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ABSTRACT
A large portion of the data that is collected in various appli-
cation domains such as online social networking, finance,
biomedicine, etc. is relational in nature. A subfield of
Machine Learning namely; Statistical Relational Learning
(SRL) is concerned with performing statistical inference on
relational data. A defining property of relational data that
separates it from independently and identically distributed
data (i.i.d.) is the existence of correlations between individ-
ual datapoints. A major portion of the theory developed
in machine learning assumes the data is i.i.d. In this pa-
per we develop theory for the relational setting. In partic-
ular, we derive distribution free bounds for the relational
setting where the class of data generation models we con-
sider are inspired from the type joint distributions that are
represented by relational classification models developed by
the SRL community. A key aspect of the bound we de-
rive is that the tightness of the bound is a function of the
strength of dependence between related datapoints, with the
bound reducing to the standard Hoeffding’s or McDiarmid’s
inequality when there is no dependence. To the best of our
knowledge this is the first bound for relational data whose
tightness varies with the strength of dependence.

1. INTRODUCTION
Traditional Machine Learning primararily considers mod-

eling of independently and identically distributed (i.i.d.) data.
However, real life data is rarely i.i.d. with correlations ex-
isting between various datapoints. Such non-i.i.d. or rela-
tional data occurs in various domains ranging from biology
to finance. A new emerging sub-area of Machine Learning
namely; Statistical Relational Learning (SRL) [11] is con-
cerned with modeling of uncertainty in such type of non-i.i.d.
or relational data.

Collective classification is one of the important problems
considered in SRL. In collective classification related data
instances are classified simultaneously rather than indepen-
dently as done in traditional classification. Though there
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are numerous relational classification algorithms [27, 29, 10,
22] developed in literature, the current state of theory – dis-
tribution free bounds, for relational domains in general is
still primitive when compared with the traditional setting.
The need for developing such theory has been expressed in
[14, 11].

Distribution free bounds derived in Machine Learning, are
used to bound the empirical error (i.e. test or training error)
of a classifier with respect to (w.r.t.) its generalization error.
The generalization error of a classifier is the expected error
of a classifier over the entire input w.r.t. the underlying dis-
tribution. Hence, the generalization error is also referred to
as the true error. If we are to evaluate a particular classifier
or choose the best classifier amongst available options, the
generalization error can serve as a great yardstick. Unfor-
tunately, this error cannot be computed directly, since the
true underlying distribution of the sample is unknown. The
empirical error on the other hand can be computed from
the sample. Distribution free bounds relate these two errors
by providing us with probabilistic estimates for the general-
ization error given the empirical error without knowledge of
the underlying distribution. This is the main advantage of
having these bounds.

Various distribution free bounds have been derived in Statis-
tics and Machine Learning literature. The Markov inequal-
ity [24, 12], the Chebyshev inequality [24, 12] and the Ho-
effding inequality [13] which bound a random variable to its
mean are amongst the most popular. The Hoeffding inequal-
ity however, gives tighter bounds than these two inequalities
when the sample size increases [13]. Other such inequalities
are given by Chernoff [5], Bennett [3] and Okamoto [23].
Distribution free bounds on the generalization error of a
classifier are provided by Vapnik [30] based on a property
of the classifier space called Vapnik-Chervonenkis (VC) di-
mension. In [8] distribution free bounds are provided for
the k-nearest neighbor algorithm. In [20] improved Prob-
ably Approximately Correct (PAC) Bayes bounds are pro-
vided for linear decoders. These bounds are tighter than
the ones previously introduced in [19]. In [4] bounds are pro-
vided for a validation technique called progressive validation
which are tighter than those for hold-out-set validation. The
derivation of these bounds uses Hoeffdings inequality thus
portraying its widespread use in Machine Learning. A nice
survey explaining the pros and cons of these different bounds
used in Machine learning is given in [18]. One of the main
conclusions of this survey is that test set bounds (i.e. em-
pirical error is the test error) are generally tighter and easier
to apply than training set bounds. In this paper we derive



a test set bound for relational data which will be different
from the bounds we have discussed so far since they all apply
to i.i.d. data.

Bounds for non-i.i.d. data have been derived in specific
settings. Some of the well known settings where such bounds
have been derived are in time series analysis and pseudo-
random number generation. In time series analysis, data is
assumed to come sequentially in time from an underlying
data generation process. While deriving bounds in this set-
ting the main assumptions on the data generation process
are that it is stationary in time and the strength of depen-
dence between datapoints decays as they are more separated
in time (β mixing or φ mixing processes) [17, 21]. Stationary
in this case means that any k consecutive datapoints chosen
from this stream of data have the same distribution. This
setting is very different from the relational setting we con-
sider since in our setting we do not make the above two as-
sumptions. In pseudo-random number generation a limited
notion of independence is assumed which is called k-wise in-
dependence. In k-wise independence any set of k (or fewer)
random variables are assumed to be independent from a to-
tal of n random variables (k ≤ n). Bounds assuming k-wise
independence are given in [28] which extend the ideas given
by Chernoff and Hoeffding. This setting is also significantly
different from ours since the assumption of k independence
is unrealistic for the applications we mentioned before.

A number of learnability results (both positive and nega-
tive) have been proven for restricted classes of inductive logic
programs [6, 25, 2]. The learnability results are primarily
based on two formal models of learning namely; PAC learn-
ing and learning from equivalence and membership queries.
Bounds for relational data in applications we are interested
in have been derived in [9, 15, 26]. However, both of these
derived bounds are indifferent to the strength of dependence
between interacting datapoints. In other words, the bounds
remain the same irrespective of how strongly correlated the
interacting datapoints are. In this paper, we derive a bound
that varies with the degree of dependence between related
datapoints; which is an attractive feature. We hence, refer
to our bound as strength of dependence bound (STB). More-
over, as we will see later the bound becomes the standard
Hoeffding or McDiarmids inequality when the datapoints are
not dependent.

The rest of the paper is organized as follows. In Section
2, we describe and motivate the data generation models we
consider in this paper. In Section 3, we clearly state and
justify the assumptions needed in obtaining the results. In
Section 4, we state these results and then prove the main
result in section 5. In Section 6, we show that our bound is
robust to deviations from our primary assumption. We also
compare our bound to other bounds in terms of tightness
by applying it to real relational datasets. We discuss appli-
cability of the results and suggest future lines of research in
section 7.

2. PRELIMINARIES
Say N datapoints (x1, y1, ..., xN , yN ) ∈ (X×Y )N where X

is the input space and Y is the output space are drawn from
the joint distribution P [X1, Y1, ..., XN , YN ]. Note that Xi×
Yi ∀i ∈ {1, ..., N} denotes the ith copy of the X × Y space.
If the datapoints are i.i.d. the joint probability would fac-
torize as follows: P [X1, Y1, ..., XN , YN ] = PN [X,Y ]. How-
ever, in the case of relational data certain dependencies

may exist between datapoints which prevents this factor-
ization. Hence, at one end of the spectrum we have de-
pendencies between all N datapoints with the joint prob-
ability or the underlying distribution having the following
form P [X1, Y1, ..., XN , YN ], whereas at the other end of the
spectrum all the N datapoints are i.i.d. with the underly-
ing distribution being specified over the X × Y space hav-
ing the form P [X,Y ]. There are a range of distributions
that lie between these two extremeties where the depen-
dence is amongst disjoint subsets of datapoints with inde-
pendence between these subsets. For example, given N dat-
apoints the first m1 may be related and then the next m2

may be related (m1 +m2 = N) with independence between
these two subsets. In this case the underlying distribu-
tion would have the following form, P [X1, Y1, ..., XN , YN ] =
P [X1, Y1, ..., Xm1 , Ym1 ]P [Xm1+1, Ym1+1, ..., XN , YN ]. The dis-
tributions over the two subsets may not be the same but they
are independent with their product being the probability of
the given dataset. We can have many such distributions
with different number of subsets, different sizes of the sub-
sets (summing to N) and different datapoints being involved
in each subset. In Section 4 we will derive distribution free
bounds that apply to this entire spectrum of data genera-
tion models. We will now define certain basic concepts and
motivate the above data generation models by showing that
the state-of-the-art relational classification models actually
represent joint distributions that have this form.
Relational data: Relational data consists of objects and
the relationships between these objects are termed as links.
Each object and link have a type associated with them. Ob-
jects or links of the same type have the same set of attributes.
Relational data can be represented at the type level by a
graph which is called a relational schema whereas relational
data represented at the individual object and link level as a
graph is called a relational data graph (or instance graph)
[22], wherein the vertices are the objects and the edges are
the links. An example relational schema and the correspond-
ing data graph (i.e. the actual dataset) are shown in Figures
1a and 1b respectively. The relational schema has 2 object
types namely; Paper and Author. The data graph shows 2
authors linked to the papers they authored or co-authored.
Probabilistic Models over Relational Data: Proba-
bilistic Models over relational data (PMRD) [11] are struc-
tured graphical models that are used to handle uncertainity
in relational domains. These models include but are not
limited to probabilistic relational models, relational depen-
dency networks, different markov networks. A PMRD repre-
sents a joint distribution over the attributes of a data graph.
Consider Figure 1a where the object type Paper has 2 at-
tributes, Title and Area which imply the title of the paper
and the research area it belongs to respectively. Let the at-
tribute Area be the class label i.e. we want to classify papers
based on their research area. The object type Author has
attributes Paper Title and Age, which relates a particular
paper to the ages of the authors that wrote it. The Title
attribute (a primary key) in Paper is the same as the Paper
Title attribute (a foreign key) in Author. Hence, each Paper
object has 3 attributes namely; Title, Area and Age. The at-
tributes Title and Area are called intrinsic attributes as they
belong to object type Paper and the attribute Age is called
a relational attribute since it belongs to a different linked
object type Author. Each paper can have variable number
of authors and thus each paper would be associated with
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Figure 1: a) represents a relational schema with object types, Paper and Author. The relationship between
them is many-to-many. The rounded boxes linked to these object types denote their respective attributes. b)
is the corresponding data graph which shows authors linked to the papers that they authored or co-authored.
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Figure 2: Above we see a disconnected data graph with 2 components of variable size (i.e. size 2 component
on the left and size 4 component on the right).

multiple values of Age. A popular solution to this problem
is to aggregate the values of the attribute Age of Author into
a single value such that each paper is associated with only
a single Age value. An aggregation function such as average
over the ages of the related authors for each paper can be
used. Now instead of the Age attribute we can introduce a
new attribute AvgAge which denotes average age. With this
the attributes of Paper object are; Title, Area and AvgAge.
Hence, the joint distribution represented by a PMRD on the
data graph in Figure 1b is,

P [A1, A2, A3]

where Ai denotes the attribute set {T itlei, Areai, AvgAgei}
of the ith Paper object. Since in Figure 1b we have paths
connecting the 3 papers (through authors), we have 3 copies
of the same attributes (which may have different values) in
the joint distribution.

The data graph in Figure 1b is connected. It is possible in
some other case that the data graph is actually disconnected.
This is shown in Figure 2. The joint distribution over the
data graph in Figure 2 is,

P [A1, A2, ..., A6] = P [A1, A2]P [A3, A4, A5, A6]

since the data graph has 6 Paper objects, we have 6 copies of
the attributes. Moreover, there are 2 disconnected compo-
nents in the graph, one with 2 Paper objects and the other
with 4 Paper objects. Consequently, the joint probability
distribution P [A1, A2, ..., A6] factorizes as a product of 2 in-
dependent distributions P [A1, A2] and P [A3, A4, A5, A6].

Note that since these PMRDs learn at the template level
the marginals over individual datapoints are identical to
each other. In other words, given a distribution P [A1, A2, ..., AN ]
over a dataset of size N , P [Ai] = P [Aj ] ∀i, j ∈ {1, ..., N} ir-
respective of how the distribution factorizes. Realize that
the above statement does not imply that the data is i.i.d.

since the various Ai may depend on each other which pre-
vents the i.i.d. factorization of the joint probability.

We have thus seen that the type of distributions/data gen-
eration models that we are going to derive bounds for, sub-
sume the distributions represented by these PMRDs that
are extensively used to model relational data in practice.
Generalization Error (GE): Let P [X,Y ] be a distribu-
tion over the input-output space. A classifier ζ(.) takes as
input a particular x ∈ X and outputs a particular class label
y ∈ Y . Let λ(., .) denote a bounded loss function output-
ing values in the range [0,M ] where M is a positive integer.
Then the GE of ζ is defined as,

GE = E[λ(ζ(x), y)]

In case of the relational setting the x maybe not just ones
own attributes but in addition, attributes and class labels of
related datapoints.
Hold-out Error (HE): The test error or the hold-out error
(HE) computed over a test set of size N is given by,

HE =

∑N
i=1 λ(ζ(xi), yi)

N

where xi ∈ X, yi ∈ Y and yi is the true label of xi.
Strength of Dependence (d): In the case of relational
data, we define d as the absolute value of relational auto-
correlation ρ, which measures the degree of statistical de-
pendence of the class label on related/linked datapoints [22].
A popular choice to measure ρ is (normalized) relative en-
tropy [11]. The value of d lies in the interval [0, 1], where 0
means the datapoints are uncorrelated while 1 means that
the datapoints are highly correlated.

3. SETUP
In this section we set the stage for the next section where



the actual theoretical results are presented. The setup we
describe here and the main technical result presented in the
next section, is for a more general setting than our relational
setting. We do this since it simplifies the proof (ignoring un-
necessary details) and possibly allows the result to be used in
a wider range of applications than those that are considered
here.

Let m (exchangeable) random variables Z1, ..., Zm be dis-
tributed according to the joint distribution P [Z1, ..., Zm]
such that no proper subset of these random variables is
independent of the rest i.e. the joint probability cannot
be written as a product of two or more independent dis-
tributions1. Since the joint probability can be factorized
as: P [Z1, ..., Zm] = P [Z1]P [Z2|Z1]...P [Zm|Zm−1, ..., Z1], we
can view the points z1, ..., zm as being sampled sequentially
from distributions P [Z1], P [Z2|Z1], · · · , P [Zm|Zm−1, ..., Z1]
respectively. Note that we do not need to know the exact
sampling order to apply the results in the next section. Just
the existence of some such ordering (which always does) suf-
fices. Relating this back to the previous sections, we can
view the Zi as being any deterministic function defined over
the input-output space.2

The two main assumptions we make that help us in de-
riving the results in the next section are as follows:

3.1 Assumption 1
To derive an inequality that depends on the strength of

dependence d, we have to characterize how d affects the na-
ture of the dependence between the random variables. What
is probably desirable is that, as d tends to 0 the relationship
we assume should look increasingly like the independent case
and as d tends to 1 the relationship should reflect the high
level of similarity to the previously sampled datapoints. We
incorporate these ideas into our assumption in the following
simple way,

∀i ∈ {2, ...,m} E[Zi|Zi−1 = zi−1, ..., Z1 = z1]

= d

∑i−1
k=1 zk

i− 1
+ (1− d)E[Zi]

In the above equation d acts as a slider variable which
controls the influence of the two terms on the right hand side.
As d approaches 0 the conditional expectation depends less
and less on the variables it is conditioned on and eventually
takes the form of an unconditional expectation. On the other
hand, as d approaches 1 the conditional expectation depends
more heavily on the variables it is conditioned on.

From a relational setting point of view, the d is computed
over the data and Zi could be viewed as zero-one loss func-
tions and we would expect any reasonable classification al-
gorithm to give highly correlated errors if the datapoints
are highly similar (i.e. large d) and uncorrelated errors if
they are independent. This is precisely the intuition that
the assumption captures.

Assumption 1 will hold exactly at the extremeties when d
is zero and there is independence or when d is 1 and all the
variables take on the same value giving rise to a martingale.
The assumption is mainly just a simple way of incorporat-

91The joint probability can also be seen as an independent com-
ponent of a larger probability distribution over more variables.

92Since the input-output space is randomly generated, the Zi are
random variables.

ing our intuitions of how the relationship should look with
varying d.

3.2 Assumption 2
In the previous sections we have seen that PMRD’s learn

at the template level and hence, P [A1] = P [A2] = ... =
P [Am] where Ai i ∈ {1, 2, ...,m} denotes the relevant input-
output space for the ith instance. As mentioned before, Zi
is a deterministic function applied to the input-output space
of the ith instance i.e. to Ai. These two facts together imply,
∀z ∈ Z, P [Z1 ≤ z] = P [Z2 ≤ z] = ... = P [Zm ≤ z] where Z
is the range of the random variables. This assumption was
made in [26, 9]. Please note that this does not mean that
the samples are i.i.d. The i.i.d. assumption would require
independence between these random variables in addition to
the distributions being the same. In this paper, however, we
make the much less stringent assumption of just the means
of the Zi being equal, i.e.

E[Z1] = E[Z2] = ... = E[Zm]

This implies that higher (> 1) moments of the Zi are not
required to be equal for proving the second theorem. Hence,
interestingly, the weaker assumption of the expectations be-
ing equal suffices in this case.

4. RESULTS
In this section we first state the general result in Theorem

1 which only requires Assumption 1 to be true. We then
show, how when the strength of dependence is zero, the in-
equality in Theorem 1 reduces to the well known Hoeffding
inequality applicable to bounded independent random vari-
ables. We then customize the general result to our relational
setting in Theorem 2 which requires both the assumptions
in the previous section to be true.

We assume that our sample is of size N and the number of
independent subsets is k, where Ti i ∈ {1, 2, ..., k} represents
the corresponding subset. mi is the number datapoints in
subset Ti. If we order the sample such that datapoints in
Ti precede datapoints in Tj ∀i < j ∈ {1, 2, ..., k} then g(i) is
the offset of the first datapoint in Ti i.e. 1 plus the sum of
all mj such that j < i and assuming m0 = 0.

Theorem 1. Let N points (z1, ..., zN ) be drawn sequen-

tially from P [Z1, ..., ZN ] =
∏k
i=1 Ti where k ∈ {1, ..., N} is

the number of disjoint independent subsets of the random
variables. Let Ti be a joint distribution over mi consecutive
attributes in Z = (Z1, Z2, ..., ZN ) that are dependent such

that
∑k
l=1ml = N and if i < j ∈ {1, ..., k} then the attribute

with the highest index in Ti is strictly less than the attribute
with the least index in Tj. For i ∈ {1, ..., N}, g(r + 1) >

i > g(r) we assume E[Zi|Zi−1, ..., Zg(r)] = dr

∑i−1
j=g(r)

zj

i−g(r) +

(1 − dr)E[Zi] where ai ≤ Zi ≤ bi, g(r) = 1 +
∑r
j=1mj−1

with m0 = 0, mk+1 = 1, r ∈ {1, ..., k}, dr ∈ [0, 1] is the
strength of dependence between attributes in Tr and δ =

maxi,j∈{1,...,N}(bi−aj), then we have for t >
∑k
j=1(mj−1)δdj

N
,

P [|Z̄ − E[Z̄]| ≥ t] ≤ 2e

−2(Nt−
∑k
j=1(mj−1)δdj)

2∑N
j=1

(bj−aj)2

where Z̄ =
∑N
i=1

zi
N

.



Above we have an exponential bound that depends on
the size of the sample (N), the sizes of the subsets of data-
points that are related (mj where j ∈ {1, ..., k}), the auto-
correlation between datapoints in each subset (dj where
j ∈ {1, ..., k}) and the ranges of Zi ([ai, bi]). The inequality

being applicable for t >
∑k
j=1(mj−1)δdj

N
implies that when

the strength of dependence between related datapoints is
high (i.e. dj are close to 1) and the number of independent
subsets is low (i.e. k is close to 1), the probability of the
difference between Z̄ and its expected value being ”small”
is practically 0 and hence the question of the upper bound
being applicable (i.e. less than 1) is reasonable to ask only
for larger values of t. Also note that the Ti being defined
over consecutive random variables is not a constraint since
non-consecutive random variables in a joint probability can
always be made consecutive by reordering them, giving rise
to the same distribution.

Corrolary 1. In Theorem 1 if the dj = 0 ∀j ∈ {1, ..., k}
(i.e. the datapoints are independent) then for t > 0 we have,

P [|Z̄ − E[Z̄]| ≥ t] ≤ 2e

−2N2t2∑N
j=1

(bj−aj)2

which is the Hoeffding inequality.

The derived inequality in Theorem 1 thus has this nice
property that it reduces to a well known inequality in the
independent case. In case of relational data we usually have
a single strength of dependence parameter d for the entire
dataset and all the Zi are the same loss function λ(., .) ∈
[0,M ] (M > 0) applied to each (xi, yi) ∈ X × Y in the
following manner, Zi = λ(ζ(xi), yi). ζ(.) is a classifier that
outputs a class label y ∈ Y .

Theorem 2. If we have relational data, then given a sin-
gle strength of dependence parameter d, a loss function λ(., .) ∈
[0,M ], k independent subsets and assuming E[λ1] = E[λ2] =
... = E[λN ], we have from the setup in Theorem 1 for t >
(N−k)Md

N
,

P [|HE −GE| ≥ t] ≤ 2e
−2(Nt−(N−k)Md)2

NM2

where λi = λ(ζ(xi), yi) ∀i ∈ {1, ..., N}.

Proof. By Assumption 2 we have, E[Z̄] = E[
∑N
i=1

λi
N

] =
1
N

∑N
i=1E[λi] = E[λj ] = GE where λi = λ(ζ(xi), yi) and

i, j ∈ {1, ..., N}. Substituting this result in Theorem 1 we
get Theorem 2.

In the case of relational data Assumption 1 says that for
d close to 1 the (expected) performance of a classifier on a
datapoint is very similar to its performance on related dat-
apoints and for d close to 0 the performance is unrelated
to the performance on these datapoints. The stronger ver-
sion of Assumption 2 says that the probability of sampling
the first datapoint (x1, y1) is the same irrespective of the
marginal it is sampled from.

5. PROOF OF THEOREM 1
Proof. Let N points (f1, ..., fN ) be drawn sequentially

from P [F1, ..., FN ] =
∏k
i=1 Ti where k ∈ {1, ..., N} is the

number of disjoint independent subsets of the random vari-
ables. Without loss of generality, let Ti be a joint distribu-
tion over mi consecutive attributes in F = (F1, F2, ..., FN )

that are dependent such that
∑k
i=1mi = N and if i < j ∈

{1, ..., k} then the attribute with the highest index in Ti
is strictly less than the attribute with the least index in
Tj . For i ∈ {1, ..., N}, g(r + 1) > i > g(r) we assume

E[Fi|Fi−1, ..., Fg(r)] = dr

∑i−1
j=g(r)

fj

i−g(r) + (1 − dr)E[Fi] where

ai ≤ Fi ≤ bi, g(r) = 1+
∑r
j=1mj−1 with m0 = 0, mk+1 = 1,

r ∈ {1, ..., k}, dr ∈ [0, 1] is the strength of dependence be-
tween attributes in Tr. Hence, Ti = P [Fg(i), ..., Fg(i)+mi−1]
and notice that every pair Ti, Tj is independent ∀i, j ∈ {1, ..., k}, i 6=
j.

We will upper bound P [|f̄−E[f̄ ]| ≥ t] by upper bounding
P [f̄ − E[f̄ ] ≥ t] and P [E[f̄ ] − f̄ ≥ t] which have the same
upper bound and then applying union bound. Note that
f̄ =

∑N
i=1

fi
N

and t is strictly positive.

P [f̄ − E[f̄ ] ≥ t] = P [

N∑
i=1

fi −
N∑
i=1

E[fi] ≥ Nt]

Now, I[Z ≥ 0] ≤ ehZ where I[.] is an indicator function,
Z is a random variable and h is any positive real number
(i.e. h > 0). Consequently,

P [

N∑
i=1

fi −
N∑
i=1

E[fi] ≥ Nt]

= E[I[

N∑
i=1

fi −
N∑
i=1

E[fi]−Nt ≥ 0]]

≤ E[eh(
∑N
i=1 fi−

∑N
i=1 E[fi]−Nt)]

= e−hNt
k∏
r=1

E[

g(r)+mr−1∏
i=g(r)

eh(fi−E[fi])]

(1)

The expectations E[
∏g(r)+mr−1

i=g(r) eh(fi−E[fi])] do not fac-

torize as a product of expectations since the respective fi
are dependent. If we let Qi = eh(fi−E[fi]) we have,

E[

g(r)+mr−1∏
i=g(r)

Qi]

= E[Qg(r) · E[Qg(r)+1...E[Qg(r)+mr−1|Qg(r)+mr−2..., Qg(r)]

...|Qg(r)]]

If we are able to upper bound E[Qi|Qi−1, ..., Qg(r)] ∀i ∈
{g(r)+1, ..., g(r)+mr−1} by some value wi independent of
fi−1, ..., fg(r) and E[Qg(r)] by some other value u we would
have,

E[

g(r)+mr−1∏
i=g(r)

Qi] ≤ u
g(r)+mr−1∏
i=g(r)+1

wi (2)

The above inequality could then be used to upper bound
P [f̄ − E[f̄ ] ≥ t]. If Z is a random variable such that a ≤
Z ≤ b and since ehZ is a convex function, then by Jensen’s
inequality we have,



ehZ ≤ b− Z
b− a e

ha +
Z − a
b− a e

hb

Using the above inequality for ∀i ∈ {g(r) + 1, ..., g(r) +
mr − 1} we have,

E[Qi|Qi−1, ..., Qg(r)]

= E[eh(fi−E[fi])|fi−1, ..., fg(r)]

≤ e−hE[fi](
bi − E[fi|fi−1, ..., fg(r)]

bi − ai
ehai

+
E[fi|fi−1, ..., fg(r)]− ai

bi − ai
ehbi)

= ev(h)

where v(h) = −hE[fi]+ln( bi−Ei
bi−ai

ehai+ Ei−ai
bi−ai

ehbi) and Ei =

E[fi|fi−1, ..., fg(r)]. We transform the function v(h) to v(hi)

where hi = h(bi−ai) and si = Ei−ai
bi−ai

. Hence, by assumption

1 we have v(hi) = −hisi+ hi
bi−ai

dr(

∑i−1
j=g(r)

fj

i−g(r) −E[fi])+ln(1−
si + sie

h
i ). We now upper bound the function v(hi) which is

the same as upper bounding v(h) by using Taylors theorem.

Thus we have v(0) = 0, v′(0) = dr
bi−ai

(

∑i−1
j=g(r)

fj

i−g(r) − E[fi]) ≤
dr

δ
bi−ai

where δ = maxi,j∈{1,...,N}(bi − aj). The inequality

is an equality for dr = 0. Hence, we upper bound the second
derivative of v(hi) at 0 i.e. v′′(0) = si(1 − si) ≤ 1

4
. This is

so since si ∈ [0, 1]. Hence, by Taylors theorem we have,

v(h) = v(hi) ≤ drhi
δ

bi − ai
+

1

8
h2
i

= drδh+
1

8
h2(bi − ai)2

Hence from the above two equations and since ez (where
z ∈ (−∞,∞)) is a monotonic function we have ∀i ∈ {g(r) +
1, ..., g(r) +mr − 1},

E[Qi|Qi−1, ..., Qg(r)] ≤ edrδh+
1
8
h2(bi−ai)2 (3)

Note that the right side in the above inequality is not a
function of fi−1, ..., fg(r) and hence the bound on the expec-
tation of products will look like in equation 2. Similarly, we
can now bound E[Qg(r)],

E[Qg(r)] = E[eh(fg(r)−E[fg(r)])

≤ e−hE[fg(r)](
bg(r) − E[fg(r)]

bg(r) − ag(r)
ehag(r)

+
E[fg(r)]− ag(r)
bg(r) − ag(r)

ehbg(r))

= el(h)

l(h) = −hE[fg(r)]+ln(
bg(r)−E[fg(r)]

bg(r)−ag(r)
ehag(r)+

E[fg(r)]−ag(r)
bg(r)−ag(r)

ehbg(r)).

Again rewriting the function l(h) in terms of l(hg(r)) where

hg(r) = h(bg(r) − ag(r)) and sg(r) =
E[fg(r)]−ag(r)
bg(r)−ag(r)

. In this

case l(0) = 0, l′(0) = 0 and l′′(0) ≤ 1
4
. Thus by Taylors

theorem we have,

l(h) = l(hg(r)) ≤
1

8
h2(bg(r) − ag(r))2

Hence from the above two equations and since ez (where
z ∈ (−∞,∞)) is a monotonic function we have,

E[Qg(r)] ≤ e
1
8
h2(bg(r)−ag(r))

2

(4)

Thus by equations 1, 2, 3 and 4 we have,

P [f̄ − E[f̄ ] ≥ t] ≤ e−hNt+
1
8
h2 ∑N

i=1(bi−ai)
2+

∑k
i=1(mi−1)δdih

(5)
Minimizing the above convex function w.r.t. h we have,

h =
4∑N

i=1(bi − ai)2
(Nt−

k∑
i=1

(mi − 1)δdi)

but h > 0 and hence t >
∑k
i=1(mi−1)δdi

N
. Substituting this

value of h into equation 5 we prove the theorem,

P [f̄ − E[f̄ ] ≥ t] ≤ e
−2(Nt−

∑k
j=1(mj−1)δdj)

2∑N
j=1

(bj−aj)2

6. EXPERIMENTS
In this section we compare our bound to other competi-

tive bounds that could be readily applied to the relational
setting. In particular, we compare our STB with the i) Inde-
pendent Test Bound (ITB) [9] and ii) Chromatic Test Bound
(CTB) [15]3. We first test how the STB behaves as a func-
tion of the strength of dependence (d) when the number of
independent subsets (k) is small. The setting where k is
small is more realistic and interesting since, large k implies
that we are close to the iid setting in which case all the
bounds have similar widths. We then test the bound widths
on 2 real relational datasets.

6.1 Studying Trends
In these experiments we observe how the three bounds

namely, CTB, ITB and STB behave with varying d.
We set k to be small which is the case with most real life

relational datasets with the behavior of the three bounds for
this setting being depicted in Figure 3. As we can see the
STB is as tight as the i.i.d. bound when d = 0 and increases
linearly with increasing d. However, the STB is tighter than
the other two bounds for the most part except at very high
levels of auto-correlation (d ≥ 0.9). Note that for the CTB
we considered the size of the largest independent subset to

93We do not apply the Chromatic PAC Bayes bound [26] since
it is very difficult to apply it in practice. In particular, to apply it we
have to first choose a relational classification algorithm, build the
appropriate posterior (Q) on the hypothesis class represented by the
algorithm and then choose the appropriate prior (P ) on this class.
It is not at all clear what this posterior or prior should be for the
state-of-the-art relational classification algorithms. Moreover, the
tightness of the bound would change for the same dataset depend-
ing on the algorithm and hence we would not be able to evaluate the
quality of the bound just in terms of the properties of the dataset,
which is the case for the other three bounds.
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Figure 3: Comparison of bounds at small k with
varying d. HB is the Hoeffding bound if the data
were i.i.d. As we can see the STB outperforms other
bounds everywhere except at very high d. Note that
all values are rounded to two decimal places.

be 334 given that k = 3 and N = 1000. This gives the
tightest possible bound for the given values of k and N .

6.2 Real Data Experiments
We now observe the behavior of the three bounds men-

tioned before on 2 real world datasets namely, Internet Movie
Database (IMDB) (www.imdb.com) and WebKB [7]. Both
of these datasets have been downloaded from the Alchemy
website [16]. Note that if the width of a bound is greater
than or equal to 1 we show the width to be 1 since the bound
is in any case trivial.

IMDB: As the name suggests this dataset has information
about movies, actors, directors etc. Given that we are eval-
uating test set bounds we choose only about 40% of the
dataset on which to apply these bounds. The remaining
60% would generally be used for training some classification
algorithm. With this, the test set size N turns out to be
110. The classification task is to identify the gender of an
actor based on the directors they have worked under. Di-
rectors usually produce movies of a particular genre which
may demand more actors of a certain gender. For example,
action movies may have more male actors. The number of
independent subsets k in this test set turns out to be 4 with
the size of the largest independent subset being 55. The
sizes of the 4 subsets are 55, 26, 14 and 15 with each having
39 males, 13 males, 12 males and 8 males respectively. The
strength of dependence d estimated from the sample for this
dataset is 0.1355.

As we can see in Figure 4, STB is much tighter than CTB
or ITB. The reason for this tightness is due to the depen-
dence of the STB on d and not just k. Hence, though k is
small, a low value of d makes the STB more useful than the
other two bounds.
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Figure 4: Comparison of bounds on two real
world datasets namely, IMDB and WebKB. Cornell,
Texas, Wisc (i.e. Wisconsin) and Washington are 4
datasets which together form the WebKB dataset.

WebKB: This dataset contains webpage and hyperlink in-
formation of 4 computer science departments. These are
computer science departments in Cornell University, Uni-
versity of Texas, University of Wisconsin and University of
Washington. The dataset has 4168 webpages which are
categorized into 7 categories namely, student pages, fac-
ulty pages, departmental pages, instructor pages, course
pages, members of project pages and research project pages.
The classification task is to identify student and non-student
pages. Usually when using this dataset people train on three
of the departments webpages and test on the fourth. Hence,
we have four plots for this dataset where each plot consid-
ers the corresponding department webpages as the test set.
The size of each of these test sets is: N = 867 for Cornell
(128 student pages), N = 828 for Texas (147 student pages),
N = 1267 for Wisconsin (156 student pages) and N = 1206
for Washington (126 student pages). The estimated value
for the strength of dependence for each of these test sets
turns out to be: d = 0.3961 for Cornell, d = 0.325 for Texas,
d = 0.4617 for Wisconsin and d = 0.517 for Washington.
The number of independent subsets k is 1 for all of these
test sets.

As we can see in Figure 4, STB is much tighter than CTB
or ITB. In fact, both CTB and ITB are trivial (i.e. ≥ 1).
Here again the low k and moderate d make the STB a more
desirable alternative.

7. DISCUSSION
In the previous sections we have stated and derived a

bound that depends on the strength of dependence between
related datapoints. As we have seen the Hoeffding inequal-
ity is a special case of our bound when the datapoints are
independent. The situations where our bound is particularly
useful over the other existing bounds for relational data is
when we have very few independent subsets of datapoints
(i.e. low k) and the strength of dependence is low to moder-
ate (i.e. d is close to 0). In these situations our bound would
be able to exploit the weak dependency between these dat-
apoints making it tighter than the existing bounds which
(directly/indirectly) depend on k but not on d. Besides the
two real datasets we applied our bound to, another strik-



ing real life example is social networking websites. Data
from a social networking website is generally in the form
of a huge graph with very few disjoint components (low k).
Most of the people in such a network are linked through
single and multiple hops to many other people very few of
whom are close acquaintances (low d). It is also important
to note that the central result in the paper, allows for multi-
ple auto-correlation values for the same dataset. This means
that recent research where auto-correlation is shown to be a
local phenomenon [1] can be modeled in our framework.

It would be interesting in the future to derive bounds that
are tighter than the ones derived here for high levels of de-
pendence and low values of k but which reduce to known
inequalities in the i.i.d. case. We believe however, that we
have made a reasonable start in this endeavour.
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