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Abstract

In this paper we show how the distribution of the discrete Choquet integral can

be analytically computed. The advantage of having an analytical expression is that

the value of the cumulative distribution function (cdf) can be computed exactly for

the Choquet. We also derive an expression for the density of the Ordered Weighted

Average (OWA) operator, which is a special case of the Choquet.

1 Introduction

Fuzzy integrals, including the Choquet integral, have been important tools for fuzzy

systems since at least 1990 when Tahani and Keller first proposed them for use

in information fusion [9]. It is used in a plethora of application areas viz. image

processing, pattern classification, regression analysis etc. [8, 4, 7]. One of the major

reasons for its popularity, is its ability to model other commonly used aggregation

functions. For eg. the arithmetic mean which is one of the simplest and hence

popular aggregation functions, can be modeled by a Choquet integral. The ordered

weighted average operators (OWA) used in multicriteria decision making, are also

special cases of the Choquet integral. Considering its wide usage, it is interesting to

study the statistical behavior of this aggregation function. Although an analytical

form for the cumulative distribution of the Sugeno integral has been derived, [6]

there has previously not been a form to analytically compute the cdf of the Choquet

integral. In this paper, we attempt to derive such an analytical expression.
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In the next section we provide definitions of the basic terminology. This is

followed by a section which discusses ways of first analytically computing the dis-

tributions of the special cases of the Choquet integral i.e. arithmetic mean and

OWA and eventually for the full-fledged Choquet integral. Using this analytical

expression we plot the cumulative distribution function (cdf) for the Choquet inte-

gral and empirically validate it with the help of Monte Carlo estimates.

2 Technical Background

Let T = {X1, X2, ..., Xn} be a set of n random variables. We now define the

following quantities,

1. Fuzzy measure: A fuzzy measure µ : 2T → [0, 1]1 is a function such that

µ(∅) = 0, µ(T ) = 1 and µ(A) ≤ µ(B) whenever A ⊆ B, ∀ A,B ∈ 2T .

2. Additive fuzzy measure: An additive fuzzy measure is a fuzzy measure with

the property that µ(A ∪B) = µ(A) + µ(B) whenever A ∩B = ∅.

3. Discrete Choquet Integral: If µ is a fuzzy measure on T , then the discrete

Choquet integral is given by,

Cµ =
n∑

i=1

Xπ(i)(µ(Aπ(i))− µ(Aπ(i+1))) (1)

where π is a permutation defined on {1, 2, ..., n} such that Xπ(i) ≤ Xπ(j) for

i ≤ j and Aπ(i) = {Xπ(i), ..., Xπ(n)}.

Hereafter, we shall refer to discrete Choquet integral plainly as the Choquet

integral.

3 Distribution of Choquet integral

In this section we provide an analytical form to compute the distribution of the

Choquet integral.

1by fuzzy measure we ⇒ normalized fuzzy measure
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3.1 Arithmetic Mean

When the fuzzy measure is an additive fuzzy measure, the Choquet integral is

independent of the sort and is given by,

Cµ =
n∑

i=1

Xiµ({Xi})

The weight α(i), corresponding to Xi, is thus a function of only Xi i.e. α(i) =

µ({Xi}). The Choquet integral can be re-written as,

Cµ =
n∑

i=1

Xiα(i)

The above equation is exactly that of an arithmetic mean (as
∑

i α(i) = 1). If

the X ′
is are independent, then the density of Cµ is a convolution of the densities

of the X ′
is with a change of variable. More clearly, if pi() is the density of Xi and

Yi = α(i)Xi then the density of Cµ is given by,

f(Cµ) =
1

α(1)...α(n)

∫
y1∈Y1

...

∫
yn−1∈Yn−1

p1(
y1

α(1)
)...pn(

Cµ −
∑n−1

i=1 yi

α(n)
)dy1...dyn−1

If the X ′
is are normally distributed with mean νi and standard deviation σi,

then the density of Cµ is also normal with mean
∑

i α(i)νi and standard deviation√∑
i α

2
i σ

2
i .

3.2 Ordered Weighted Average

The OWA operator is a special case of the Choquet integral where the weight

assigned to a random variable depends on its position in the sorted sequence. In

other words, the weights are constant w.r.t. a particular order statistic. Formally,

Cµ =
n∑

i=1

Xiα(li)

where li is the position of the ith random variable in a sorted sequence of the n
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random variables. Representing the same equation in different manner we have,

Cµ =
n∑

i=1

X(i)α(i)

where X(i) is the ith order statistic and α(i) is the corresponding weight with∑
i α(i) = 1. The distribution of the Choquet in this case is not as straightforward,

since the X(i)’s are not independent. Thus the problem lies in finding the joint

distribution/density of the X(i)’s. Given the joint distribution, the distribution of

the Choquet can be found analytically. There is a well known closed form expression

for the distribution function of the individual X(i)’s [2]. The strategy to derive the

joint distribution of the X(i)’s is a straightforward extension of the strategy to find

the individual distributions. If p() is the density of the original random variables

Xi i.e. they are i.i.d., then the joint density of the n order statistics is given by,

f(X(1) = x1, X(2) = x2, ..., X(n) = xn) =

 n!p(x1)p(x2)...p(xn) if x1 < x2 < ... < xn

0 otherwise

This result and the general technique for proving it can be found in [2]. The n!

comes from the fact that any of the Xi’s can be any order statistic. The density of

the Choquet (or OWA in this case) is given by,

f(Cµ) =
1

α(1)...α(n)

∫
y1∈Y1

...

∫
yn−1∈Yn−1

n!p(
y1

α(1)
)...p(

Cµ −
∑n−1

i=1 yi

α(n)
)·

I[
y1

α(1)
≤ y2

α(2)
≤ ... ≤

Cµ −
∑n−1

i=1 yi

α(n)
]dy1...dyn−1

(2)

where Yi = α(i)X(i), I[] is an indicator function (can be removed by introducing

the correct limits in the above integral).

The limitation of the result in [2] is that it applies only when the X ′s are i.i.d.

We now derive expressions for the joint density of the order statistics when the X ′s

are not i.i.d.. Moreover, we observe that when the Xi’s are in fact i.i.d. the result
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actually reduces to the known result. The proof we provide here is simpler and

more general than that for the previously stated result. With this, we state the

following theorem.

Theorem 1. Let X1, X2,..., Xn be n random variables. Let X(i) denote the ith

order statistic of these n random variables. Then the joint density f() of the order

statistics when x1 < x2 < ... < xn
2 is given by,

1. f(X(1) = x1, X(2) = x2, ..., X(n) = xn) =
∑n!

i=1 p(xπ(i,1), xπ(i,2), ..., xπ(i,n))

when p() is the joint density of X1, X2,..., Xn and xπ(i,j) is the jth element

in the ith permutation of x1, x2,..., xn.

2. f(X(1) = x1, X(2) = x2, ..., X(n) = xn) =
∑n!

i=1 pπ(i,1)(x1)pπ(i,2)(x2)...pπ(i,n)(xn)

when pπ(i,j)() is the density of the random variable whose value is xj in the

ith permutation and the X ′
is are independent.

3. f(X(1) = x1, X(2) = x2, ..., X(n) = xn) = n!p(x1)p(x2)...p(xn) when p() is the

density of the X ′
is i.e. the X ′

is are i.i.d.

Proof. We need to find an expression for f(X(1) = x1, X(2) = x2, ..., X(n) = xn)

where x1 < x2 < ... < xn else the density is 0.

Notice that for the n order statistics to be equal to x1, x2, ..., xn each of the

random variables X1, X2, ..., Xn must equal exactly one of these values. A possible

assignment is X1 = x1, X2 = x2, ..., Xn = xn. There are n! such assignments.

Note that any two of these assignments are mutually exclusive. Moreover, all the

assignments account for all possible ways in which X(1) = x1, X(2) = x2, ..., X(n) =

xn. Using these facts and denoting the joint density of X1, X2, ..., Xn by p() we

have the following expression,

f(X(1) = x1, X(2) = x2, ..., X(n) = xn) =
n!∑

i=1

p(xπ(i,1), xπ(i,2), ..., xπ(i,n))

where xπ(i,j) is the jth element in the ith permutation.

2if x1 < x2 < ... < xn is not satisfied the density is 0
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If the Xi’s are independent with density pi then the joint density factorizes into

a product of the individual densities given by,

f(X(1) = x1, X(2) = x2, ..., X(n) = xn) =
n!∑

i=1

pπ(i,1)(x1)pπ(i,2)(x2)...pπ(i,n)(xn)

where pπ(i,j)() is the density of the random variable whose value is xj in the ith

permutation.

If the Xi’s are i.i.d. with density p() then all the terms in the above sum are

identical and hence we have,

f(X(1) = x1, X(2) = x2, ..., X(n) = xn) = n!p(x1)p(x2)...p(xn)

Using the above expressions the expression for the density of the OWA can be

found as in equation 2 by inserting the appropriate term for the joint density of the

order statistics.

3.3 Choquet Integral

In the previous two subsections we provided formulae for analytically computing

the pdf and hence the cdf of special cases of the Choquet integral. The key idea

in obtaining these characterizations, is expressing the Choquet integral in a form

wherein the α() is fixed w.r.t. the random variable it is multiplied by. This permits

the integral to be expressed as a linear combination of the random variables in

question. With the knowledge of the joint distribution of these random variables,

the distribution of the Choquet integral can be computed. In other words, to

compute the distribution of the full-fledged Choquet we have to represent it in a

way that the α() remains fixed, and then compute the distribution.

For the arithmetic mean we have seen that α() is a function of the random

variable it is multiplied to. Thus fixing the variable fixes the value of α(). For
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the OWA operators the α() is a function of the position of the random variable in

the sorted sequence of the random variables. Thus for a particular order statistic

the α() here is fixed. For the full-fledged Choquet integral though, the α() is a

function of both the random variable it is multiplied by and its position in the

sorted sequence. In fact α() does not depend only on the position but also on

the random variables that follow the particular random variable in the sort. Thus

by fixing the random variable and the random variables that follow it, we fix the

α(). A stronger condition is fixing the sort, and hence by fixing the sort and the

random variable we fix α(). The Choquet integral can be split up into the following

piecewise linear form based on the sort,

Cµ =



∑n
i=1 α(S(1), i)Xi if S(1)∑n
i=1 α(S(2), i)Xi if S(2)

·

·

·∑n
i=1 α(S(n!), i)Xi if S(n!)

where S(j) denotes the jth permutation of the n random variables. The proba-

bility of Cµ < u is given by,

P [Cµ < u] =
n!∑

j=1

P [Cµ < u, S(j)]

=
n!∑

j=1

P [
n∑

i=1

α(S(j), i)Xi < u, S(j)]

(3)

We have to characterize the S(j)’s and we do this using the following observation.

Any sorted ordering of n variables can be represented by n− 1 linear inequalities.

For example, the relations X1 ≤ X2 ≤ ... ≤ Xn hold iff X2−X1 ≥ 0, X3−X2 ≥ 0,...,

Xn −Xn−1 ≥ 0 i.e. iff Xi+1 −Xi ≥ 0 ∀ i ∈ {1, 2, ..., n − 1}. Thus the probability

in equation 3 can be written as,
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P [Cµ < u] =
n!∑

j=1

P [
n∑

i=1

α(S(j), i)Xi < u,Xπj(i+1)−Xπj(i) ≥ 0, ∀ i ∈ {1, 2, ..., n−1}]

(4)

where πj is the permutation of the n variables indexed by j. To compute

P [Cµ < u], we need to compute P [
∑n

i=1 α(S(j), i)Xi < u, Xπj(i+1) − Xπj(i) ≥

0, ∀ i ∈ {1, 2, ..., n − 1}] for each j. Geometrically, the first condition in this

probability
∑n

i=1 α(S(j), i)Xi < u represents a region bounded by the hyperplane∑n
i=1 α(S(j), i)Xi − u = 0. The remaining conditions also represent hyperplanes in

an n dimensional space. The value of the probability is computed by integrating

the joint density of the n random variables X1, X2, ..., Xn over the region specified

by these hyperplanes. If the random variables X1, X2, ..., Xn are independent with

densities p1(), p2(), ..., pn(), P [
∑n

i=1 α(S(j), i)Xi < u, Xπj(i+1) − Xπj(i) ≥ 0, ∀ i ∈

{1, 2, ..., n− 1}] is given by,

P [
n∑

i=1

α(S(j), i)Xi < u,Xπj(i+1) −Xπj(i) ≥ 0, ∀ i ∈ {1, 2, ..., n− 1}] =∫
x1∈X1

∫
x2∈X2

...

∫
xn∈Xn

p1(x1)p2(x2)...pn(xn)·

I[
n∑

i=1

α(S(j), i)Xi < u,Xπj(i+1) −Xπj(i) ≥ 0, ∀ i ∈ {1, 2, ..., n− 1}]dx1...dxn

(5)

Combining equations 4 and 5 we get,

P [Cµ < u] =
n!∑

j=1

∫
x1∈X1

∫
x2∈X2

...

∫
xn∈Xn

p1(x1)p2(x2)...pn(xn)·

I[
n∑

i=1

α(S(j), i)Xi < u,Xπj(i+1) −Xπj(i) ≥ 0, ∀ i ∈ {1, 2, ..., n− 1}]dx1...dxn

(6)

Instantiating the pdf’s of the X ′
is in the above equation and choosing a suitable

measure we can compute values of P [Cµ < u] for different values of u. We illustrate

this fact in the following section.
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Figure 1: Behavior of MC and AF when
X1, X2, X3 ∼i.i.d. N(0,1).
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Figure 2: Behavior of MC and AF when
X1, X2, X3 ∼i.i.d. N(0,100).

4 Experiments

In the previous section we derived an analytical formula for the cdf of the Choquet

integral. In this section we empirically verify on some specific but commonly used

distributions that the formula we have obtained is in fact accurate. We accomplish

this, by choosing a non-additive measure and comparing the cdf’s estimated by

Monte Carlo with those estimated by the formula for different distributions of the

X ′
is. We compare Monte Carlo and the analytical formula with X ′

is having the

following commonly used densities,

1. normal with mean 0 and variance 1 i.e. N(0,1),

2. normal with mean 0 and variance 100 i.e. N(0,100),

3. exponential with mean 1 i.e. Exp(1),

4. uniform in the range [0, 1] i.e. Unif(0,1).
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Figure 3: Behavior of MC and AF when
X1, X2, X3 ∼i.i.d. Exp(1).
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Figure 4: Behavior of MC and AF when
X1, X2, X3 ∼i.i.d.Unif(0,1).

We have the normal density twice, so as to see if variance affects the accuracy

of the estimates. We fix n to 3. Thus, the Choquet integral is determined by

X1, X2, X3 distributed i.i.d. w.r.t. some distribution. In the experiments MC-j ⇒

Monte Carlo performed with j samples.

Observations: In all the four cases, Figure 1, Figure 2, Figure 3 and Figure 4 we

observe that as the sample size for the Monte Carlo increases from 10 to 1000, its

estimated cdf approaches the cdf given by instantiating the analytical formula in

equation 6. This empirically validates our analytical result.

5 Discussion

In the previous sections we derived an analytical expression for computing the cdf

of the Choquet integral and verified it empirically. In this section we discuss issues

related to usefullness and scalability of the formula. With the knowledge of an ana-
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lytical formula, the output distribution of the Choquet integral can be characterized

precisely in desired settings. A problem with the full-fledged Choquet integral is

that it has exponential number of piecewise linear terms. With increasing n the

number of terms that need to be computed increases rapidly. Since, major applica-

tions of the Choquet include multicriteria decision making or pattern classification

etc. where n is small, the analytical formula can still prove to be effective. In the

applications where n is large the optimization in speed depends on the ability to

exploit the structure of the measure defined, µ. If µ is additive, the formula reduces

to the arithmetic mean with only one term. If µ is non-additive but remains con-

stant w.r.t. an order statistic then the formula reduces to that for a OWA operator

with again only a single term. Other existing patterns in the defined µ may also

be exploited to reduce the number of terms and enhance performance.

6 Conclusion

In summary, we derived analytical expressions for the density of the OWA operator

and for the cdf of the full-fledged Choquet integral. We ascertained the correctness

of the expressions for the cdf, by comparing it with Monte Carlo estimates, where

we observed that with increasing sample size the empirical cdf approached the

analytically estimated cdf. We also discussed issues related to scalability of the

expression. It remains to be seen if a similar approach will permit in unveiling an

analytical expression for the continuous Choquet integral.
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