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Statistical Relational Learning (SRL) addresses the problem of performing probabilistic inference
on data instances that are correlated. Collective classification is an important SRL task, in which
related data instances are classified simultaneously as opposed to independently which is done
in independent Machine Learning. In several studies conducted in the last decade, it has been
shown that collective classification, by exploiting relational information, tends to outperform
independent (supervised) classification on various relational datasets. However, owing to their
ability to exploit relational information collective classification algorithms are invariably more
complex than their independent counterparts. Moreover, independent classification algorithms
have been around for a considerably longer period of time and hence have been thoroughly studied
both theoretically and experimentally. Consequently, a natural question that arises is: Under
what circumstances should we perform collective classification? Previously, it had been argued
that on relational datasets which exhibit high auto-correlation between related instances linked
through arbitrary paths in a relational data graph, collective classification is superior. In this
paper however, we partition the feature space into (a) Direct features – links from an object
type (which contains the class attribute) to itself (b) Indirect features – the remaining set of
features (i.e. other links and object types) and argue that high auto-correlation between instances
linked through Direct features and low/medium auto-correlation between instances linked through
Indirect features is essential if collective classification is to significantly outperform independent
classification. Moreover, based on this argument and depending on the setting (i.e. level of auto-
correlation) we motivate simple baseline classification algorithms which can be used as yardsticks
to evaluate the more sophisticated collective classification algorithms. We validate our arguments
by performing experiments on synthetic and real datasets.
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1. INTRODUCTION

The study and development of classification algorithms covers a major portion of the
research that is conducted in Machine Learning and Data Mining. Traditionally, the
data is considered to be drawn independently and identically from some distribution
(i.i.d.). Almost all the theory developed regarding the study of learning algorithms
[Vapnik 1998] is based on this fundamental assumption. Though the theory is
elegant, the fundamental assumption on which it is based is rarely satisfied in reality.
In real life more often than not there exist correlations between data instances
which violates the i.i.d. assumption. Moreover, a sizable amount of data is stored
in relational databases where instances are inter-dependent by design. The need
to model such dependencies between instances has led to the emergence of a sub-
area in Machine Learning, Statistical Relational Learning (SRL). Research in SRL
is directed towards modeling uncertainty in relational data. The primary focus of
this sub-area is to forgo the i.i.d. assumption that has been made almost throughout
Machine Learning research.

Collective classification is one of the important tasks that has been closely looked
at in SRL research [Chakrabarti et al. 1998; Jensen et al. 2004; Neville and Jensen
2003; Taskar et al. 2001]. In collective classification, related instances (or objects
to be classified)1 are classified not just based on their own set of attribute values
but also based on the attribute values and class labels of the related instances.
An example application is trying to classify hyperlinked webpages based on their
topic. In this situation, not just the words in a particular webpage but the topics of
webpages that are linked to it might significantly aid in determining its own topic.
This was shown in [Chakrabarti et al. 1998], where the authors concluded that col-
lective classification was extremely useful in categorizing webpages using hyperlink
information. Independent classification algorithms could not exploit this informa-
tion and hence, underperformed by a significant margin. In [Getoor et al. 2004]
the authors portrayed the use of collective classification in tracking contagious dis-
eases. Here again collective classification was superior to independent classification.
There have been several other studies [Neville and Jensen 2003; Taskar et al. 2001;
Richardson and Domingos 2006; Getoor and Taskar 2007] which have depicted the
efficacy of collective classification over independent classification. However, since
collective classification algorithms are equipped to model dependencies in relational
data they are invariably more complex than their independent counterparts. For
example, in Relational Markov Networks [Taskar et al. 2002] which is a well known
collective classification model, parameter estimation (i.e. learning) becomes expo-
nentially (in the size of the cliques connecting labeled instances) more expensive
than in the i.i.d. setting [Getoor and Taskar 2007], since the joint probability
no longer factorizes. Consequently, approximations have to be used. These ap-
proximations are also needed in other prevalent relational models [Richardson and
Domingos 2006; Neville and Jensen 2007] for them to be practical. Another exam-
ple is a Probabilistic Relational Model [Getoor et al. 2004] where extra attributes
have to be added to model the relationship between two or more instances. This
added complexity in collective models arises since the state space in modeling the

1We will interchangeably use the terms, instances and objects.
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joint distribution over relational data is much larger compared to i.i.d. data. In
particular, if we have d attributes with each attribute taking v values, a dataset of
size N where the size of the largest connected component is m ∈ {1, ..., N}, then
the state space in the i.i.d. setting O(vd) is much smaller than the state space
in the relational setting O(vmd) since, m is usually >> 1. Another advantage of
independent classification is that independent classification algorithms have been
around for a considerably longer period of time and hence have been thoroughly
studied both theoretically and experimentally leading to better understanding.

Given these trade-offs between collective classification algorithms and indepen-
dent classification algorithms, it is important to identify situations in which one
classification paradigm would be more desirable than the other. A study that is
notable in this regard is [Jensen et al. 2004] in which the authors inferred through
empirical studies that collective classification outperforms independent classifica-
tion when the auto-correlation (i.e. correlation between values of the class attribute)
between linked instances in the data graph is high. They found that as the auto-
correlation increases and especially when the proportion of known labels in the test
set is about 30% or more, collective classification has significantly superior per-
formance. The collective models that they used to arrive at the above conclusion
consisted of a single object type with individual objects of this type linked to each
other directly (i.e. not through other objects and corresponding links. e.g. one pa-
per citing another paper). As is mentioned in [Jensen et al. 2004] auto-correlated
objects are many times connected/linked through objects and links of other types.
For example, in a citation database different research papers can be linked to each
other through common authors or in a movie database different movies may have
the same director. However, this scenario is not captured by the collective models
they consider. Based on the behavior of these restrictive collective models they
claimed that high auto-correlation between objects linked with each other either
directly or through paths consisting of objects (and links) of other types, is the
primary motivation for using collective classification as opposed to independent
classification. In this paper we argue that this claim is an overgeneralization based
on their observations and provide alternative necessary conditions for collective clas-
sification to outperform independent classification given the above trade-offs. These
conditions naturally motivate baseline algorithms that can be used as yardsticks to
evaluate the state-of-the-art collective classification algorithms. We validate all our
arguments by performing experiments on synthetic and real datasets. Details with
regards to these contributions are as follows:

(1) We provide necessary conditions for collective classification to significantly out-
perform independent classification. These conditions are motivated based on
our argument of the ability of these two classification paradigms to be able to
accurately model the available information in relational datasets.

(2) We motivate simple baseline classification algorithms where the choice of a
particular baseline algorithm is governed by the specific situations characterized
in (1). The suggested baseline algorithms are, a) an independent classification
algorithm for some of these situations and b) a Nearest Neighbor algorithm
adapted to the relational setting for the other situations.

(3) We conduct empirical studies on synthetic and real datasets to validate our
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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Fig. 1. (a) represents a relational schema with object types, Paper and Author.
The relationship between them is many-to-many. The rounded boxes linked to
these object types denote their respective attributes. (b) is the corresponding data
graph which shows authors linked to the papers that they authored or co-authored.

arguments. Our observations on the real datasets are qualitatively similar to
previously published results and we explain how these observations are consis-
tent with our argument.

Note that both the necessary conditions and the suggested baselines are applicable
after one has performed feature selection. This paper is not concerned with how
one chooses the appropriate set of features (e.g. the right aggregation function,
the right attributes etc.) but rather with how one chooses the right classification
paradigm and the appropriate baseline following this process.

The paper is organized as follows: In Section 2 we define basic terms and con-
cepts. In Section 3 we provide necessary conditions for collective classification to
outperform independent classification. Before stating these conditions we explain
the logic in arriving at them. Moreover, we also argue that the conclusions in
[Jensen et al. 2004] were an overgeneralization based on their observations. The
necessary conditions stated in Section 3 lead to simple baseline classification al-
gorithms which we state in Section 4. In Section 5 we validate our arguments by
performing empirical studies on synthetic and real datasets. In Section 6, we dis-
cuss the effects of data graph transformations and increasing Indirect features has
on the claims made in this paper. In Section 7, we discuss limitations of our work
which lead to interesting avenues that need further investigation in the future. We
summarize the major developments in the paper in Section 8.

2. PRELIMINARIES

In this section we define concepts and terminology that is used throughout the pa-
per.

Relational data: Relational data consists of objects and the relationships between
these objects are called links. Each object and link have a type associated with
them. Objects or links of the same type have the same set of attributes. Relational
data is represented at the type level by a graph which is called a relational schema.
Relational data represented at the individual object and link level as a graph is
called a relational data graph [Neville 2006], wherein the vertices are the objects
and the edges are the links. An example relational schema and the corresponding
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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Fig. 2. Relational database representation of the relational dataset in Figure 1b.
The table on the left contains objects of type Paper and the table on the right
contains objects of type Author. The attribute Title is a primary key in Paper and
the attribute Paper Title is the corresponding foreign key in Author.

data graph (i.e. the actual dataset) are shown in Figures 1a and 1b respectively.
The relational schema has 2 object types namely; Paper and Author. The data
graph shows 2 author objects linked to paper objects that they authored or co-
authored.

The most prevalent representation of relational data is in Relational Database
Management Systems (RDBMS) where object and link information is stored in
tables. A single table stores objects or link information of a particular type. The
columns of such a table denote the attributes associated with the particular type
while each row stores information of each individual object (or link) of that type.
This is shown in Figure 2, which represents a relational dataset that identical to the
one represented by the data graph 1b. Though the data is stored in separate tables
to avoid redundancy, the information in these tables can be put into a single large
table called the Universal table [Malvestuto 1989]. This procedure of combining
smaller tables to form larger tables is called a Database Join (or just a Join)2.
Usually a Join is between the primary key in one table and the foreign key in
another table. A primary key is an attribute/set of attributes that uniquely identify
a row in their table (e.g. Title in Paper) and a foreign key is an attribute/set of
attributes that uniquely identify a row in a different table (e.g. Paper Title in
Author uniquely identifies rows in Paper).

In our descriptions throughout the paper we will interchangeably refer to either
of the above two representations as deemed appropriate.

Data Heterogeneity: Probabilistic models over relational data [Getoor and Taskar
2007] are used to handle uncertainity in relational domains. One of the main chal-
lenges in learning over these domains is data heterogeneity, something we do not
have to deal with in i.i.d. domains. A single object of a certain type may be linked
to multiple objects of some other type. An example of this can be seen in Figure
1b. One of the papers in this data graph has two authors. Consequently, this
paper is associated with 2 values of the attribute Name. A popular solution to this

2Joins are of different types but their discussion is unnecessary for this paper.
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problem is to aggregate the values of the attribute into a single value. For instance
in our example we can use an aggregation function such as Exists() which takes as
parameters the names of the authors and returns True if that paper has a partic-
ular author and False otherwise. If numeric attributes are present such as Age or
Salary, aggregation functions such as Average(), Mode(), etc. can be used. Since,
an aggregation function applied to an existing feature gives rise to a new feature,
the choice of aggregation function is an important aspect of feature selection.

Independent Classification (IC): This refers to independent classification where
instances are classified based only on the values of their attributes. For example
in Figure 2, the objects Paper have intrinsic attributes (i.e. attributes belonging
to the same object type such as Paper) Area, Title and the relational attribute
(i.e. attributes belonging to a related object type such as Author) Name (Paper
Title is the same as Title and hence we do not include it.). If a Paper object is
to be classified into the appropriate research area (i.e. Area is the class attribute),
it is classified based only on its own values of Title and Name. Relational Bayes
Classifier, Relational Probability Trees, SVM are examples of IC algorithms.

Collective Classification (CC): In collective classification the class labels of mul-
tiple instances are inferred simultaneously, assuming dependencies between these
instances. Thus, the class label of a particular instance depends on the class labels
and sometimes even attributes of the other related instances and not just on its
own set of attributes. Consider the same example as the one for independent classi-
fication where Paper objects have three attributes Area (the class attribute), Title
and Name. For independent classification we predicted the research area of a paper
based only on its title and the name of its author. In collective classification, besides
the papers own attributes we will use information regarding the research areas of
other papers that have the same author. Thus, the Area attribute of one paper is
predicted by its own attributes Title and Name and in addition the Area attributes
of other papers with the same value of Name. Using this additional piece of in-
formation can sometimes significantly enhance classification accuracy [Chakrabarti
et al. 1998; Getoor and Taskar 2007]. For an in dept survey of CC alongwith a
discussion of popular inference procedures please refer to [Sen et al. 2008].

Relational auto-correlation: Relational auto-correlation measures the strength
of statistical dependencies between values of a single attribute on related/linked
instances. In this paper as in previously published articles [Angin and Neville 2008;
Neville 2006] we measure relational auto-correlation using the Pearson’s Contin-
gency Coefficient given by,

ρ =

√
χ2

N + χ2

where χ2 is the Chi-square statistic and N is the sample size. In this paper whenever
we mention auto-correlation we imply relational auto-correlation.
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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Fig. 3. (a) shows an example data graph corresponding to the relational schema in
Figure 1a. (b) is the relational database representation of the data graph in (a). (c)
is the table formed by joining the tables in (b). (d) is a contingency table formed
from (c) given that we want to classify papers by their respective areas. This table
can be used to train an independent classification algorithm.

3. COLLECTIVE VS INDEPENDENT CLASSIFICATION

In this section we provide necessary conditions for collective classification to out-
perform independent classification. Before stating these conditions we explain the
logic in arriving at them. Moreover, we argue that the conclusions in [Jensen et al.
2004] were an overgeneralization based on their observations. We explain our po-
sition below where we argue that high auto-correlation in a relational dataset does
not necessarily imply that collective classification will be superior to independent
classification.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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3.1 Scenario 1: High auto-correlation but CC and IC comparable

Consider the example in Figure 3 where we have a dataset consisting of five papers
and two authors. In this example we want to classify papers into their appropriate
area, AI or Graphics. The data graph and the corresponding database representa-
tion of this dataset is shown in Figures 3a and 3b respectively. We observe from
these figures that one of the papers has two authors. Usually in such cases an ag-
gregation function is used to obtain a single value. In this case we use the boolean
function Exists(Name) which takes as input author name and outputs True if that
particular author is one of the authors for paper in question. If not, the func-
tion outputs False. For example, the value of Exists(author1) is True for paper1
but False for paper4. Again, note that the choice of aggregation function is part
of the feature selection process (since Exists(Name) is feature) which is a prepro-
cessing step to the contributions made in this paper. It is easy to see that the
auto-correlation of linked instances through this feature is high for this dataset.
Given this any reasonable collective classification algorithm should perform well
on this kind of dataset. The important question now is: how will an independent
classification algorithm perform? To answer this question we form a contingency
table from the given dataset. The columns of a contingency table denote values of
the class attribute (output). In our example AI and Graphics are values of Area.
The rows represent the values of other attributes which may include all attributes
except the class attribute or a proper subset of the other attributes that may be
chosen after feature selection (Exists(Name) in this case). The individual cells (in-
tersection of rows and columns) in a contingency table contain counts of the number
of inputs that have an output value corresponding to the row and column that form
the respective cell. In the contingency table in Figure 3d the cell corresponding to
input True and output AI has a count of 3 since author1 has authored/co-authored
three papers all of which are in AI. By the same reasoning the cell corresponding to
input False and output Graphics has a count of 2. From this contingency table we
see that the attribute Exists(Name) is highly cross-correlated with the class label
Area. Consequently, any reasonable independent classification algorithm should be
able to exploit this information and perform well on this kind of dataset. Hence,
both classification paradigms would have favorable performance, though the data
exhibits high auto-correlation.

In general if we have objects to be classified (e.g. Papers) connected through
arbitrarily long paths in a data graph consisting of objects of other types, with the
data exhibiting high auto-correlation through these paths, then both classification
paradigms can perform well. In other words, the auto-correlation through the above
mentioned paths being high, implies the existence of attributes that are highly cross-
correlated with the class label. With these attributes we can form a contingency
table and train any reasonable independent classification algorithm which should
perform comparable with any reasonable collective classification algorithm. Thus,
the available information in such datasets can be made available to classification
algorithms in both paradigms in a manner that they can exploit.

The collective classification models and datasets that were considered in [Jensen
et al. 2004] consisted of a single object type with links connecting objects of the
same type. From our discussion above we can see that the results that they ob-
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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served in this restricted setting cannot be generalized to the above scenario i.e. high
auto-correlation in a relational dataset does not necessarily imply that collective
classification will be superior to independent classification.

3.2 Scenario 2: High auto-correlation and CC superior to IC

Consider the example in Figures 4 and 5, where we have a relational dataset con-
sisting of four papers, two authors and citation information. We can see from the
Figure 5 that the data has high auto-correlation through the link type Cites, since
papers linked through this type are in the same area. On the other hand, the
auto-correlation through the type Author is low, since papers having a common
author are in different areas. Since, the link type Cites relates two objects of the
same type, with this relationship carrying decisive information about the class la-
bels (and not individual or set of attributes), it is not clear how to include this
information in a contingency table. One possible solution can be to introduce a
new attribute such that all Paper objects linked through Cites have the same value
within each group and different values across groups. For example, we introduce a
new attribute say Z. In Figure 5, z1 is its value for paper1 and paper2 and z2 is its
value for paper3 and paper4. This process however, of introducing new attributes
(or objects) and analyzing their effects is a research problem in itself and if done
in an automated fashion, is part of the more general problem known as Statistical
Predicate Invention [Kok and Domingos 2007]. In short, it is not clear how this re-
lationship information between papers can be incorporated into a contingency table
without causing unnecessary side effects and be made available to an independent
classification algorithm. Moreover, most researchers would consider a technique
which employs such a modeling as a CC technique rather than an IC technique,
by its use of relational information between directly linked instances. Some of the
most prominant variants of such CC techniques/algorithms use a base classifier and
an iterative procedure to do prediction. Examples of such techniques, are Iterative
Classification Algorithm (ICA) and Gibbs sampling [Sen et al. 2008]. We can as
in scenario 1 form a contingency table with just the attributes Name and Area
but in this case the Name attribute is not nearly as discriminative and hence the
independent classification algorithm trained on this data will perform poorly.

In general, when objects to be classified are linked to each other directly (e.g.
paper cites paper) and not through paths consisting of objects of other types (e.g.
papers linked through a common author) and the auto-correlation through these
direct links is high, then collective classification can improve classification accuracy.
On the other hand, there is no straightforward way in which independent classifi-
cation might able to exploit this information and enhance classification accuracy.

The collective classification models and datasets that were considered in [Jensen
et al. 2004] were qualitatively similar to this scenario where the auto-correlation
was present through links connecting objects to be classified (which are of the same
type). In this scenario our argument is consistent with the observations in [Jensen
et al. 2004], where the authors concluded that high auto-correlation corresponds to
superior performance of collective classifiers.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



10 · A. Dhurandhar and A. Dobra

Paper Paper Paper

Title Area

Citing
Cites

Cited

Author
Name

Paper Title

a) b)

PaperPaper

AuthorAuthor

Cites

Cites

Fig. 4. (a) represents a relational schema with object types Paper and Author and
link type Cites. All relationships are many-to-many. The rounded boxes linked to
these types denote their respective attributes. (b) is the corresponding data graph
which shows authors linked to the papers that they authored or co-authored and
papers cited by other papers (arrows point to the cited paper from the paper that
cites it).
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Fig. 5. (a) is the relational database representation of the data graph in Figure 4b.
(b) is a table formed by joining the three tables in (a). (c) is a contingency table
formed from (b) given that we want to classify papers by their respective areas.
This table can be used to train an independent classification algorithm.

3.3 Predicted comparative performance of CC and IC

Based on the above discussions we will now provide necessary conditions for CC to
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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AD↓, AID→ High Medium Low

High S B B

Medium S/W S B/S

Low S/W S S

Table I. AD and AID imply level of auto-correlation through Direct features and Indirect features
respectively. B stands for better, S stands for same and W stands for worse. B/S stands for slightly
better or same and S/W stands for same or slightly worse. The entries in the table indicate the
performance of CC when compared with IC for different levels of auto-correlation through Direct
and Indirect features based on our discussion of the two scenarios in Section 3.

significantly outperform IC. However, to make the exposition of these conditions
clear, we first formally define two types of features which partition the feature space.

Consider a relational schema where object type T has attributes t1, ..., tn and
without loss of generality let t1 be the class label. Let T be linked to m other
object types S1, ..., Sm

3 where Si i ∈ {1, ...,m} has ni attributes si,1, ..., si,ni . Let
R1, ..., Rk be binary relations that link objects with object type T to other objects
with the same object type and where Ri i ∈ {1, ..., k} specifies these relationships
through the attributes ri,1, ri,2. Given this setup, we define two types of features
namely; Direct features and Indirect features.

(1) Direct features: Any function (e.g. subset()) on the set {(r1,1, r1,2), ..., (rk,1, rk,2)}
is a Direct feature. An example of Direct feature is (Citing,Cited) attributes
of the relation Cites in Figure 4a.

(2) Indirect features: Any function (e.g. subset(), aggregation functions) on the set
{t2, ..., tn, s1,1, ..., s1,n1 , ..., sm,1, ..., sm,nm} is an Indirect feature. An example
of Indirect features is the attribute Name of the object type Author in Figure
4.

Note that the Indirect features defined above are significantly different from iden-
tifiers defined in [Perlich and Provost 2006]. As defined in [Perlich and Provost 2006]
identifiers are essentially categorical attributes having at least a specified number
of distinct values on which two tables can be joined. An example of an identifier
is a primary key in a table. This is different from Indirect features since Indirect
features have no constraint on the number of distinct values an attribute must have
and neither is it required that the attribute (or its equivalent) be present in two
different tables.

Given the definitions of the two kind of features and based on the explanation of
the two scenarios described before, the necessary conditions for collective classifi-
cation to outperform independent classification are:

(1) auto-correlation through Direct features is high and

(2) auto-correlation through Indirect features is medium/low.

Since the level of auto-correlation in a relational dataset through each of these
two types of features (after feature selection) can be either high, medium or low

3T could be directly linked to each of these object types or could be linked through other object
types. For example, T could be linked to S2 through S6 which is directly linked to T.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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AD↓, AID→ High Medium Low

High IC DRN DRN

Medium IC IC IC

Low IC IC IC

Table II. Suitable baselines for varying levels of auto-correlation are suggested above. AD and AID
imply level of auto-correlation through Direct features and Indirect features respectively. DRN
denotes the Direct Relational Neighbor model and IC denotes any reasonable (which depends
on the application. e.g. for text categorization SVM or Naive Bayes may be used) independent
classification model. The entries in the table indicate suggested baseline models that can be used
as yardsticks to evaluate state-of-the-art CC models.

(absence of any of these 2 features is qualitatively equivalent to the case when auto-
correlation is low through that feature)4 we have 9 possible categories in which a
dataset can lie. These 9 categories and the corresponding relative performance of
collective classification w.r.t. independent classification as can be inferred from our
preceding discussions, are given in Table I. In the cases where auto-correlation
through Indirect features is high and through Direct features is medium/low we
expect independent classification to perform slightly better than collective clas-
sification since the choice of independent classification algorithms with arguably
superior implementations is greater than their collective counterparts (larger the
hypothesis space lower the error [Vapnik 1998]). Moreover, learning and inference
in most of the state-of-the-art collective classification algorithms is performed us-
ing approximate techniques (e.g. Gibb’s sampling and other Markov chain Monte
Carlo techniques for inference, pseudo-likelihood for learning [Getoor and Taskar
2007]) which can lead to higher error. The prediction for the other cases directly
follows from our arguments stated before.

4. BASELINE CLASSIFIERS

In the previous section we identified 9 cases depending on the level of auto-correlation
through Direct and Indirect features in a relational dataset. The comparative per-
formance (based on our discussion) of CC and IC for each of these cases is shown
in Table I. Looking at this table we can infer that CC outperforms IC in 2 of
the 9 cases that is when auto-correlation through Direct features is high and auto-
correlation through Indirect features is medium/low. In the remaining 7 cases IC
is comparable in performance to CC. In these cases independent classification al-
gorithms can prove to be a suitable baseline for the more sophisticated collective
classifiers. For the 2 cases when CC is predicted to be significantly superior to IC we
suggest using a specific version (described below) of the Relational Neighbor (RN)
model [Macskassy and Provost 2003; 2007]. The reason we suggest this variant is
that, we believe it is an exceedingly simple yet effective model for these specified
cases; something that a good baseline should possess.

The NN model we suggest adapted to the relational setting will classify objects
based on the class labels of other objects of the same type that are linked through

4If any of these two types of features is not present in the particular dataset then the case
corresponds to the auto-correlation being low through that feature since this low auto-correlation
implies that the feature is useless for classification and hence its presence or absence in the dataset
would not greatly affect the classification accuracy (since feature selection will remove this feature).
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Direct features. The model will assign a class label to an object which is most
numerous amongst its neighbors. Neighbors may include objects one link away (i.e.
immediate neighbors) or up to multiple links away (e.g. up to 2 links away) or
exactly some number of links away (e.g. exactly 2 links away). This choice depends
on the characteristics of the particular relational dataset. If the class labels of
all neighbors are not known it will classify based on the class labels of neighbors
that are known. Thus, the method requires no learning and is simple to apply.
However it, requires that some class labels be accurately known at the start and
the auto-correlation through Direct features be high, for it to perform well.

As mentioned before, a more general (and a more complicated) form of such a
model was previously suggested as baseline [Macskassy and Provost 2003; 2007].
We say more general, since RN could classify an instance based on the class la-
bels of its neighbors linked through both Direct and Indirect features while our
NN model classifies only through Direct features. We will refer to our model as
Direct Relational Neighbor classifier (DRN). They suggested RN to be a baseline
irrespective of the characteristics (i.e. auto-correlation through the various fea-
tures) of the particular relational dataset in question. In this paper however, we
suggest a simpler version of this model namely; DRN as a baseline only for the
cases when auto-correlation through Direct features is high and auto-correlation
through Indirect features is medium/low, since only if the auto-correlation through
Direct features is high, will DRN perform well. For the other cases we suggest
IC models to be suitable baselines. The reasoning behind these suggestions is as
follows: when auto-correlation through Indirect features is high state-of-the-art IC
models will perform well irrespective of the level of auto-correlation through Direct
features. When the auto-correlation through both Direct and Indirect features is
low/medium, which implies that the available information is not particularly use-
ful for classification, RN and IC models should perform equally poorly. The need
to have accurate information about the class labels of a fraction of the instances
is a limitation of the NN approaches if they are to perform well. IC which does
not suffer from this limitation, is thus a better choice as baseline in the suggested
cases. Moreover, we have more choice when it comes to choosing IC models (since
there are many) and we can choose the appropriate model as baseline depending
on the application. For example Bayesian Networks and Support Vector Machines
are IC models which have been shown to be successful in spam filtering and text
categorization [Joachims 2002] respectively and hence can be reasonable baselines
in those domains when the auto-correlation through Direct features is low/medium.

Based on the above argument the baseline models we suggest for the 9 cases are
given in Table II.

5. EXPERIMENTS

In this section we empirically validate our ideas and suggestions made in the pre-
vious sections. In particular, the goal of the experimental section is two-fold:

(1) to validate the argument that high auto-correlation through Direct features and
medium/low auto-correlation through Indirect features is essential for CC to
significantly outperform IC and

(2) to verify if the suggested baseline models serve as reasonable yardsticks in
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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evaluating sophisticated CC models.

A high level description of the tasks we set ourselves, to accomplish the above
stated goals is given below. The details about classification models and experimen-
tal setups follow this high level description.

(1) Task 1: To perform experiments that cover the full spectrum of possibilities
identified by the level of auto-correlation through Direct and Indirect features.
We accomplish this by conducting experiments on synthetic data which span
the space of all 9 possibilities and in addition give us control over the respective
settings. The observations from these experiments concur with our predictions
in Table I and Table II.

(2) Task 2: To check if our predictions are consistent with the behavior seen in real
world settings. To accomplish this we conduct experiments on real datasets
which cover some of the more interesting categories out of the possible 9 cate-
gories. In particular, we perform experiments on three datasets Cora [McCal-
lum et al. 2000], Internet Movie Database (IMDb) [Neville and Jensen 2002]
and UW-CSE [Richardson and Domingos 2006]. The Cora dataset resembles
the case where the auto-correlation through Direct features is high and the
auto-correlation through Indirect features is low/medium. The IMDb dataset
we consider has no Direct features while the auto-correlation through Indi-
rect features is reasonably high. Thus, this dataset resembles the case where
the auto-correlation through Direct features is low and the auto-correlation
through Indirect features is high. The UW-CSE dataset resembles the case
where auto-correlation through both Direct and Indirect features is high.
The observations from these experiments strengthen our arguments regarding
the predicted behavior.

In all our experiments we vary the proportion of known class labels from 0% to
30% to 90%, to observe its influence on the classification performance of the vari-
ous models. To compare the performance of the CC and IC models we report their
respective errors and verify if the observed difference in performance is statistical
significant by computing p−values of the two tailed paired t-test [Dietterich 1998].
The null hypothesis in this case is as follows;

H0: The two models are equivalent.

Hence, smaller the p− value the less likely it is that the null hypothesis is true and
the models equivalent. As is generally the case, we reject H0 if p < 0.05.

Classification Models: In the experiments we compare IC and DRN against two
state-of-the-art collective classification models, i) Markov Logic Networks (MLN)
[Richardson and Domingos 2006; Domingos and Richardson 2004] and ii) Relational
Dependency Networks (RDN) [Neville and Jensen 2003]. The MLN is learned, a)
generatively and b) discriminatively using the tool Alchemy [Kok et al. 2005]. For
each type of learning we performed 2 types of inference 1) Maximum aposteriori
(MAP) inference and 2) Markov Chain Monte Carlo (MCMC) inference (1000 runs).
We observed that the results for discriminative and generative learning each with
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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Fig. 6. Relational schema for synthetic experiments.
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Table III. Above we see the structure of the synthetic data generator. For notational convenience
we denote attributes Name, Governing Association and Area by X, Y and C respectively. The
attribute L (i.e. (Citing,Cited)) specifies the connectivity in the graph. In particular, any 2 points
having the same value of L are linked to each other. Each cell in the table contains the probability
(
P48

q=1 pq = 1) of observing the specific input-output pair. The probabilities in the cells help in
controling the level of auto-correlation through the different features. Their exact values, which
are determined by the desired level of auto-correlation are given in the Appendix.

MAP and MCMC inference were qualitatively the same and hence we report results
for just one combination of learning and inference i.e. for discriminative learning
with MCMC inference. The conditional probability distributions (CPDs) in RDN
are learned using Relational Bayes Classifiers (RBC) for the synthetic experiments
(since there are few attributes) and Relational probability trees (RPT) [Neville
2006] for the experiments on real data (since they generally have better performance
than RBC learning when number of features is large [Neville and Jensen 2007]).
The inference is performed on the sample obtained after performing Gibbs sampling
(burn-in is 100, number of samples is 1000) using the learned CPDs.

For the DRN model when class labels of none of the neighbors are known for
a particular instance, we assign it a label based on the empirical class priors i.e.
priors computed from the labels in the training set.

For IC we use different models depending on the relational dataset. This choice
of model on real datasets is driven by the models that were shown to be successful
in previously published work.

Setup for synthetic data experiments: The synthetic data is generated based
on the relational schema in Figure 6. We use this schema, since it makes the syn-
thetic setup simple enough to understand but complex enough to accommodate
the necessary dependencies i.e. both Direct and Indirect features. It is important
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to note here, that the necessary conditions we have provided are applicable after
feature selection. Hence, choosing the appropriate aggregation function (viz. aver-
age(), exists() etc.) for an Indirect feature (viz. Age, Name etc.) giving rise to a
new Indirect feature (viz. average(Age), exists(Name) etc.) is a preprocessing step
prior to checking our conditions. Given this, we design the data generation model
to have the right set of features with no further need for building new features
through aggregation.

As we have mentioned before, we assign Area to be the class attribute which
takes 2 values, AI and Graphics. We thus have instances belonging to either of 2
classes in the synthetic datasets that we generate. The attribute Name in Author
takes 4 values and the attribute Governing Association in Journal takes 2 values
(e.g. IEEE and ACM). The attribute Title (which is same as Paper Title in Author
and Journal) in Paper is unique for each individual paper and hence does not help
in determining the class label Area of the paper. We thus eliminate this attribute
in the data generation models we consider. Generally, relational datasets have very
few (if any) independent components through Direct features 5 in the data graph.
Hence, we generate data that can have utmost 3 independent components. This is
enforced by the attribute L in table III. Thus, the connectivity through Direct and
Indirect features can be arbitrarily high.

With this, Paper has Indirect features Name, Governing Association (since Title
and Paper Title have been purged) and the Direct feature (Citing,Cited). Con-
sequently, auto-correlation through Direct features here implies auto-correlation
through attributes of Cites and auto-correlation through Indirect features here im-
plies auto-correlation through attributes of Author and Journal.

Training and Testing: We generate datasets of size 3000 and use 2000 samples
for training and the remaining 1000 samples for testing respectively. We then use
hold-out estimation to estimate the error of the classifiers trained on this data. We
perform the above procedure 50 times and report the average error. As mentioned
before, the equivalence in the performance of the respective algorithms is evaluated
through hypothesis testing.

IC Model: For independent classification we form a contingency table from the
training dataset like the one shown in Figure 5c, with the rows denoting author
names (author1 and author2), columns the area of the papers (AI and Graphics)
and the cells (intersection of rows and columns) containing the respective counts.
The independent classifier we use in here, classifies a test instance into the class that
is most numerous in the corresponding row of the contingency table. For example,
a paper authored by author1 would be classified into AI, if the cell corresponding
to author1 and AI has a larger count than the one corresponding to author1 and
Graphics.

Setup for real data experiments: The experiments on real data are performed
on 3 datasets namely; Cora [McCallum et al. 2000] – dataset of research papers,

5Unless they are absent. However, this would map to the low AD and high/medium/low AID
case described in the paper
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IMDb [Neville and Jensen 2002] – dataset of movies and UW-CSE [Richardson and
Domingos 2006] – dataset containing information about the University of Washing-
ton Department of Computer Science and Engineering6. We now describe each of
these datasets in detail and provide other relevant information regarding training
and testing mechanisms, auto-correlation through Direct and Indirect features and
the IC model used on each of these datasets.

(1) Cora: This dataset consists of research papers belonging to various fields in
computer science. The papers we consider (similar to previous work [Macskassy
and Provost 2003; Neville and Jensen 2007; Getoor and Taskar 2007]) belong
to the field machine learning and the classification task is to classify each of
the papers into the appropriate sub-fields (such as reinforcement learning etc.).
The papers are linked to each other through citations, common authors, year
of publication, common journals etc.

Training and Testing: We selected 4330 papers belonging to machine learning.
From this set we sampled 1669 papers published between 1993 and 1998. We
trained on papers from a particular year and tested on the papers belonging to
the subsequent year. In the resulting data graphs all neighbors up to two links
away were considered. Along with the citation information we considered seven
attributes in the dataset namely; Topic (i.e. sub-field), Author rank (i.e. first
author or second author), Month, Year, Paper type (e.g. tech report), Journal
name-prefix (e.g. IEEE) and Book-role (e.g. conference). This setup is very
similar to the one used in [Neville and Jensen 2007].

Auto-correlation: Considering the above description of the attributes and links
that are chosen for training and testing, the dataset is known to exhibit high
auto-correlation through Direct features (i.e. through citations) and low/medium
through Indirect features (i.e. its own attributes and attributes of related types)
[Neville and Jensen 2007].

IC Model: The independent classification model we choose in this case is a
RPT. This model was compared against RDN on Cora in [Neville and Jensen
2007].

(2) IMDb: This dataset contains information about actors, directors, producers
and studios associated with a movie. The classification task is to ascertain if
the opening weekend box-office receipts of a movie is more than $2 million.

Training and Testing: We selected 1382 movies released in the US between
1996 and 2001. We trained on movies from a particular year and tested on
the movies belonging to the subsequent year. In the resulting data graphs all
neighbors up to two links were considered. We considered 8 attributes in the
dataset namely; Receipts (the class label), First (the first movie by director or
studio), Award (if an actor or director has won an Academy award), In-US (if

6All these datasets were obtained from http://alchemy.cs.washington.edu/
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a studio is in the US), Genre (the movies type i.e. comedy, horror), Hsx-rating
(actors value on the Hollywood Stock Exchange), Birth-year and Gender. This
setup like in the case of Cora is very similar to the one used in [Neville and
Jensen 2007].

Auto-correlation: Considering the above description of the attributes and links
that are chosen for training and testing, the dataset is known to exhibit high
auto-correlation through Indirect features (i.e. its own attributes and attributes
of related types) while Direct features are not present [Neville and Jensen
2007]. Since, there are no linked input pairs through Direct features the auto-
correlation through them is zero. This as mentioned before corresponds to the
case wherein there is low auto-correlation through Direct features and high
auto-correlation through Indirect features.

IC Model: The independent classification model we choose in this case is a
RPT. This model was compared against RDN on IMDb in [Neville and Jensen
2007].

(3) UW-CSE: This dataset contains information about the UW computer science
department. The dataset consists of people being either students or professors.
The dataset has information regarding which course is taught by whom, who
are the teaching assistants for a course, the publication record of a person, the
phase in which a person is (i.e. pre-qualifier, post-qualifier), the position of a
person (i.e. faculty, affiliate faculty etc.), years in a program and the adviser
(or temporary adviser) of a student (given by ”advisedby” links which are Di-
rect features). The classification task is to find out if a person is a Student or
Professor.

Training and Testing: The dataset has 442 people and is divided into five parts;
ai.db, graphics.db, theory.db, language.db and systems.db. We performed 5-
fold cross validation where we trained on the four parts and tested on the fifth.
We used all the above mentioned features.

Auto-correlation: Considering the above description of the attributes and links
that are chosen for training and testing, the dataset exhibits high auto-correlation
through both Direct features (i.e. through advisedby links) and Indirect fea-
tures (i.e. through phase of a person, teaching assistant for a course etc.). Here
high auto-correlation through Direct features implies that the person advising
is invariably a professor and the person being advised is generally a student un-
less the person advised also advises somebody else. The DRN in this case looks
at the immediate neighbors and checks to see if any neighbor is being advised
by the person in question. If the person does advise somebody, it classifies the
person as professor else as student.

IC Model: The independent classification algorithm we choose in this case
is C4.5 [Quinlan 1993]. In the papers we surveyed that used the UW-CSE
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Fig. 7. Relative performance of CC vs IC for varying levels of AD and AID is shown
in a). The dark reverse ”L” shaped line depicts the consequent partitioning of the
space where the region below the line represents AD and AID levels for which CC
significantly outperforms IC. In b), we observe a similar trend for the real datasets
that is consistent with a).

Model MLN,IC RDN,IC

% labels known 0 30 90 0 30 90

AD,AID

0.67,0.67 (HH) 0.05,0.04 0.04,0.04 0.04,0.04 0.06,0.04 0.04,0.04 0.04,0.04

0.81,0.68 (HH) 0.07,0.08 0.03,0.08 0.02,0.08 0.06,0.08 0.04,0.08 0.02,0.08

0.67,0.30 (HM) 0.23,0.36 0.15,0.36 0.13,0.36 0.25,0.36 0.14,0.36 0.13,0.36

0.71,0.50 (HM) 0.13,0.24 0.08,0.24 0.09,0.24 0.12,0.24 0.07,0.24 0.08,0.24

0.75,0.15 (HL) 0.27,0.44 0.13,0.44 0.11,0.44 0.31,0.44 0.12,0.44 0.14,0.44

0.64,0.15 (HL) 0.34,0.45 0.31,0.45 0.32,0.45 0.33,0.45 0.29,0.45 0.30,0.45

0.42,0.67 (MH) 0.09,0.05 0.08,0.05 0.09,0.05 0.06,0.05 0.05,0.05 0.07,0.05

0.45,0.45 (MM) 0.25,0.27 0.23,0.27 0.24,0.27 0.28,0.27 0.27,0.27 0.25,0.27

0.45,0.16 (ML) 0.36,0.4 0.33,0.4 0.34,0.4 0.38,0.4 0.35,0.4 0.34,0.4

0,0.67 (LH) 0.06,0.06 0.07,0.06 0.06,0.06 0.08,0.06 0.08,0.06 0.06,0.06

0.12,0.45 (LM) 0.25,0.26 0.27,0.26 0.25,0.26 0.27,0.26 0.26,0.26 0.24,0.26

0.06,0.06 (LL) 0.49,0.47 0.51,0.47 0.47,0.47 0.51,0.47 0.48,0.47 0.49,0.47

0.81,0.51 (Cora) 0.15,0.45 0.1,0.45 0.08,0.45 0.13,0.45 0.09,0.45 0.09,0.45

0,0.76 (IMDb) 0.17,0.22 0.15,0.22 0.14,0.22 0.15,0.22 0.13,0.22 0.11,0.22

0.89,0.78 (UW-CSE) 0.15,0.1 0.09,0.1 0.09,0.1 0.2,0.1 0.09,0.1 0.08,0.1

Table IV. Errors of the classification models with varying levels of auto-correlation through Direct
and Indirect features (leftmost column) and with varying percentage of known class labels is shown
above. The entries in bold indicate that the difference in performance of the two algorithms was
statistically significant.

dataset [Richardson and Domingos 2006; Kok and Domingos 2005; Singla and
Domingos 2005; Mihalkova and Mooney 2007; Mihalkova et al. 2007], the task
was never to compare IC and CC (rather link prediction or entity resolution
etc.) and hence we choose a standard IC algorithm namely; C4.5 for this case.
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Model DRN,IC

% labels known 0 30 90

AD,AID

0.67,0.67 (HH) 0.05,0.04 0.05,0.04 0.05,0.04

0.81,0.68 (HH) 0.41,0.08 0.04,0.08 0.05,0.08

0.67,0.30 (HM) 0.31,0.36 0.17,0.36 0.15,0.36

0.71,0.50 (HM) 0.21,0.24 0.09,0.24 0.07,0.24

0.75,0.15 (HL) 0.42,0.44 0.19,0.44 0.18,0.44

0.64,0.15 (HL) 0.41,0.45 0.35,0.45 0.32,0.45

0.42,0.67 (MH) 0.3,0.05 0.27,0.05 0.26,0.05

0.45,0.45 (MM) 0.31,0.27 0.29,0.27 0.29,0.27

0.45,0.16 (ML) 0.41,0.4 0.32,0.4 0.33,0.4

0,0.67 (LH) 0.47,0.06 0.51,0.06 0.48,0.06

0.12,0.45 (LM) 0.41,0.26 0.38,0.26 0.39,0.26

0.06,0.06 (LL) 0.51,0.47 0.48,0.47 0.48,0.47

0.81,0.51 (Cora) 0.5,0.45 0.35,0.45 0.2,0.45

0,0.76 (IMDb) NA

0.89,0.78 (UW-CSE) 0.15,0.1 0.12,0.1 0.11,0.1

Table V. Errors of the classification models with varying levels of auto-correlation through Direct
and Indirect features (leftmost column) and with varying percentage of known class labels is shown
above. The entries in bold indicate that the difference in performance of the two algorithms was
statistically significant.

Notation: AD and AID represent the level of auto-correlation through Direct and
Indirect features respectively. HH denotes high AD and high AID, HM denotes high
AD and medium AID, HL denotes high AD and low AID, MH denotes medium AD
and high AID, MM denotes medium AD and medium AID, ML denotes medium
AD and low AID, LH denotes low AD and high AID, LM denotes low AD and
medium AID and LL denotes low AD and low AID.

5.1 Observations

Validation of necessary conditions: In Figure 7 and table IV we observe that CC
significantly outperforms IC when auto-correlation through Direct features is high
and auto-correlation through Indirect features is low/medium. The dark line in
figure 7a partitions the AD/AID space, where the region below the line indicates
the levels of auto-correlation needed for CC to be superior to IC. Knowledge of a
fraction of the class labels helps to improve the performance of CC in these cases,
however, even when no labels are known CC is a more desirable alternative.

Evaluation of baseline classifiers: From table V we see that DRN is significantly
superior to IC only when auto-correlation through Direct features is high, auto-
correlation through Indirect features is low/medium and some of the class labels
are known with certainty. This trend is seen for synthetic as well as real data. Given
these observations and the observations in table IV, IC seems to be a reasonable
baseline for the other cases as suggested in table II.

5.2 Overview

From the above experimental results we see that for CC to significantly outperform
IC the dataset should exhibit either HM or HL. Since, one of the major goals of
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this paper was to decipher stronger necessary conditions for this to occur and not
sufficient conditions, the synthetic datasets generated exhibited high linkage which
is known to favor CC techniques. Hence, the evidence provided in this section
makes a strong case in support of the claim that CC cannot outperform IC unless
the dataset exhibits HM or HL (and not vice-versa). Moreover, the experiments on
real data are consistent with these findings, further strengthening our claim.

6. DISCUSSION

In the previous section we empirically validated our claims. In this section we look
at transformations of a given relational data graph which have been considered in
the literature [Kok and Domingos 2007; Macskassy and Provost 2003; 2007; Gal-
lagher et al. 2008] and discuss its effects on the claims made in this paper. We also
discuss the implications of the observations reported in [Jensen et al. 2004], where
Indirect features were increased, has on our analysis.

Data graph transformations: Let us first consider the scenario where Direct features
are replaced by Indirect features. A simple way of accomplishing this is by introduc-
ing an extra object. The number of attributes in the object is equal to the number
of different Direct features. For a particular Direct feature the corresponding at-
tribute in this new object has the same value for objects to be classified that are
linked by that Direct feature and different values otherwise. After introducing such
an object the Direct features are dropped and hence the relational dataset just has
Indirect features. For example, in Figure 4 Cites may be replaced by an object with
one attribute which has the same value for papers that are related through Cites
and different values otherwise. Such a transformation however, would increase the
dimensionality of the space making learning more expensive and potentially increas-
ing variance of the learned classifier. This process of introducing new objects (or
attributes) and analyzing their effects is a research problem in itself. Considering
the added complexity of modeling (i.e. introducing an appropriate object/objects
with attributes) and implementation it is indeed not an ideal choice as a simple
baseline. An IC model trained over this transformed dataset would probably per-
form much better compared to its performance on the original dataset only if the
paths through the added Indirect features exhibit high auto-correlation that was
missing in the original paths (through Indirect features). This would be possible
only if the auto-correlation through the replaced Direct features was high. Hence,
the performance of IC may become comparable to the original collective classifier,
though not necessarily. In either case the claims made in the paper are still valid
since the conditions provided are necessary conditions for CC to outperform IC and
not sufficient conditions.

Let us now consider the scenario where Indirect features are replaced by Direct
features. This is seen in [Macskassy and Provost 2003; 2007] where paths through
Indirect features (of length 2) are replaced by Direct features. One of the main
challenges in performing this transformation is choosing the appropriate set of in-
teractions (called edge selection in [Macskassy and Provost 2007]) that enhance
classification accuracy. Certain heuristics are discussed in [Macskassy and Provost
2007] to accomplish this but it is still an important open problem. Moreover, the
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transformed data graph which resembles a network of homogeneous nodes requires
that a fraction of the labels be known and that the known labels be roughly uni-
formly distributed in the graph for the RN approaches to work well. This require-
ment is important since if labels of only a localized portion of the graph are known
then the error of a nearest neighbor like approach would most likely be high on the
remaining graph. Though the requirement is important it is a strong requirement
in practice. For example, in a company dataset where we want to classify employees
based on their performance, a manager may know about employees in his branch
but not about many in other branches of the same firm. Given these difficulties it
would probably be more feasible in many cases to have IC models as baselines when
the auto-correlation through Indirect features is high as opposed to transforming
the graph and using CC models. Assuming that we select the appropriate set of
interactions and assuming that we know the right set of labels, the nearest neighbor
like CC models can become competitive with IC models in the transformed graph,
given that auto-correlation through Indirect features is high (and low through Di-
rect features) in the original graph. However, since the objects that are linked
through Direct features in the new graph were previously linked through Indirect
features in the original graph, a nearest neighbor approach in both domains should
be comparable. Moreover, there are a wide range of sophisticated algorithms such
as SVMs, Neural networks, Decision trees, etc. that can be readily applied to the
original graph but not to the new graph. Hence, our claims in the paper still hold.

Behavior with increasing Indirect features: In [Jensen et al. 2004] the authors ob-
serve that with increasing number of attributes (Indirect features) the performance
of a nearest neighbor collective classification model based only on Direct features
(denoted by C1 in that paper) improves relative to other collective (denoted by
RC1) and independent classification models (denoted by R1) that use those at-
tributes. Thus the C1 models defined in that paper are a special case of DRN, the
RC1 models are similar to MLN and RDN (i.e. these models use Direct and Indirect
features) and the R1 model is an IC model. The dataset they run their experiments
on is auto-correlated through Direct features and certain Indirect features. An ex-
planation for the observed behavior given in that paper is that the added attributes
are not particularly discriminative and hence only end up increasing the variance
of the trained classifiers (due to increased state space) without reducing the bias
significantly. Based on this explanation, the scenario where attributes are added
and the data is auto-correlated through Direct features maps to the case of high
AD and medium/low AID. Hence, a DRN (or C1) turns out to be a good choice in
such a setting.

7. FUTURE WORK

In this work, we have provided conditions that are essential for CC to outperform
IC based on arguments that focus on the amount of predictive information that
is available through the 2 types of features. It is important to stress here that
these conditions are necessary and not sufficient. In other words, the statement
this paper makes is that CC cannot outperform IC unless the dataset falls under
one of the two categories namely; HL or HM. However, even if the dataset belongs
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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Fig. 8. Two data graphs with the same number of links and the same sample size
are shown above. However, the link distribution/connectivity is different in the 2
data graphs, which may affect sufficient conditions for CC to outperform IC.

to HL or HM, the paper does not claim that CC will most definitely outperform
IC by a significant margin. Making such a claim would imply that the conditions
are sufficient.

In the future, it would be interesting to decipher conditions that are sufficient
for the same, if we consider that any classification algorithm that models the infor-
mation in Direct features (be it through graph transformations) is a CC technique,
though the converse may not be true. In addition to observations made in this pa-
per, we believe that this would require delving into the properties related to linkage
(through Direct features) of the graph; something we have not thoroughly explored
in this work. Studying linkage would involve studying the effects that properties
such as number of links in the graph, the link distribution i.e. how the links are
spread throughout the graph, would have on the relative performance of CC and
IC. For example, CC might perform superior to IC on a data graph in figure 8a but
not in figure 8b, eventhough the number of links and the auto-correlation are the
same. To this end, we would probably have to build an estimator for linkage that
depends on these two properties and that captures its effects on the performance
of CC and IC in a consistent manner. By consistent we mean that we can set a
threshold, say α for this estimator and be able to make statements such as, if the
auto-correlation through Direct and Indirect features lies in a specific range with
the linkage greater than α then these conditions are sufficient for CC to outperform
IC. A possible estimator of linkage could be N−k

N−1 where N is the dataset size and k
is the number of independent components in the graph. Such an estimator would
lie in the interval [0,1] with 0 implying the data points are independent and 1 imply-
ing all data points linked through one or multiple hops. The estimator would vary
with the link distribution eventhough, the number of links might be identical in two
different data graphs, thus capturing our intuitions. However, careful investigation
needs to be done to test the validity of such ideas in the future.

8. CONCLUSION

In this paper we pinpointed the necessary conditions under which collective classifi-
cation should be preferred over independent classification. In view of this, we split
the feature space into Direct and Indirect features with auto-correlation through
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these features being either high, medium or low leading to 9 possible cases. We
showed that collective classification is preferable to independent classification for
2 of these cases, that is when i) auto-correlation through Direct features is high
and ii) auto-correlation through Indirect features is low or medium. In the remain-
ing 7 cases independent classification was more than acceptable. We also suggested
baseline models that can be used to evaluate state-of-the-art collective classification
models for each of these 9 cases. We introduced the Direct Relational Neighbor
model (which classifies based on Direct features) as baseline for the above 2 cases
wherein collective classification significantly outperformed independent classifica-
tion and for the remaining 7 cases we recommended using an independent classifi-
cation algorithm that is known to perform well for the particular application. In
summary, by studying the similarities and differences in behavior between the two
classification paradigms namely; collective classification and independent classifica-
tion, we have tried to improve our current state of understanding as to when and
why these two classification paradigms might be useful.
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9. APPENDIX

The cell probabilities for the synthetic generation process are given below. The
auto-correlation is computed using Pearson’s contingency coefficient with respect
to the null hypothesis that all cells have equal counts. We use this hypothesis since
it directly relates to how predictive the various inputs are likely to be. Note that
”-do-” indicates that the same values are repeated for the respective columns.
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XY L x1y1l1 x1y1l2 · · · x4y2l3
C1 0.04 0.04 -do- 0.04

C2 0.0017 0.0017 -do- 0.0017

Table VI. The auto-correlations observed by sampling N = 3000 samples from this distribution
are, AD = 0.67, AID = 0.67.

XY L x1y1l1 x1y1l2 · · · x2y2l3
C1 0.1 0 0 0 0 0 0.14 0 0 0.005 0 0

C2 0 0.005 0 0 0.1 0.085 0 0.005 0.04 0 0.1 0

XY L x3y1l1 x3y1l2 · · · x4y2l3
C1 0.1 0 0 0.005 0 0 0.1 0 0 0.005 0 0

C2 0 0.005 0 0 0.1 0 0 0.005 0 0 0.1 0

Table VII. The auto-correlations observed by sampling N = 3000 samples from this distribution
are, AD = 0.81, AID = 0.68.

XY L x1y1l1 x1y1l2 · · · x2y2l3
C1 0.04 0.04 0.04 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.04 0.04 0.04

C2 0.0017 0.0017 0.0017 0.04 0.04 0.04 0.04 0.04 0.04 0.0017 0.0017 0.0017

XY L x3y1l1 x3y1l2 · · · x4y2l3
C1 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04

C2 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017

Table VIII. The auto-correlations observed by sampling N = 3000 samples from this distribution
are, AD = 0.42, AID = 0.67.

XY L x1y1l1 x1y1l2 · · · x2y2l3
C1 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017

C2 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04

XY L x3y1l1 x3y1l2 · · · x4y2l3
C1 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04

C2 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017

Table IX. The auto-correlations observed by sampling N = 3000 samples from this distribution
are, AD = 0, AID = 0.67.
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XY L x1y1l1 x1y1l2 · · · x2y2l3
C1 0.0017 0.0017 0.04 0.0017 0.0017 0.04 0.0017 0.0017 0.04 0.0017 0.0017 0.04

C2 0.04 0.04 0.0017 0.04 0.04 0.0017 0.04 0.04 0.0017 0.04 0.04 0.0017

XY L x3y1l1 x3y1l2 · · · x4y2l3
C1 0.0017 0.0017 0.04 0.0017 0.0017 0.04 0.0017 0.0017 0.04 0.0017 0.0017 0.04

C2 0.04 0.04 0.0017 0.04 0.04 0.0017 0.04 0.04 0.0017 0.04 0.04 0.0017

Table X. The auto-correlations observed by sampling N = 3000 samples from this distribution
are, AD = 0.67, AID = 0.3.

XY L x1y1l1 x1y1l2 · · · x2y2l3
C1 0.056 0.0417 0.0006 0.056 0.0417 0.0006 0.056 0.0417 0.0006 0.056 0.0417 0.0006

C2 0.0016 0.005 0.02 0.0016 0.005 0.02 0.0016 0.005 0.02 0.0016 0.005 0.02

XY L x3y1l1 x3y1l2 · · · x4y2l3
C1 0.056 0.0417 0.0006 0.056 0.0417 0.0006 0.056 0.0417 0.0006 0.056 0.0417 0.0006

C2 0.0016 0.005 0.02 0.0016 0.005 0.02 0.0016 0.005 0.02 0.0016 0.005 0.02

Table XI. The auto-correlations observed by sampling N = 3000 samples from this distribution
are, AD = 0.71, AID = 0.5.

XY L x1y1l1 x1y1l2 · · · x4y2l3
C1 0.0313 0.0313 -do- 0.0313

C2 0.0104 0.0104 -do- 0.0104

Table XII. The auto-correlations observed by sampling N = 3000 samples from this distribution
are, AD = 0.45, AID = 0.45.

XY L x1y1l1 x1y1l2 · · · x2y2l3
C1 0.0104 0.0104 0.0104 0.0104 0.0104 0.0104 0.0104 0.0104 0.0104 0.0313 0.0313 0.0313

C2 0.0313 0.0313 0.0313 0.0313 0.0313 0.0313 0.0313 0.0313 0.0313 0.0104 0.0104 0.0104

XY L x3y1l1 x3y1l2 · · · x4y2l3
C1 0.0313 0.0313 0.0313 0.0313 0.0313 0.0313 0.0313 0.0313 0.0313 0.0313 0.0313 0.0313

C2 0.0104 0.0104 0.0104 0.0104 0.0104 0.0104 0.0104 0.0104 0.0104 0.0104 0.0104 0.0104

Table XIII. The auto-correlations observed by sampling N = 3000 samples from this distribution
are, AD = 0.12, AID = 0.45.

XY L x1y1l1 x1y1l2 · · · x2y2l3
C1 0.05 0.0017 0.0017 0.05 0.0017 0.0017 0.05 0.0017 0.0017 0.05 0.0017 0.0017

C2 0.0037 0.058 0.01 0.0037 0.058 0.01 0.0037 0.058 0.01 0.0037 0.058 0.01

XY L x3y1l1 x3y1l2 · · · x4y2l3
C1 0.05 0.0017 0.0017 0.05 0.0017 0.0017 0.05 0.0017 0.0017 0.05 0.0017 0.0017

C2 0.0037 0.058 0.01 0.0037 0.058 0.01 0.0037 0.058 0.01 0.0037 0.058 0.01

Table XIV. The auto-correlations observed by sampling N = 3000 samples from this distribution
are, AD = 0.75, AID = 0.15.
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XY L x1y1l1 x1y1l2 · · · x2y2l3
C1 0.05 0.0017 0.0017 0.05 0.0017 0.0017 0.05 0.0017 0.0017 0.05 0.0017 0.0017

C2 0.0317 0.03 0.01 0.0317 0.03 0.01 0.0317 0.03 0.01 0.0317 0.03 0.01

XY L x3y1l1 x3y1l2 · · · x4y2l3
C1 0.05 0.0017 0.0017 0.05 0.0017 0.0017 0.05 0.0017 0.0017 0.05 0.0017 0.0017

C2 0.0317 0.03 0.01 0.0317 0.03 0.01 0.0317 0.03 0.01 0.0317 0.03 0.01

Table XV. The auto-correlations observed by sampling N = 3000 samples from this distribution
are, AD = 0.64, AID = 0.15.

XY L x1y1l1 x1y1l2 · · · x2y2l3
C1 0.0104 0.0313 0.0313 0.0104 0.0313 0.0313 0.0104 0.0313 0.0313 0.0104 0.0313 0.0313

C2 0.0313 0.0104 0.0104 0.0313 0.0104 0.0104 0.0313 0.0104 0.0104 0.0313 0.0104 0.0104

XY L x3y1l1 x3y1l2 · · · x4y2l3
C1 0.0104 0.0313 0.0313 0.0104 0.0313 0.0313 0.0104 0.0313 0.0313 0.0104 0.0313 0.0313

C2 0.0313 0.0104 0.0104 0.0313 0.0104 0.0104 0.0313 0.0104 0.0104 0.0313 0.0104 0.0104

Table XVI. The auto-correlations observed by sampling N = 3000 samples from this distribution
are, AD = 0.45, AID = 0.16.

XY L x1y1l1 x1y1l2 · · · x4y2l3
C1 0.0222 0.0222 -do- 0.0222

C2 0.0196 0.0196 -do- 0.0196

Table XVII. The auto-correlations observed by sampling N = 3000 samples from this distribution
are, AD = 0.06, AID = 0.06.
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