψ(y)]) = sup
ψ∈K
〈ψ, µp − µq〉.

Our goal is to approximate µp by a weighted combination
of np sub-samples Z ⊆ U drawn from the distribution q, i.e.,
µp(x) ≈

∑
j:zj∈Z

wjk(zj , x), where wj is the associated weight

of the sample zj ∈ U . Conceptually, this equals selecting
the correct positive examples from U and estimating their
importance in matching the distribution of positives in P . We
thus need to choose a set Z ⊆ U of cardinality (|.|) np and
learn the weights wj that minimizes the finite sample MMD
metric with the non-negativity constraint on the weights, as
given below [9]:

M̂MD(K, P, Z,w)

=
1

(n+)2

∑
xi,xj∈P

k(xi, xj)−
2

n+

∑
zj∈Z

wj
∑
xi∈P

k(xi, zj)

+
∑

zi,zj∈Z
wiwjk(zi, zj); subject to wj ≥ 0,∀zj ∈ Z

(1)

where n+ = |P |. Index the elements in U from 1 to nu = |U |
and for any Z ⊆ U let LZ ⊆ [nu] = {1, 2, . . . , nu} be the set
containing its indices. Discarding the constant terms in (1) that
do not depend on Z and w, we define the function

l (w) ≡ wTµp −
1

2
wTKw =

1

2

[
‖y‖22 − ‖Aw − y‖22

]
(2)

where Ki,j = k(yi, yj) and µp,j = 1
n+

∑
xi∈P

k(xi, yj);∀yj ∈

U . The last inequality is obtained by expressing K = ATA
as it is symmetric and positive-definite, and letting µp = AT y.
Our goal then is to find a index set LZ with |LZ | ≤ np and
a corresponding w such that the set function f : 2[nu] → R+

defined as:

f (LZ) ≡ max
w:supp(w)∈LZ ,w≥0

l (w) (3)

attains maximum. Here supp(w) = {j : wj > 0}. We will
denote the maximizing weight values for the set LZ by ζ(LZ)

and m-size set at which f(.) attains maximum as L∗.
Accurately specifying np is equivalent to knowing the pro-

portion of positives in U which is usually not known. Contrary

Algorithm 1 Model Agnostic PU Learn (MAPUL)
Input: P , U and lower bound ε on increase in l(.)

Let Lu+ = ∅, ζ(Lu+) = 0, L+ = [n+] {L+ contains the
indices of examples in P .}
g = ∇l(0) = µp
Let ζ(L+) = argmax

w:supp(w)∈L+,w≥0

M̂MD(K, P, P, w)

{Compute weights for all examples in P .}
while exit condition is not met {i.e. increase in successive
f(.) ≥ ε } do
v = argmax

j∈[nu]\Lu+

gj

Lu+ = Lu+ ∪ {v}
ζ(Lu+) = argmax

w:supp(w)∈Lu+,w≥0

l(w) {Find positive

examples and their weight from U .}
g = ∇l

(
ζ(Lu+)

)
= µp −Kζ(Lu+)

end while
Let wmed = median{w|w ∈ ζ(Lu+) ∪ ζ(L+)} {Weight for
potentially negative examples.}
return Lu+, ζ(Lu+), ζ(L+) and wmed

to requiring np, we overcome this issue by selecting examples
along with computing their weights until the increment in
the set function f(.) in eq.(3) is less than some pre-specified
ε. This approach is cogent as f(.) being monotonically non-
decreasing over containment on the support of w and bounded
above by 0.5‖y‖22, converges over iterations by the Monotone
Convergence theorem. Hence the non-negative increments in
the function value will approach zero. We thus specify a small
ε which leads us to choosing m examples indexed as in Lu+

from U . As, (i) we do not try to determine the true prior
of positives in U but rather match the P distribution, and
(ii) our technique described in Algorithm 1 incrementally and
selectively adds examples to Lu+, the set size m will most
likely lower bound np and the selected examples will primarily
be positive even for very small ε = 10−11 as witnessed in our
experiments.

B. Algorithmic Description

Algorithm 1 is our model agnostic PU learning method
abbreviated as MAPUL. As the first step, we compute non-
negative weights for each example in P indicative of their
importance. There is no selection at this point, rather just
computation of weights. The next part is the crux of our
algorithm. Here we select examples from U that best match
the distribution of examples in P . We keep selecting examples
and determine their weights till the increase in the set function
f(.) is less than a pre-specified ε. We finally get m examples
from U (most likely positive) with corresponding non-negative
weights.

We label the remaining examples in U as negative and assign
a weight of wmed (i.e. median of all learned weights) to all
of them. We consider the median weight, as it is possible
that some of the remaining examples in U might still belong

to P and we do not want to force the classifier to classify
them as negative by assigning the maximum or very high
weight. Since our method looks at incremental gain, it is quite
selective in choosing examples that match P and the redundant
examples have low likelihood of being selected. This also
makes the algorithm efficient as observed in the experiments.
The estimated weights can subsequently be used to weigh the
loss of each example during training, and implementations of
most popular classifiers [13], [14] can accommodate this when
a weighted dataset is passed as input to them.

C. Theoretical Guarantees

In this section we prove constant factor bounds for our
algorithm (Theorem III.3) in terms of optimizing the objective
in equation 3, where we select potential positive examples
from U and learn non-negative weights indicative of their
importance in representing P . To accomplish this, we first
need to define the concept of restricted strongly concave (RSC)
and restricted smooth (RSM) functions which is done next. For
better readability, we relegate all the proofs to the Appendix.

Definition 1 (RSC and RSM [15]): For any spatial dimen-
sion d, a function l : Rd+ → R is said to be restricted
strong concave with parameter cΩ and restricted smooth with
parameter CΩ if ∀x, y ∈ Ω ⊂ Rd+;

−cΩ
2
‖y−x‖22 ≥ l(y)−l(x)−〈∇l(x), y−x〉 ≥ −CΩ

2
‖y−x‖22.

From the definition we observe that for any l(.) in the RSC-
RSM class of functions, its curvature in certain directions
specified by the set Ω is both lower and upper bounded by
placing appropriate bounds on the Bregman distance l(y) −
l(x)−〈∇l(x), y−x〉. For twice differentiable functions, RSC-
RSM properties amounts to specifying lower and upper bounds
on the eigenvalues of the Hessian ∇2l(x), holding uniformly
in the subspace Ω.

Let the RSC and RSM parameters on the domain Ωm =
{x : ‖x‖0 ≤ m;x ≥ 0} of all m-sparse non-negative vectors
be cm and Cm respectively. Rd+ denotes the d dimensional
non-negative orthant, which is of particular interest to us since
we have a non-negativity constraint on the learned weights.
Also, let Ω̃ = {(x, y) : ‖x− y‖0 ≤ 1} with the corresponding
smoothness parameter C̃1.

With the above definition in place, we first establish that our
MMD objective function in eq.(2) belongs to the RSC-RSM
class of functions.

Lemma III.1 (l(.) is RSC and RSM). Given a symmetric
positive definite kernel matrix K, the function l(w) in (2) has
a positive RSC and finite RSM parameters.

We now state the following lemma which upper bounds the
increment in function value from the current set L ⊂ U of
elements selected as matching the P class distribution, when
|S| more elements are added to it to obtain the larger set L∩S.
This lemma is useful in proving our principal result stated
below.

Lemma III.2. Let ck be the RSC constant for any two k sparse
vectors x and y ∈ Rd+ . Then for any two sets L and S with
L ∩ S = ∅ and |L|+ |S| = k we have

l
(
ζ(L∪S)

)
− l
(
ζ(L)

)
≤ 1

2ck

∥∥∥∇l+S (ζ(L)
)∥∥∥2

.

We now state our main theoretical result which avers that
the subset Lu+ of elements from U chosen by MAPUL as
belonging to P , is close to the optimal set selection L∗, where
the closeness is determined by the RSC-RSM constants of the
objective function l(.).

Theorem III.3. If Lu+ be the m1 ≤ m sparse set selected
by our Algorithm 1 and L∗ is the optimal m sparse set
maximizing (3), then

f (Lu+) ≥ f (L∗)
[
1− e−

c2m
C̃1

]
, (4)

where c2m and C̃1 are the RSC and RSM parameters.

Given that our selected positive set along with the learned
weights are close to the optimal, we now prove a generalization
bound for kernel SVMs that one might train on this now labelled
dataset. Note that a critical part of the algorithm is the learned
non-negative weights for the positive set as well as a non-
negative weight determined for the negative examples. Such
weights are typically used to weight the corresponding per
sample loss of the classifier to be trained. Thus, our bound
has to apply to kernel SVMs trained using a weighted loss
function.
Generalization Bound: Let wx be a non-negative weight
associated with an example (x, y) based on our method. Let
h : X → Y denote a classification function. Then the margin
can be given by g(x) = yh(x). Consider a weighted version of
the truncated hinge loss with margin ρ > 0 that kernel SVMs
typically optimize:

L(x) = 0, if g(x) ≥ ρ
= wx, if g(x) < 0

= wx

(
1− 1

ρ
g(x)

)
, otherwise

We want to bound the expectation of this loss. We do this by
deriving a Rademacher bound [16], which involves bounding
the sample dependent Rademacher complexity term given

by R̂n(L) = 2
nEσ

[
sup
g∈G

∑n
i=1 σiL(xi)

]
, where {x1, ..., xn}

denote the training inputs, {σ1, ..., σn} are {+1,−1} random
Rademacher variables and G is the function class of the margin.

Lemma III.4. If wi denotes the weight for a training example
xi and $ = max

i
wi, then R̂n(L) ≤ 2$

ρ R̂n(G)

Lemma III.5. If H denotes a set of linear hypothesis in RKHS
such that ∀h ∈ H we have h : x → β · φ(x), where β and
φ(.) are the parameter vector and kernel mapping function
respectively with ||β|| ≤ Ω, kernel function k(xi, xj) = φ(xi) ·
φ(xj) and K = diag(k(x1, x1), ..., k(xn, xn)), then we have:

R̂n(G) ≤ 2$Ω

n

√
trace(K)

Pursuant to Lemmas III.4 and III.5, we have the following
theorem.

Theorem III.6. The sample dependent Rademacher complexity
R̂n(L) for kernel SVMs can be upper bounded as follows:

R̂n(L) ≤ 4$2Ω

nρ

√
trace(K)

Note that the weights can be normalized and passed to a
classification algorithm for training in algorithm 1 leading to
the same relative importance of the examples and hence the
same classifier, in which case $ ≤ 1 leading to the following
corollary.

Corollary III.7. If the weights wi for training examples xi
are normalized across all training examples and returned by
algorithm 1, then the sample dependent Rademacher complexity
R̂n(L) for kernel SVMs can be upper bounded as follows:

R̂n(L) ≤ 4Ω

nρ

√
trace(K)

One could also possibly bound the error extending ideas
from [17], where the authors bound the individual treatment
error w.r.t. integral probability metrics as measured between
treatment and control groups.

IV. EXPERIMENTS

We conducted experiments on three public datasets Image
segmentation [18], MNIST [19] and Letters [20]. The details
of the datasets are in the first 4 columns of Table I. Only
MNIST is an image dataset and the others are tabular.

A. Setup

We performed three kinds of studies. First, taking the whole
datasets into account and roughly assigning half of the examples
to each class. Second, we skewed the class priors where the
positive class was much smaller than the negative class. Third,
we took only certain pairs of classes and saw how the different
methods performed. This is similar to previous studies [21], [7],
[8]. A Support Vector Machine with radial basis function (SVM-
RBF) kernel was the classifier in most of the experiments,
which has been the method of choice in recent studies [21]
as well as relevant to our generalization result. In Table V
and Figure 4, we see results using a 3-layered fully connected
neural network (100 × 50 × 50) with ReLU activations and
softmax. The estimated weights for each example were used
in a standard way to weight the loss of that example and then
learn a classifier. This can be done by passing these weights
along with the dataset to well established implementations
(viz. LIBSVM, weighted cross-entropy loss in tensorflow).
In all studies, statistically significant results based on a 95%
confidence interval are reported.

For the first kind of study, we randomly split the datasets
into 75% U , 20% testing and 5% from which the P set is
created as described below. Then for Image segment which
has 7 classes namely; grass, path, window, cement, foliage,
sky and brickface numbered to 1 to 7 for ease of reference,
we assigned the first 3 classes as negative and the last 4 as

Dataset Features Size Classes Fully labeled MAPUL uPU (R) uPU (H) bSVM nnPU wPU
Image Seg. 19 2310 7 24.67 32.68 33.94 34.84 39.82 38.92 38.73

MNIST 784 70K 10 10.02 13.51 13.03 13.11 15.01 13.93 13.98
Letters 16 20K 26 26.01 29.22 28.28 29.17 29.20 29.74 29.31

TABLE I
ABOVE WE SEE THE PERCENTAGE misclassification rate FOR THE DIFFERENT METHODS. A SVM-RBF USED IN RECENT STUDIES WAS THE BASE CLASSIFIER.

FULLY LABELED IS THE STANDARD SUPERVISED SETUP, WHERE ALL TRAINING EXAMPLES ARE LABELED. BEST (STATISTICALLY SIGNIFICANT) PU
METHOD RESULTS ARE IN BOLD FOR ALL TABLES.

Fig. 1. Above we see the training time for the different methods using a SVM-RBF classifier on the three datasets. Note that for MAPUL (most of the)
training time is a one time cost since we are learning algorithm agnostic, which is not the case with the other methods.

Dataset # of Classes Class Fully MAPUL uPU (R) uPU (H) bSVM nnPU wPU
Classes in P Prior labeled

Image Segment 7 6, 7 0.14 1.73 2.35 2.63 2.78 2.38 2.86 2.49
MNIST 10 0, 2 0.1 3.62 4.57 4.13 4.91 4.53 4.97 4.56
Letters 26 A, B 0.04 0.88 1.03 1.18 1.26 1.28 1.23 1.25

TABLE II
ABOVE WE SEE THE misclassification rates WHEN THE CLASS PRIORS ARE SKEWED, WHERE (THE INDICATED) TWO CLASSES FORM THE POSITIVE CLASS

WHILE THE REMAINING CLASSES FORM THE NEGATIVE CLASS.

Method Class 2 vs 1 Class 3 vs 1 Class 4 vs 1 Class 5 vs 1 Class 6 vs 1 Class 7 vs 1
Fully labeled 0.57 2.58 2.47 2.94 0.01 0.43

MAPUL 1.72 6.45 1.65? 0.98? 0.01 1.29
uPU (R) 1.73 5.16 1.76? 1.23? 1.69 1.31
uPU (H) 1.74 6.44 1.81? 1.29? 1.74 1.33
bSVM 1.72 5.16 2.47 2.94 1.59 1.29
nnPU 1.73 5.43 1.84? 1.86? 1.72 1.32
wPU 1.72 5.16 2.47 2.94 1.08 1.29

TABLE III
ABOVE WE SEE THE PERCENTAGE misclassification rate ON IMAGE SEGMENT DATASET, WHERE ONLY TWO CLASSES ARE CONSIDERED AT A TIME WITH

CLASS 1 BEING THE NEGATIVE CLASS. ? INDICATES RESULTS BETTER THAN FULLY LABELED CASE.

Method 0 vs 1 0 vs 2 0 vs 3 0 vs 4 0 vs 5 0 vs 6 0 vs 7 0 vs 8 0 vs 9
Fully labeled 0.06 1.08 0.67 0.40 0.79 0.98 0.28 0.83 0.47

MAPUL 1.53 2.17 2.42 1.99 3.02 3.12 1.66 2.49 2.61
uPU (R) 1.29 1.91 2.45 1.96 3.01 2.94 1.56 2.27 2.39
uPU (H) 1.25 1.92 2.48 1.97 3.05 2.99 1.61 2.36 2.39
bSVM 1.40 2.31 2.56 1.99 3.28 2.90 1.80 2.74 1.73
nnPU 1.38 2.02 2.57 1.99 3.16 2.98 1.68 2.55 2.43
wPU 1.39 2.28 2.47 1.98 3.21 2.90 1.68 2.61 1.73

TABLE IV
ABOVE WE SEE THE PERCENTAGE misclassification rate ON MNIST DATASET, WHERE ONLY TWO CLASSES ARE CONSIDERED AT A TIME WITH CLASS 0

BEING THE POSITIVE CLASS.

Fig. 2. Above we see the percentage misclassification rate for the Letters dataset, where only two classes are considered at a time with the letter A being the
positive class.

Fig. 3. Above we see the percentage of instances that MAPUL selected from
U that actually belonged to the positive class. We see overall results (study
1) for the different datasets as well as (averaged) results involving the study
where we considered only pairs of a classes indicated by the (p) suffix. We
see above that we mostly pick the correct instances for all the datasets, with
the best results for Image Segment. These results seem to correlate with our
classification performance relative to the other methods on the three datasets
in the respective studies.

positive. For MNIST, we assigned all the even digits to be
the positive class, while the odd digits were the negative class.
For Letters, we assigned the first 13 letters (i.e. A to M) to be
the positive class and the remaining to be the negative class.
The P datasets were created by selecting examples from the
positive class in the 5% split. Results were averaged over 10
random splits.

For the second kind of study, we formed the P sets in
analogous manner as above. Two classes from the original
datasets were randomly selected to form the positive class,
while the examples in the remaining classes formed the negative
class. This creates unbalanced datasets (π = 0.14, 0.1, 0.04)
with small P sets as seen in Table II.

For the third kind of study, we arbitrarily picked one class to
be positive and chose each of the other classes individually to
indicate negative examples. We again formed the same fraction

splits as above and the same procedure to form the P sets.
This was repeated 10 times. The results of this study on Image
Segment and MNIST are in Tables III and IV. The results for
the same study on the Letters dataset is in Figure 2. We plotted
these results since a table would contain 175 values (25 (other
letters) x 7 (methods)) which would be difficult for the reader
to parse.

We compared our method MAPUL with other state-of-the-art
methods namely; non-negative risk estimator based PU learning
(nnPU) [8], unbiased PU learning with ramp loss (uPU (R)),
unbiased PU learning with hinge loss (uPU (H)), weighted PU
learning (wPU) [1] and biased support vector machine (bSVM).
We also report results for the fully labeled case, which is the
standard supervised learning setup that has access to all the
labels, so that we have a measure of how far off from the best
results we are likely to achieve.

For MAPUL, we used a Gaussian radial basis kernel to
compute l(.) whose width was set to a standard value of
median of distances [9]. The threshold ε to detect convergence
was set to 10−11. Note that as our algorithm is quite selective,
and hence ε can be set to a small value without worrying that
the algorithm might choose the entire U as positives. This
is another benefit of our algorithm where we obtain good
quality results without needing to fine tune these parameters
using a validation set. For the competing methods that need
priors, we favor them by specifying the true data priors. All
other parameters for the different methods were found by cross
validation.

Our misclassification rate metric is exactly same as the
one that is traditionally used and equals the average zero-one
loss over the test set (× 100), i.e., if λ(., .) is a zero-one
loss function and ζ(.) is a classifier, misclassification rate for
the classifier over a dataset D = {(x1, y1), ..., (xn, yn)} is
100
n

∑n
i=1 λ(ζ(xi), yi).

Dataset Features Size Classes Fully labelled MAPUL uPU (R) uPU (H) nnPU wPU
Image Seg. 19 2310 7 21.43 28.34 30.83 30.92 37.92 37.87

MNIST 784 70K 10 1.32 3.16 3.15 3.97 3.99 3.98
Letters 16 20K 26 21.72 23.52 22.82 23.57 24.02 23.51

TABLE V
ABOVE, WE SEE THE PERCENTAGE misclassification rate FOR THE DIFFERENT METHODS. A 3-LAYER FULLY CONNECTED NEURAL NETWORK WAS THE BASE
CLASSIFIER. FULLY LABELED IS THE STANDARD SUPERVISED SETUP, WHERE ALL TRAINING EXAMPLES ARE LABELED. BIASED SVM IS NOT APPLICABLE

HERE AS THESE RESULTS USE A NEURAL NETWORK CLASSIFIER.

Fig. 4. Above we see the training time for the different methods using a neural network classifier on the three datasets. Note that for MAPUL (most of the)
training time is a one time cost since we are learning algorithm agnostic, which is not the case with the other methods.

Fig. 5. Above we see the training time for the different methods on the three datasets that is a sum total of first training a SVM-RBF classifier and then the
neural network classifier. The important thing to note here is the advantage of MAPUL where the time is more or less similar to training just one classifier
since, the identified (and weighted) positive and negative sets have to be computed just once and can be used to train both the SVM-RBF as well as the neural
network. This is not the case for the other methods.

B. Observations

We see in Table I that our method is the best on Image
Segment while less than a percent worse than the best on
the other datasets. We also see in Figure 1 that our method
is quite efficient, not to mention that for a particular dataset,
the identification of potential positive examples from U and
learning weights for all the examples is a one time cost.

In Table II, we see that our method performs well even
when the datasets are skewed and the size of the P set is small.
Here our method performs the best on Image Segment and

Letters, while being competitive with the other methods on
MNIST. These two studies are a testament to the robustness
and efficiency of our approach.

In Tables III and IV and Figure 2, we show the results for
the pairwise studies where only two classes were considered.
We observe on Image Segment that we have state-of-the-art
performance in five of the six cases. In fact, in two cases
(columns 4 and 5) we are better than even fully labeled
supervised learning. We conjecture that our learned weights
in these cases must be informative, where assigning uniform

weight to all examples of P forces the classifier to fit outliers
or hard examples that adversely affects its generalizability. This
intuition is also consistent when we observe the performance
of the other methods, where the uPU methods are closer in
performance to us, while biased SVM and wPU is no better
than the fully labeled case.

On MNIST in Table IV, uPU(R) does quite well with state-
of-the-art performance in six of the nine cases. However, here
too MAPUL is competitive, with state-of-the-art performance
in two cases and within 0.3% of the best in all the other cases.
On Letters in Figure 2, we also observe similar qualitative
results, where we have state-of-the-art performance in 9 cases
(E, K, M, Q, R, S, U, V and Z), while we are competitive
with the best (within a couple of percent) in all others.

We also computed the percentage of positive examples picked
by MAPUL from U . The percentages are upward of 90%
(98.12% for Image Segment, 96.89% for MNIST and 91.13%
for Letters), which shows that we mostly pick the correct
examples. These numbers also correlate with the observed
performance. A plot indicating the percentage of positive
examples picked by MAPUL from U that are actually positive
for the overall and pairwise studies are shown in Figure 3.
We observe that we mostly pick the correct examples and
our classification performance relative to the other methods
reported here seems to correlate with the percentage we pick
correctly in the respective studies.

In Table V, we observe that even with a neural network
classifier the results are qualitatively similar to those with
SVM-RBF. Given the main benefits of our method namely,
being model agnostic and not requiring priors or distributional
assumptions as outlined before, these results where we have
comparable (or better) performance to the state-of-the-art
strongly motivates MAPUL. Moreover, in Figure 5 we see the
computational advantage of MAPUL where the now labelled
and weighted dataset using MAPUL can be used to train both
the SVM-RBF as well as the neural network classifier. Other
methods require relearning the weights (and labels) for each
classifier.

V. TIME COMPLEXITY

As seen in the experiments, our method is highly competitive
w.r.t. computational time, given that it is a one time cost
independent of the particular classifier to identify the positive
examples and the example weights, which is not the case for
any of the other methods. This is apparent from Figure 5. The
point is once the positives are selected and weights determined
by our method, it can be used by many classifiers directly.
This is the primary reason for MAPUL’s low computational
time complexity. Thus, in general more the classifiers that are
trained more significant the difference in training times will
be.

If n+ = |P |, nu = |U | and m the number of examples
identified by MAPUL as positive from U, then the time
complexity is O(n+nu + num

2 + m4), where m << nu
as our method is highly selective in choosing examples that
match the P class even for small ε, making the learned weights

critical for performance. The reported times include training
of the classifier and as mentioned before in our case finding
the positives and learning the weights is a one time cost.

VI. RELATED WORK AND DISCUSSION

PU learning can be dated back to the late 90s [22], [23],
[24] where it was mostly of theoretical interest. However,
since then it has been heavily studied as it finds use in
multiple applications ranging from remote sensing [5], to
novelty detection [4], to even matrix completion [2]. It has also
applications in text categorization and information retrieval [3].
Recently, a multiclass extension of PU learning was introduced
[21] for applications in predicting multiple classes rather than
just positive or negative. There are mainly two settings, case-
control and censoring PU setting [12]. In the first, U is assumed
to be sampled from p(x), which may not be the case for
the latter. Although we have applied our method to the first
setting, it can be readily applied to the latter. This is an
additional advantage of MAPUL as the other methods are
typically designed either for one or the other.

An early effective solution for this problem was to model
it as a cost sensitive SVM classification problem [6], where
the examples in P are weighted high, while the examples
in U are considered to belong to the negative class and are
weighted lower. The lower weight acknowledges the existence
of positive examples in U allowing the classifier to classify
examples in U that are most definitely positive as positive
without too much penalty. One of the paradigm shifts in the
proposed approaches was [1], which showed that under a
random selection assumption, the probability of classifying an
example into the positive class is just a constant scaling of the
probability of classifying it as part of U as opposed to P . This
led to an approach which considered examples in U as both
positive and negative but with different weights. The weights
were functions of the classification algorithm and would be
tuned using a validation set. One of the unrealistic assumptions
of this work was that the weights for the examples in P were
assumed to be all one, which may not be the case. This has led
to the recent state-of-the-art unbiased PU learning [7] which
learns weights for all examples and can be shown to be an
unbiased estimator of the risk. For rich hypothesis classes, an
improvement based on a non-negative risk estimator has been
proposed [8]. However, in all these methods the underlying
algorithm is dependent on how they weight the samples. This
can be computationally expensive as the weights have to be
tuned using a validation set. Moreover, they require knowledge
or estimation of the prior distribution of examples in U , which
may or may not be easy to obtain.

Our work moves away from these limitations as we do not
require knowledge of the prior distribution, nor are our weights
and identified positive examples classifier dependent. Thus,
computing weights and identifying examples is a one time cost.
In addition, they can be passed as input to any classification
algorithm that can train on weighted inputs. On the theoretical
side, we prove approximation guarantees in terms of how well
the identified examples in U match the target P set. Since our

objective is RSC and RSM, it would be weakly submodular and
hence a greedy algorithm that performs function evaluations
should provide a constant factor guarantee [25]. However, our
method involves only gradient evaluations and not function
evaluations which makes it highly efficient [11]. Moreover, we
prove a constant factor bound even with the non-negativity
constraint that would be the same as the standard greedy [25],
thus not loosing out even in performance, which may be a
result of independent interest. We also empirically see the
benefit of our method where it is competitive with the best
even though it is model agnostic.

In the future, it would be interesting to extend our method-
ology to multi-PU learning. We could fit U independently to
each class in P and obtain candidates along with their weights.
Here however, we would need a way to handle examples that
were identified to belong to two or more classes, i.e., examples
that overlap and somehow resolve them in a reasonable fashion.
It would be nice in this case too, to have some theoretically
strong arguments to justify our decisions.

APPENDIX

A. Proof of Lemma III.1

For the concave function l(w) = − 1
2w

TKw + wTµp, we
calculate l(w1) − l(w2) − ∇〈l(w2), w1 − w2〉 = −0.5(w1 −
w2)TK(w1 − w2). If w1 and w2 are k1 and k2 sparse
vectors respectively, then ∆w = w1 − w2 has a maximum
of k ≤ k1 + k2 non-zero entries. For the constants c and
C satisfying −c‖∆w‖2 ≥ −∆wTK∆w ≥ −C‖∆w‖2 we
obtain the bounds: c ≥ k-sparse smallest eigen value of K and
C ≤ k-sparse largest eigen value of K. In particular, when
supp(w2) ⊂ supp(w1), ‖∆w‖0 ≤ k1 providing tighter bounds
for c and C.

B. Proof of Lemma III.2

By the definition of RSC constant ck we find

l
(
ζ(L∪S)

)
− l
(
ζ(L)

)
≤
〈
∇l
(
ζ(L)

)
, ζ(L∪S) − ζ(L)

〉
− ck

2

∥∥∥ζ(L∪S) − ζ(L)
∥∥∥2

≤ max
v:v(L∪S)c=0,v>=0

〈
∇l
(
ζ(L)

)
,v − ζ(L)

〉
− ck

2

∥∥∥v − ζ(L)
∥∥∥2

.

(5)

Observe that the KKT conditions at the optimum ζ(L) for the
function f(L) necessitates that ∀j ∈ L,

ζ
(L)
j > 0 =⇒ ∇lj

(
ζ(L)

)
= 0 and

ζ
(L)
j = 0 =⇒ ∇lj

(
ζ(L)

)
≤ 0

and hence we have vj = ζ
(L)
j . When j ∈ S, ζ(L)

j = 0, and

maximizing w.r.t. vj , the maximum occurs at vj =
∇l+j (ζ(L))

ck

where ∇l+j
(
ζ(L)

)
= max

(
∇lj

(
ζ(L)

)
, 0
)

. Plugging this
maximum value of v in (5) we get our result.

C. Proof of Theorem III.3

Let L = Li be the set of examples chosen by our algorithm
1 from U up to the iteration i such that the final set after exiting
the while loop in m iterations is Lu+ = Lm. Define the residual
set LR = L∗ \L and let D(i+ 1) = f(L∪{v})−f(L) where
v is the index that would be selected in the next step. Defining
y({v}) = ζ(L) + α1({v}) for some α ≥ 0 and recalling that
ζ(L∪{v}) is the maximizing point for f(L ∪ {v}) we get

D(i+ 1) ≥ l
(
y({v})

)
− l
(
ζ(L)

)
≥
〈
∇l
(
ζ(L)

)
, α1({v})

〉
− C̃1

2
α2.

Setting α =
∇l+v (ζ(L))

C̃1
we have

D(i+ 1) ≥ 1

2C̃1

[
∇l+v

(
ζ(L)

)]2
≥ 1

2mC̃1

∑
j∈LR

[
∇l+j

(
ζ(L)

)]2
where the last inequality follows from recalling that our
algorithm chooses the coordinate v that maximizes the gradient
value ∇l

(
ζ(L)

)
and |LR| ≤ m. Letting k = |L| + |LR|,

B(i) = f (L∗)− f(L) and setting S = LR in (4) we find

mD(i+ 1) ≥ ck

C̃1

[f(L ∪ LR)− f(L)] ≥ c2m

C̃1

B(i)

where use the inequalities that ck ≥ c2m as k ≤ 2m and
L∗ ⊆ L ∪ LR. Setting κ = c2m

C̃1m
and noting that D(i+ 1) =

B(i)−B(i+1) we get the recurrence relation B(i+1) ≤ (1−
κ)B(i) which when iterated i times starting from step 0 gives
B(i) ≤ (1− κ)iB(0). Plugging in B(m) = f (L∗)− f (Lu+)
and B(0) = f (L∗) gives us the required inequality

f (Lu+) ≥ f (L∗) [1− (1− κ)m] ≥ f (L∗)
[
1− e−

c2m
C̃1

]
.

D. Proof of Lemma III.4

This follows from our observation that the loss function L
is $

ρ -Lipschitz. Hence, by applying Talagrands lemma [26] we
get the result.

E. Proof of Lemma III.5

The derivation uses Cauchy-Schwartz inequality, Jensen’s
inequality and noticing that expectation of σiσj is zero for

i 6= j.

R̂n(G) =
2

n
Eσ

[
sup
||β||≤Ω

n∑
i=1

σiwiβ · φ(xi)

]

=
2

n
Eσ

[
sup
||β||≤Ω

β ·
n∑
i=1

σiwiφ(xi)

]

≤ 2Ω

n
Eσ

[
||

n∑
i=1

σiwiφ(xi)||

]

≤ 2Ω

n

Eσ
 n∑
i,j=1

σiσjwiwjk(xi, xj)

 1
2

=
2Ω

n

(
n∑
i=1

w2
i k(xi, xi)

) 1
2

≤ 2$Ω

n

√
trace(K)

REFERENCES

[1] C. Elkan and K. Noto, “Learning classifiers from only positive and
unlabeled data,” in Proceedings of the 14th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2008.

[2] C.-J. Hsieh, N. Natarajan, and I. S. Dhillon, “Pu learning for matrix
completion,” in ICML, 2015.

[3] B. Liu, W. S. Lee, P. S. Yu, and X. Li, “Partially supervised classification
of text documents,” in ICML, 2002.

[4] G. Blanchard, G. Lee, and C. Scott, “Semi-supervised novelty detection,”
in Journal of Machine Learning Research, 2010, p. 29733009.

[5] W. Li, Q. Guo, and C. Elkan, “A positive and unlabeled learning algorithm
for oneclass classification of remote-sensing data,” in IEEE Trans. on
Geoscience and Remote Sensing, 2011.

[6] B. Liu, Y. Dai, X. Li, W. S. Lee, and P. S. Yu, “Building text classifiers
using positive and unlabeled examples,” in Proceedings of the Third
IEEE International Conference on Data Mining, 2003.

[7] D. Plessis, M. C, G. Niu, and M. Sugiyama, “Analysis of learning
from positive and unlabeled data,” in Advances in Neural Information
Processing Systems 27, 2014, pp. 703–711.

[8] R. Kiryo, G. Niu, D. Plessis, M. C, and M. Sugiyama, “Positive-
unlabeled learning with non-negative risk estimator,” in Advances in
Neural Information Processing Systems 30, 2017, pp. 1675–1685.

[9] A. Gretton, K. M. Borgwardt, M. Rasch, B. Schölkopf, and A. J. Smola,
“A Kernel Method for the Two-Sample-Problem,” in Journal of Machine
Learning Research, 2008, pp. 723–773.

[10] M. C. Plessis, G. Niu, and M. Sugiyama, “Class-prior estimation for
learning from positive and unlabeled data,” Mach. Learn., vol. 106, no. 4,
pp. 463–492, Apr. 2017.

[11] S. Boyd and L. Vandenberghe, “Convex optimization,” in Cambridge
University Press, 2004.

[12] A. Menon, B. V. Rooyen, C. S. Ong, and B. Williamson, “Learning from
corrupted binary labels via class-probability estimation,” in Proceedings
of the 32nd International Conference on Machine Learning, 2015, pp.
125–134.

[13] C. Chang and C.-J. Lin, “LIBSVM: A library for support vector machines,”
ACM Transactions on Intelligent Systems and Technology, vol. 2, 2011.

[14] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016.

[15] H. Zhang, “The restricted strong convexity revisited: Analy-
sis of equivalence to error bound and quadratic growth,” in
https://arxiv.org/abs/1511.01635, 2016.

[16] P. L. Bartlett and S. Mendelson, “Rademacher and gaussian complexities:
Risk bounds and structural results,” J. Mach. Learn. Res., 2003.

[17] U. Shalit, F. D. Johansson, and D. Sontag, “Estimating individual
treatment effect: generalization bounds and algorithms,” in Proceedings
of the 34th International Conference on Machine Learning, 2017.

[18] D. Dheeru and E. Karra Taniskidou, “UCI machine learning repository,”
2017. [Online]. Available: http://archive.ics.uci.edu/ml

[19] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” in Proceedings of the IEEE, 1998, pp.
2278–2324.

[20] P. W. Frey and D. J. Slate, “Letter recognition using holland-style adaptive
classifiers,” Machine Learning, vol. 6, no. 2, 1991.

[21] Y. Xu, C. Xu, C. Xu, and D. Tao, “Multi-positive and unlabeled learning,”
in Proceedings of the 26th International Joint Conference on Artificial
Intelligence, 2017.

[22] F. Denis, “Pac learning from positive statistical queries,” in ALT, 1998.
[23] F. D. Comit, F. Denis, R. Gilleron, and F. Letouzey, “Positive and

unlabeled examples help learning,” in ALT, 1999.
[24] F. Letouzey, F. Denis, and R. Gilleron, “Learning from positive and

unlabeled examples,” in ALT, 2000.
[25] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An Analysis

of Approximations for Maximizing Submodular Set Functions,” Math.
Program., vol. 14, pp. 265–294, December 1978.

[26] M. Talagrand, “Concentration of measure and isoperimetric inequalities
in product spaces,” Mathematiques de L’IHES, 1995.

