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Abstract Statistical Relational Learning (SRL) is a sub-area in Machine Learning

which addresses the problem of performing statistical inference on data that is cor-

related and not independently and identically distributed (i.i.d.) – as is generally as-

sumed. For the traditional i.i.d. setting, distribution free bounds exist, such as the

Hoeffding bound, which are used to provide confidence bounds on the generalization

error of a classification algorithm given its hold-out error on a sample size of N . Bounds

of this form are currently not present for the type of interactions that are considered in

the data by relational classification algorithms. In this paper we extend the Hoeffding

bounds to the relational setting. In particular, we derive distribution free bounds for

certain classes of data generation models that do not produce i.i.d. data and are based

on the type of interactions that are considered by relational classification algorithms

that have been developed in SRL. We conduct empirical studies on synthetic and real

data which show that these data generation models are indeed realistic and the derived

bounds are tight enough for practical use.

Keywords data mining, relational learning, bounds, classification

1 Introduction

Statistical Relational Learning (SRL) [13] deals with modeling uncertainty in relational

data. The primary objective of this sub-area of Machine Learning/Data Mining is to

move away from the independent and identically distributed (i.i.d.) assumption that

is omnipresent in traditional Machine Learning and to start modeling dependencies

between related data instances. One of the key SRL tasks is collective classification.

In collective classification related data instances are classified simultaneously rather

than independently as done in traditional classification. Though there are numerous

Amit Dhurandhar
IBM T.J. Watson
E-mail: adhuran@us.ibm.com

Alin Dobra
University of Florida
E-mail: adobra@cise.ufl.edu



2

relational classification algorithms [34,38,12,26,24] developed in literature, the current

state of theory – distribution free bounds, for relational domains is still in its infancy.

The need for deriving such bounds for the relational setting has been expressed in [17,

13].

In Machine Learning, distribution free bounds are used to bound the empirical

error (test or training error) of a classifier with respect to (w.r.t.) its generalization

error. The generalization error of a classifier is defined as the expected error of a

classifier on the entire input. The expectation is w.r.t. the underlying joint distribution

of the available data or sample. The generalization error is thus the true error of a

classifier. Knowing the generalization error is an invaluable piece of information as it

helps us evaluate a particular classifier and appropriately choose the best classifier if

multiple options are available. In reality though, this error cannot be computed directly,

since the underlying joint distribution of the sample is practically never known. The

empirical error on the other hand can be computed from the sample. Distribution

free bounds relate these two errors by providing us with probabilistic estimates for

the generalization error given the empirical error without knowledge of the underlying

joint distribution. This is the primary reason for deriving such bounds [16,39,10,6,23,

22]. A common characteristic of all of these bounds is that they assume the data is

i.i.d. This is a strong assumption on the underlying distribution or the data generation

process as it ignores interactions that may exist between datapoints. In this paper we

forgo the i.i.d. assumption and derive Hoeffding style bounds [16] on the generalization

error in the presence of interactions between data instances.

1.1 Specific Contributions

The specific contributions we make in this paper are:

1. We derive distribution free bounds for the generalization error of classification

algorithms, where the data generation models produce non-i.i.d. data. The first and

a key step in deriving such bounds is to characterize the data generation process.

We define 2 classes of data generation models namely; C1 and C2 which consider

fixed size interactions and variable size interactions respectively. We motivate and

elaborate on these models in the next couple of sections.

2. We explain what the bounds convey and their relation to effective sample size [18].

In [18], the authors introduced this notion and empirically observed it for the rela-

tional setting. Particular terms in the bounds that we derive for the generalization

error, can be interpreted as lower bounds on this quantity. Though the primary

goal of this work is to obtain bounds on the generalization error in the relational

setting, the relation to effective sample size is a direct consequence of the derived

formulae.

3. To obtain an intuitive feel for the behavior of the derived bounds, we empiri-

cally evaluate them w.r.t. increasing size of the interactions, increasing dataset size

N and increasing number of interactions. We also show how the derived bounds

are applicable in real settings. We accomplish this by conducting experiments on

synthetic and real data where we train a state-of-the-art relational classification

algorithm and then apply the derived bounds to the estimated error.

The remainder of the paper is organized as follows: In Section 2 we explain certain

basic concepts and motivate the data generation models considered in this paper. In
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Fig. 1 a) represents a relational schema with object types, Paper and Author. The relationship
between them is many-to-many. The rounded boxes linked to these object types denote their
respective attributes. b) is the corresponding data graph which shows authors linked to the
papers that they authored or co-authored.

Section 3 we explain why we chose the Hoeffding bound to be extended to the relational

setting. In Section 4 we formally define the class of data generation models namely;

C1 and C2. In Section 5 we review related work. In Section 6 we initially provide some

previously known results, then state the derived inequalities in Lemmas 1 and 2 and

provide proofs for the Lemmas 1 and 2. In Subsection 6.3 we explain the semantics

of the derived inequalities and state their relation to effective sample size. In Section

7 we empirically evaluate the bounds on synthetic and real data. In Section 8 we

mainly discuss strategies to derive tight bounds. We conclude in Section 9 wherein we

summarize the major findings in this paper.

2 Preliminaries and Motivation

As we mentioned in the introduction, a key step in deriving distribution free bounds is

to characterize the type of interactions between interacting datapoints which in turn

will determine the structure of the data generation models. To motivate the data gen-

eration models that we consider in this paper, we first review the characteristics of

relational data and discuss the type of probability distributions learned over this data

by state-of-the-art relational classification algorithms. These distributions motivate the

data generation models for which we derive bounds.

Relational data: Relational data consists of objects and the relationships between

these objects are termed as links. Each object and link have a type associated with

them. Objects or links of the same type have the same set of attributes. Relational

data can be represented at the type level by a graph which is called a relational schema

whereas relational data represented at the individual object and link level as a graph

is called a relational data graph (or instance graph) [24], wherein the vertices are the

objects and the edges are the links. An example relational schema and the correspond-

ing data graph (i.e. the actual dataset) are shown in Figures 1a and 1b respectively.

The relational schema has 2 object types namely; Paper and Author. The data graph

shows 2 authors linked to the papers they authored or co-authored.

Probabilistic Models over Relational Data: Probabilistic Models over relational

data (PMRD) [13] are structured graphical models that are used to handle uncertainity

in relational domains. A PMRD represents a joint distribution over the attributes of a
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Fig. 2 Above we see a disconnected data graph with 2 components of variable size (i.e. size
2 component on the left and size 4 component on the right).

data graph. Consider Figure 1a where the object type Paper has 2 attributes, Title and

Area which imply the title of the paper and the research area it belongs to respectively.

Let the attribute Area be the class label i.e. we want to classify papers based on their

research area. The object type Author has attributes Paper Title and Age, which

relates a particular paper to the ages of the authors that wrote it. The Title attribute

(a primary key) in Paper is the same as the Paper Title attribute (a foreign key) in

Author. Hence, each Paper object has 3 attributes namely; Title, Area and Age. The

attributes Title and Area are called intrinsic attributes as they belong to object type

Paper and the attribute Age is called a relational attribute since it belongs to a different

linked object type Author. Each paper can have variable number of authors and thus

each paper would be associated with multiple values of Age. A popular solution to this

problem is to aggregate the values of the attribute Age of Author into a single value

such that each paper is associated with only a single Age value. An aggregation function

such as average over the ages of the related authors for each paper can be used. Now

instead of the Age attribute we can introduce a new attribute AvgAge which denotes

average age. With this the attributes of Paper object are; Title, Area and AvgAge.

Hence, the joint distribution represented by a PMRD on the data graph in Figure 1b

is,

P [T itle1, Area
1
, AvgAge

1
, T itle

2
, Area

2
, AvgAge

2
, T itle

3
, Area

3
, AvgAge

3]

where the superscripts {1, 2, 3} denote the corresponding Paper objects. Since in Figure

1b we have paths connecting the 3 papers (through authors), we have 3 copies of the

same attributes (which may have different values) in the joint distribution.

The data graph in Figure 1b is connected. It is possible in some other case that

the data graph is actually disconnected. This is shown in Figure 2. Let Ai denote the

attribute set {T itlei, Areai, AvgAgei} of the ith Paper object. The joint distribution

over the data graph in Figure 2 is,

P [A1, A2, ..., A6] = P [A1, A2]P [A3, A4, A5, A6]

Since the data graph has 6 Paper objects, we have 6 copies of the attributes. More-

over, there are 2 disconnected components in the graph, one with 2 Paper objects

and the other with 4 Paper objects. Consequently, the joint probability distribution

P [A1, A2, ..., A6] factorizes as a product of 2 independent distributions P [A1, A2] and

P [A3, A4, A5, A6]. Notice that in the extreme case if we had all 6 Paper objects dis-

connected the data would be treated by a PMRD as i.i.d. since there would be no
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Fig. 3 Above we see a disconnected data graph with 2 components of size 3 (since each
component has 3 Paper objects).

interactions between any two or more papers. In this case the joint distribution would

factorize as follows,

P [A1, A2, ..., A6] = P [A1]P [A2]P [A3]P [A4]P [A5]P [A6]

Since each of the 6 factorized probabilities have the same set of attributes the prob-

ability distribution determined by them are the same and the distribution for such a

setting is completely characterized by any single P [Ai] (i ∈ {1, ..., 6}). Extending this

idea to the case where we have multiple components of the same size, the distribution

would be completely characterized by the probability distribution over the attributes

of any single component. For example in Figure 3 the data graph has 2 components of

size 3 (since each has 3 Paper objects). The joint distribution over this data graph is

given by:

P [A1, A2, ..., A6] = P [A1, A2, A3]P [A4, A5, A6]

but is completely characterized by P [A1, A2, A3] or P [A4, A5, A6], since both have the

same set of attributes (i.e. are over the same space) and represent the same distribution.

We have thus observed that joint distributions over relational data can be over a

single set of interactions (i.e. one component connected graph) which results in a single

joint probability over all the attributes or multiple sets of independent interactions

(i.e. multiple component disconnected graph) which results in factorization of the joint

probability into independent distributions. If the independent sets of interactions are

of the same size (called fixed size interactions), the joint probability is completely

characterized by any of the independent distributions. We consider the scenario wherein

we have fixed size interactions separate from the more general scenario wherein we

have interactions are of arbitrary size, since the ideas used to derive bounds for the

data generation models in the first scenario make it easier to follow the proof for the

bounds derived for the data generation models in the second scenario. Moreover, certain

datasets may have fixed size interactions in which case the bound derived for this case

can be directly applied. A major portion of the rest of the paper is devoted to deriving

bounds for joint distributions or data generation models belonging to these 2 scenarios.

3 Why extend the Hoeffding Bound?

In [22] there is an extensive review of different types of distribution free bounds that

are prevalent in Machine Learning. The author categorizes each bound into one of
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Fig. 4 Class C1: Fixed size in-
teractions between datapoints of
size 3.

Fig. 5 Class C2: Variable size inter-
actions between datapoints of sizes 3,
4, 5.

the two categories namely; as a test set bound or as a training set bound1. As the

name suggests test set bounds bound the error over the test set by considering that

the error has a binomial distribution. A good approximation to this bound in the

agnostic setting is the Chernoff bound [8] and the related Hoeffding bound. A training

set bound on the other hand bounds the training error w.r.t. the generalization error.

Well known examples of this type of bound are the Vapnik-Chervonenkis bounds (VC

bounds) [39], Probably Approximately Correct Bayes bounds (PAC Bayes bounds)

[23], Occam’s Razor bounds [7], Sample Compression bounds [11] and Rademacher

Complexity bounds [4]. The author infers from the comparison of these two categories

that test set bounds are generally much tighter than training set bounds and are a

superior tool in reporting error rates. The derivation of the test set bound however,

requires that the probability of errors on individual inputs be independent and identical

to each other. This assumption is central to the proof of these bounds and seems almost

impossible to relax. Hence, the natural alternative that we can aim at extending to the

relational setting are the approximations to these bounds which are the Chernoff and

Hoeffding bounds.

In this paper we extend the Hoeffding bound to the relational setting. Another

advantage of extending this bound besides the one mentioned above is that the amount

of information required to compute it is minimal and simple to obtain – N the number

of i.i.d. random variables (i.e. test set size) and the range of the random variables

(generally [0, 1]) – as opposed to the other bounds (for example Chernoff bound requires

computation of Kullback-Leibler divergence). Moreover, it decreases exponentially with

increasing N which makes it tighter than other similar bounds [16]. Considering all of

these facts extending the Hoeffding bound seems to be a reasonable initial step in

deriving useful distribution free bounds for relational data.

4 Data Generation Models

In section 2 we observed the type of joint probability distributions or data generation

models that a PMRD aims to characterize over a relational data graph. It was seen

1 Some bounds lie in both categories and can be useful in specific circumstances.
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that a relational data graph provides the underlying structure to the joint probabil-

ity distribution represented by a PMRD. The goal of the paper is to derive Hoeffding

style inequalities for such data generation models. The resulting inequalities will bound

the appropriately defined test error w.r.t. the generalization error of the classifier in

question. The bounds however, depend on the structure of the underlying probabilistic

space which needs to be characterized first, if we are to derive them. Hence, we now

formally define the data generation models that characterize the underlying probabilis-

tic space and derive the relevant bounds later. The data generation models we consider

are motivated from models seen in section 2.

Given N datapoints (i.e. objects. Paper object in our example above) in a d dimen-

sional space (this includes intrinsic as well as relational attributes) and considering that

all the N points interact with each other (i.e. one connected component in the data

graph), the resultant data generation process which accurately models this scenario

has the following form, P [X1
1 , ..., X

1
d , ..., X

N
1 , ..., XN

d ] where X
j
i is the jth copy of the

ith attribute. This is the full-fledged data generation model wherein every datapoint

interacts with every other datapoint. The parameter space of this model is O(vNd) as

opposed to O(vd) in the usual i.i.d. setting where say v is the number of distinct values

of each attribute. Thus, the full-fledged data generation model and the i.i.d. model

occupy two ends of a spectrum consisting of other generation models which consider

limited (i.e. interactions not between all datapoints but between smaller partitions)

but non-trivial (i.e. there is atleast one pair of datapoints which are dependent) inter-

actions. With this we now define two classes of data generation models which include

models in this spectrum. We refer to the models in class 1 as C1 models and analogously

those in class 2 as C2 models.

1. C1 models: The C1 data generation models consider interactions of fixed size. This

means that the joint distributions considered by models in this class are over data

graphs that have one or more components with the same number objects of the

object type that is to be classified.

For example, the distribution over the data graph in Figure 1b wherein 3 papers

are linked belongs to this class. If the data graph had multiple components of 3

papers linked through authors as in Figure 3 then the distribution over this data

graph also belongs to this class since the overall joint distribution factorizes into

independent distributions with the same attributes making them identical to each

other. On the other hand the distribution over the data graph in Figure 2 does not

belong to this class since there exist variable size interactions (i.e. one component

with 2 Paper objects linked and another with 4 Paper objects linked). An example

of sets of 3 datapoints interacting with each other is shown in Figure 4.

The data generation model representing this scenario has the following form,

P [X1
1 , ..., X

1
d , ..., X

3
1 , ..., X

3
d ]. Notice that a set of 3 points in the original d dimen-

sional space is a single sample from this 3d parameter distribution. Moreover, each

such sample is i.i.d. from this new distribution. In the general case the 3 can be

any number 1 ≤ m ≤ N with the data generation model having the following form,

P [X1
1 , ..., X

1
d , ..., X

m
1 , ..., Xm

d ].

2. C2 models: The next type data generation models we consider are more general

than the above model. Here we consider interactions of arbitrary size. The joint

distribution over the data graph in Figure 2 belongs to this class. Thus, we can

have a set of 5 points interacting, a set of 4 points interacting and a set of 3 points
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interacting as can be seen in Figure 5. The data generation model has the following

form,

P [X1
1 , ..., X

1
d , ..., X

N
1 , ..., X

N
d ] =

P [X1
1 , ..., X

1
d , ..., X

j
1 , ..., X

j
d
]·

P [Xj+1
1 , ..., X

j+1
d

, ..., X
i
1, ..., X

i
d]·

... · P [Xk
1 , ..., X

k
d , ..., X

N
1 , ..., X

N
d ]

where 1 ≤ j < i < k and i, j, k ≤ N .

Notice that the i.i.d. data generation model and the full-fledged model both lie in

C1 and C2.

4.1 Assumption

An important thing to note is that considering the structure of our problem where

we have copies of the same attribute occuring as many times as the size of the in-

teractions, the marginal probabilities over the attributes of the interacting datapoints

can be assumed to be equal. In other words, we have copies of the same attribute

interacting with each other and hence, if we consider each of these copies in isolation,

they should have the same type of behavior. Formally, the data generation process

P [X1
1 , ..., X

1
d , ..., X

N
1 , ..., XN

d ] where X
j
i is the jth copy of the ith attribute, can be

factorized in the following possible ways (not an exhaustive list),

P [A1, ..., AN ] = P [A1]P [A2|A1]...P [AN |AN−1, ..., A1]

= P [A2]P [A1|A2]...P [AN |AN−1, ..., A1]

·

·

·

= P [AN ]P [A1|AN ]...P [AN−1|AN , AN−2, ..., A1]

where Ai (input-output space of the ith datapoint or the ith copy of the attributes)

denotes the set {Xi
1, ..., X

i
d} (i ∈ {1, ..., N}). If we sample from the above joint distri-

bution using the factorization, the first sample would either be drawn from P [A1] (if

the first factorization is used) or P [A2] (if the second factorization is used) or some

other P [Aj ] (if the jth factorization is used) depending on the factorization used. The

probability of the first sample in the original d dimensional space should be the same

irrespective of which set of copies of attributes are used to obtain it. Consequently, we

make the following assumption,

P [A1] = P [A2] = ... = P [AN ]

Note that the above assumption does not imply that the data is i.i.d. since the data

generation process is given by the joint distribution P [A1, ..., AN ] with interactions

between various Ai (i ∈ {1, ..., N}). The assumption only implies that the respective

marginals are equal. In other words, the data being i.i.d. ⇒ P [A1] = P [A2] = ... =
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P [AN ] but P [A1] = P [A2] = ... = P [AN ] does not ⇒ that the data is i.i.d. since the

joint probability may not factorize as a product of the individual probabilities.

For example in Figure 1b where the joint distribution over the data graph is

given by: P [T itle1, Area1, AvgAge1, T itle2, Area2, AvgAge2, T itle3, Area3, AvgAge3]

where the superscripts {1, 2, 3} denote the corresponding copies of the attributes of

Paper, we assume that P [T itle1, Area1, AvgAge1] = P [T itle2, Area2, AvgAge2] =

P [T itle3, Area3, AvgAge3] which certainly does not imply that the respective copies

of attributes are independent w.r.t. each other.

In fact the above assumption is implicitly made by a PMRD since it learns at the

type level [13]. We will use the above result in deriving the bounds.

5 Related Work

Distribution free bounds other than those given by Hoeffding exist in literature. Amongst

the more popular is the Markov inequality [30,15] and the Chebyshev inequality [30,

15] which bound a random variable to its mean. The Hoeffding inequality though, gives

tighter bounds than these two inequalities in most cases [16]. Other such inequalities

are given by Chernoff [8], Bennett [5], Okamoto [29]. Comparison of these inequalities

is given in [14], [36] and [5]. Distribution free bounds on the generalization error of a

classifier are provided by Vapnik [39]. In [10] distribution free bounds are provided for

the k-nearest neighbor algorithm. In [3] improved PAC Bayes bounds are provided for

a class of linear classifiers. These bounds are tighter than the ones previously intro-

duced in [23]. In [6] bounds are provided for a validation technique called progressive

validation which are tighter than those for hold-out-set validation. The derivation of

these bounds uses Hoeffdings inequality thus portraying its widespread use in Machine

Learning. A common characteristic of all of these bounds applied to classification al-

gorithms is that they assume the data is i.i.d.

A plethora of learnability results (both positive and negative) have been proven

for restricted classes of inductive logic programs [9,32,2,1]. The learnability results are

primarily based on two formal models of learning namely; PAC learning and learning

from equivalence and membership queries. In [32] non-monotonic inductive logic pro-

grams are shown to be efficiently PAC learnable. Non-inductive logic programs are a

special class of clausal theories wherein each clause has a finite number of literals of

finite size. In [2,1] learnability results are proven for a restricted class of Horn clauses

based on the equivalence and membership learning model.

Probabilistic bounds also exist when k-wise independence is assumed between ran-

dom variables. k-wise independence is a limited notion of independence where any set of

k (or fewer) random variables are assumed to be independent from a total of n random

variables (k ≤ n). Bounds assuming k-wise independence are given in [37] which extend

the ideas given by Chernoff and Hoeffding. The use of these bounds is in applications

where pseudo-randomness is assumed. One example application area is Sketches where

binary random variables are assumed to be either 2-wise, 3-wise or 4-wise independent

[35]. In this paper though, the type of interactions that we described in the introduc-

tion are significantly different from k-wise independence and hence theory needs to be

developed for this setting.
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6 Deriving Bounds

In this section we derive bounds for the data generation models defined in C1 and C2.

We first state the Hoeffding’s inequality,

Theorem 1 If X1, X2, ..., Xn are independent and ai ≤ Xi ≤ bi (i = 1, 2, ..., n), then

for t > 0

P [X̄ − µ ≥ t] ≤ e
−2n2t2

∑n
i=1

(bi−ai)
2

where X̄ =
∑

i Xi

n and µ = E[X̄]. When the Xi’s are also identically distributed

the above inequality, bounds the difference between the average and mean (µ) of the

n i.i.d. random variables. The primary use of such inequalities is to derive confidence

bounds on the mean.

In the traditional setting in Machine Learning, we assume that the data is drawn

i.i.d. from a distribution P [X,Y ] where X is the input space and Y the output space.

A classifier ζ(.) takes as input a particular x ∈ X and outputs a particular class label

y ∈ Y . The error function most commonly used to calculate the error made by a

classifier on a particular input is the 0-1 loss function which we denote by λ(., .). The

0-1 loss function takes as input two parameters. It outputs a 0 if the two parameters

are equal else if the parameters are unequal it outputs a 1. Thus, if the parameters

of the loss function are ζ(x) and the actual label of x is y, then λ(ζ(x), y) = 0 when

ζ(x) = y and λ(ζ(x), y) = 1 otherwise. The expected value of λ(ζ(x), y) over X × Y

space is defined as the generalization error (GE) of the particular classifier ζ. Formally,

GE = E[λ(ζ(x), y)] (1)

The empirical error (HE) computed over a test set of size N is given by, HE =
∑N

i=1 λ(ζ(xi),yi)
N where xi ∈ X and yi ∈ Y and yi is the label of xi. Since, the (X,Y)

are i.i.d. and λ(., .) is a deterministic function, λ(., .) applied to each ζ(x) and y are

also i.i.d. Moreover, GE = E[HE]. This equality is a result of linearity of expectation.

Given this, we can apply the Hoeffding inequality to bound the empirical error with

the GE. The bound is as follows,

P [HE −GE ≥ t] ≤ e
−2Nt2 (2)

Notice that λ(., .) takes values only 0 or 1 which leads to the simplification on the

right hand side of the inequality.

With this brief review of the Hoeffding inequality and its application to Machine

Learning, we are now ready to first state and later derive bounds for the generative

models in C1 and C2.

6.1 Results for C1 and C2 Models

Deriving bounds for C1 and C2 models can be useful in bounding the error of classifi-

cation algorithms on relational data obtained from real life settings. As seen before, the

type of distributions encompassed by C1 and C2 models include but are not limited

to the standard iid distributions and hence the bounds we derive are generalizations
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of the Hoeffding bound. Without these generalizations, we cannot directly apply the

Hoeffding bound to relational data.

Though the derived bounds are an extension of Hoeffding’s inequality, their deriva-

tion poses non-trivial technical challenges. In the traditional i.i.d. setting the Hoeffding

inequality bounds the empirical error (i.e. the test error) of a classifier with its general-

ization error (i.e. expected value of empirical error). Since in the relational setting too,

we wish to derive bounds w.r.t. the generalization error, we need to come up with an

estimator from the sample whose expected value is the generalization error. Though

this estimator is the usual empirical error for C1 models, it is different for C2 models.

The construction of the estimator for C2 models, is part of the proof in which we derive

bounds for these models. Moreover, we have to ensure for these bounds to hold that

the individual random variables that sum up to produce these estimators are inde-

pendent and have the same expected value. This constraint of the random variables

being independent and having the same mean is a subtle observation on our part for

the Hoeffding inequality used to bound the generalization error to hold and is weaker

than the i.i.d. constraint2 which is generally considered as necessary for the bound

to be applicable in Machine Learning. This observation is absolutely essential in the

derivation of the bound for C2 models.

Lemma 1 Assume we have interactions of size m between datapoints. The correspond-

ing data generation model is given by, Pm = P [X1, Y1, ..., Xm, Ym] where Xi is the

input space and Yi is the output space (1 ≤ i ≤ m) of the ith interacting datapoint

(or the ith copy of attributes). Let s samples be drawn from this distribution such that

N = ms, which is the number of datapoints in the original space. Then given that

P [Xi, Yi] = P [Xj , Yj ] ∀i, j ∈ {1, ..., m} we have,

P [HE −GE ≥ t] ≤ e
−2Nt2

m

where HE =
∑N

i=1 λ(ζ(xi),yi)
N ((xi, yi) are the N datapoints) and GE = E[λ(ζ(x), y)].

It can be seen that the bound becomes loose for a fixed N as the size of the

interaction m between datapoints increases. This is expected since the parameter space

of the generating model increases with increasing interaction.

Lemma 2 Assume that we have r independent interactions of datapoints of size m1,m2, ..., mr

such that m1 + m2 + ... + mr = N where N is the total number of datapoints. The

corresponding data generation model is given by,

P [X11, Y11, ..., Xmrr, Ymrr]

= P [X11, Y11, ..., Xm11, Ym11]P [X12, Y12, ..., Xm22, Ym22] · ...

· P [X1r, Y1r, ..., Xmrr, Ymrr]

where Xij is the input space and Yij is the output space of the ith datapoint (or ith

copy of attributes) in the jth set of interactions (j ∈ {1, ..., r} and i ∈ {1, ..., mj}).

A sample from this distribution produces N datapoints in the original space. Let Tj =∑mj

i=1 λ(ζ(xij , yij)) where j ∈ {1, ..., r} and Qj = kjTj where kj = l
mj

and l is the

least common multiple of m1,m2, ..., mr. Then given that P [Xij , Yij ] = P [Xfg , Yfg ]

∀j, g ∈ {1, ..., r}, ∀i ∈ {1, ..., mj} and ∀f ∈ {1, ..., mg} we have

2 Higher moments of each of the random variables in the sum may vary
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P [HE
′ −GE ≥ t] ≤ e

−2rt2

where HE′ = 1
lr

∑r
j=1 Qj and GE = E[λ(ζ(x), y)].

The above inequality can be used to derive confidence bounds on GE since HE′ is

a function of the sample and can be easily computed. Notice that in the i.i.d. setting

the above inequality reduces to equation 2. The remainder of this section is dedicated

towards proofs of the above 2 Lemmas.

6.2 Proofs

We start of with the main idea used in proving Lemmas 1 and 2 and then provide

detailed proofs for the same.

Central theme: We know that the Hoeffding inequality, bounds X̄ with E[X̄].

Since, we want to find bounds on the GE of classification algorithms, the main theme

in the proofs is finding the appropriate X̄ whose expected value is GE i.e. E[X̄] = GE.

With this basic theme in mind, we now present the proofs for the above 2 Lemmas.

Proof Here is the proof for Lemma 1. Assume that we have interactions of size m i.e

exactly sets of m datapoints are correlated. The generative model which captures this

scenario is given by, Pm = P [X1, Y1, ..., Xm, Ym] where Xi is the input space and Yi
is the output space (1 ≤ i ≤ m) of the ith interacting datapoint. A sample from this

distribution produces m datapoints in the original space. Consider s samples drawn

from this distribution (which makes them i.i.d.) such that ms = N . We thus have N

datapoints. The empirical error (HE) of a classifier on this dataset is then given by,

HE =
1

N

s∑

j=1

m∑

i=1

λ(ζ(xij), yij) (3)

where xij and yij (i ∈ [1, .., m] and j ∈ [1, ..., s]) are values of Xi and Yi respectively,

in the jth sample.

Note that Tj = λ(ζ(x1j), y1j) + ... + λ(ζ(xmj), ymj) where j ∈ {1, ..., s}] is a

deterministic function of the sample x1jy1j ...xmjymj obtained from Pm. Since, the

s samples from Pm are i.i.d., any deterministic function applied to each of them is

also i.i.d. Hence, the Tj ’s where j ∈ {1, ..., s} are i.i.d. By grouping terms together in

equation 3 we can rewrite HE as,

HE =
1

N

s∑

j=1

Tj (4)

Remember that the Hoeffding inequality bounds HE w.r.t. E[HE]. In the tradi-

tional i.i.d. setting the E[HE] = GE, consequently we were able to bound HE with

GE. Is this true even in our setting ? The answer is affirmative as we show below.

E[HE] =
1

N
E[

s∑

j=1

m∑

i=1

λ(ζ(xij), yij)]

By linearity of expectation we have,
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E[HE] =
1

N

s∑

j=1

m∑

i=1

E[λ(ζ(xij), yij)]

By our assumption that the marginals P [Xi, Yi] where i ∈ {1, ..., m} are equal

to each other it follows that E[λ(ζ(xij), yij)] are also equal to each other where i ∈

{1, .., m}, j ∈ {1, ..., s}. Moreover, E[λ(ζ(xij), yij)] = GE ∀i ∈ [1, ..,m], j ∈ [1, ..., s] by

definition. Thus we have,

E[HE] =
ms

N
GE

=
N

N
GE

= GE

(5)

From equation 4 we know that HE is the average of s i.i.d. random variables Tj
(though each Tj is the sum of dependent random variables) lying in the range [0,m]

where j ∈ {1, .., s} divided by m. Thus, mE[HE] = E[1s
∑s

j=1 Tj ]. Thus, the Hoeffding

inequality in this scenario is given by,

P [
1

s

s∑

j=1

Tj − E[
1

s

s∑

j=1

Tj ] ≥ t] ≤ e
−2st2

m2

the above equation can be rewritten as,

P [
1

s

s∑

j=1

Tj −mGE ≥ t] ≤ e
−2Nt2

m3

The above equation is sufficient to obtain confidence bounds on GE, since the

Tj ’s are just functions of the sample and can be computed directly from the sample.

However, we further simplify the inequality, using equation 4,

P [HE −GE ≥
t

m
] ≤ e

−2Nt2

m3

We can assign t′ = t
m , since m is a constant given the data generation model. With

this we have,

P [HE −GE ≥ t
′] ≤ e

−2Nt′2

m

which is the desired inequality.

Proof We now present the proof for Lemma 2. Assume that we have r independent

interactions of datapoints of size m1,m2, ..., mr such that m1 + m2 + ... + mr = N

where N is the total number of datapoints. A distribution (i.e. data generation model)

that models this scenario has the following form,

P [X11, Y11, ..., Xmrr, Ymrr]

= P [X11, Y11, ..., Xm11, Ym11]P [X12, Y12, ..., Xm22, Ym22] · ...

· P [X1r , Y1r, ..., Xmrr, Ymrr]
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where Xij is the input space and Yij is the output space of the ith datapoint in the jth

set of interactions (j ∈ {1, ..., r} and i ∈ {1, ..., mj}). A sample from this distribution

produces N datapoints in the original space. The empirical error computed over these

N datapoints is given as by,

HE =
1

N

r∑

j=1

mj∑

i=1

λ(ζ(xij , yij))

where xij and yij are values of Xij and Yij respectively, in the sample.

As in the proof of Lemma 1 let Tj =
∑mj

i=1 λ(ζ(xij , yij)) where j ∈ {1, ..., r}. The

empirical error is thus given by,

HE =
1

N

r∑

j=1

Tj

Notice here though, that unlike in the case of Lemma 1 where the Tj ’s were i.i.d.,

the Tj ’s here are independent but not identically distributed. Hence, in this case we

cannot directly apply the Hoeffding inequality as we did in the previous case.

We know that each Tj is the sum of mj 0-1 loss functions, thus Tj ∈ [0, mj ]. We

define new random variables Qj such that Qj = kjTj where kj = l
mj

and l is the least

common multiple of m1,m2, ..., mr. Notice that since Qj is a multiple of Tj and Tj
can be computed from the sample, hence Qj can also be computed from the sample.

Moreover, though the Qjs are not identically distributed, they are independent as the

Tjs but additionally their mean is identical i.e. E[Qj ] is the same ∀j ∈ {1, ..., r}3. We

define another random variable HE′ (pseudo-empirical error) as follows,

HE
′ =

1

lr

r∑

j=1

Qj

We now derive the relationship between the expected value of E[HE′] and GE

using linearity of expectation and the assumption that the marginals P [Xij , Yij ] are

equal ∀i ∈ {1, ..., mj}, j ∈ {1, ..., r}.

E[HE
′] =

1

lr

r∑

j=1

E[Qj ]

=
1

l
E[Qj ]

=
kj

l
E[

mj∑

i=1

λ(ζ(xij), yij)]

=
1

mj

mj∑

i=1

E[λ(ζ(xij), yij)]

=
1

mj

mj∑

i=1

GE

= GE

3 The assumption of the marginals P [Xij , Yij ] being equal ∀i, j aids in the expected values
being identical.
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A subtle point regarding Hoeffding inequality is that the assumption of the random

variables being i.i.d. to bound the average and their mean is an overkill. The inequality

holds good even with the weaker assumption that the random variables are independent

and have the same mean (other higher moments may vary). This can be seen by

carefully examining the proof of Theorem 1 [16]. Thus, we can bound HE′ and E[HE′]

which is GE using the fact that Qj ∈ [0, l] ∀j ∈ {1, ..., r} are independent and have

the same mean. Thus,

P [
1

r

r∑

j=1

Qj − E[
1

r

r∑

j=1

Qj ] ≥ t] ≤ e
−2r2t2

rl2

we know that HE′ = 1
lr

∑r
j=1 Qj and that the E[HE′] = GE. With this we have,

P [HE
′ −GE ≥

t

l
] ≤ e

−2rt2

l2

Here too we can assign t′ = t
l , since l is a constant given the data generation model.

We thus have,

P [HE
′ −GE ≥ t

′] ≤ e
−2rt′2

which is the desired result.

6.3 Derived inequalities and effective sample size

From Lemmas 1 and 2 we can see that the quality of the bound (i.e. its tightness)

depends on the number of independent interactions rather than just the number of

datapoints (N), which is the case in the i.i.d. setting. The reason for this is that such

distribution free bounds are generally pessimistic i.e. the bound is derived assuming

the worst possible behavior in the respective setting. Such bad behavior in our setting

equates to having extremely high correlation between interacting datapoints. In the ex-

treme case the correlation would be 1, which is equivalent to having just one datapoint

in every set of interactions which makes the effective dataset size to be equal to the

number of independent interactions. This notion of effective sample size was first intro-

duced in [18], where the authors empirically observed the value of this quantity with

varying amounts of auto-correlation (correlation between the same attribute in linked

datapoints) and linkage (expected size of the interactions). They observed that with

increasing linkage and auto-correlation the effective sample size reduced. A key aspect

of the inequalities we derive is that, this notion of effective sample size directly pops

out of our theory. In particular, the quantity N
m or r (i.e. the number of independent

interactions) serves as a conservative lower bound on the effective sample size.

7 Experiments

In the previous section we derived distribution free bounds for data generation models

belonging to classes C1 and C2. We bounded the GE with HE (empirical error) for

C1 models and the GE with HE′ (pseudo-empirical error) for C2 models. Moreover,

we related the derived inequalities to the notion of effective sample size. In this sec-

tion we empirically evaluate the quality of these bounds on synthetic as well as real
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datasets. The experiments also show that a probability distribution over a given rela-

tional dataset which is consistent with the datasets connectivity can be modeled by

the data generation models discussed in this paper.

7.1 Goals

1. Application of the bounds in realistic settings: We show that the data gen-

eration models considered in this paper are realistic and consequently the data

generated by them can be used to train state-of-the-art relational classification al-

gorithms. In addition, we show that the derived inequalities can be used to bound

the GE of a classifier trained on real datasets.

2. Intuitive appeal of the derived inequalities: The experiments provide an

intuitive feel of how the bounds behave in various settings, which points to circum-

stances when they are truly useful.

7.2 Factors affecting/not affecting the bound

Considering the above goals, it is pertinent that we clearly state what affects the

tightness of the bound and what does not. This will aid us in designing experiments that

help us attain our goals without unnecessarily complicating the respective experimental

setups.

The following is a list of things that do not affect the quality of the bound but can

be misconstrued to do so.

1. The number of attributes or dimensionality (d) of the space. This includes intrinsic

as well as relational attributes.

2. The number of values of each attribute.

3. The particular classification algorithm.

4. The particular joint distribution. That is to say the specific probabilities of observ-

ing each input-output pair does not affect the bound.

The bound only depends on the underlying structure of the joint distribution which

in turn depends on the test set or the inference graph [13]. An inference graph consists

of objects and links just as a data graph. The only difference between the 2 graphs

is that while a data graph represents the training set for a relational classification

algorithm, the inference graph represents the test set. The structure of the inference

graph provides information about the number of independent interactions which affects

the tightness of the derived bounds.

7.3 Accomplishment of goals

To achieve the above stated goals we perform experiments on synthetic and real data.

Since the bounds are only affected by the underlying structure of the joint distribution

or the number of independent interactions in the test set, in the synthetic data exper-

iments we generate training and test sets for each joint distribution whose underlying

structure is either a particular fixed size interaction or a variable size interaction. We

learn a relational classification algorithm on these generated training sets and estimate
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Fig. 6 a) represents a relational schema with types, Object 1 and Object 2. The relationship
between them is many-to-many. The rounded boxes denote their respective attributes. b) is the
corresponding model graph which depicts the conditional dependencies between the attributes
of the 2 types.

the error on the test set (or inference graph). 95% confidence bounds are then applied

to this estimated error which gives us an idea of the GE. In the experiments on real

data we choose a single real dataset, train the relational classification algorithm, esti-

mate the error on inference graph and then apply the bound to this estimated error

which depends on the structure of the inference graph. Though we perform experiments

using a single relational classification algorithm and on a single real dataset they are a

proof of concept that the data generation models considered are realistic and that the

bounds are applicable in practical scenarios. Other relational classification algorithms

[13] can be similarly trained on the data generated by these models and the bound

similarly applied to other real datasets.

We now present in detail the relational classification algorithm used and the setup

for the experiments on synthetic and real data.

Relational classification model: Relational Dependency Network

The relational classification model we use in the experiments is the Relational

Dependency Network (RDN) [13]. The algorithm used to train this model and infer

over it is given in [24]. We now briefly describe this model and the corresponding

algorithm.

A RDN is a state-of-the-art PMRD that is known to perform well on relational

data [27]. It (any PMRD in general) is characterized by three graphs namely; the data

graph, the model graph and the inference graph. We have already seen that the data

graph and the inference graph are made of objects and links and represent the training

set and test set respectively. A model graph on the other hand represents the con-

ditional dependencies between attributes of the same as well as related object types.

An example model graph is seen in Figure 6b. The model graph in this figure, depicts

the dependencies between 4 attributes C, X, Y and Z where C and X belong to type

Object 1 while Y and Z belong to type Object 2. The direction of the arrows in Figure

6b characterizes the nature of the dependence. In particular an arrow pointing to an

attribute from another attribute implies that the first attribute is dependent on the

other. Hence, in the figure X depends on Z while Z depends on Y . C and Y are both

dependent on each other since there is a double headed arrow between them. Other

dependencies in Figure 6b can be similarly deciphered. This dependency structure be-

tween attributes narrows down the conditional probability distributions (CPDs) that

have to be learned by a RDN. For example since in Figure 6b X depends on Z, the
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CPDs P [X|Z = z] ∀z ∈ Z have to be learned from the data. However, there is no

need to learn P [Z|X = x] ∀x ∈ X since the corresponding dependency does not exist.

Hence, in a RDN the conditional probability distributions that are to be learned are

determined by the dependencies between attributes.

Learning: Now that we know the CPDs that have to be learned we use pseudo-likelihood

techniques to learn them. Maximizing the log-likelihood of the overall joint distribu-

tion can prove to be expensive. Moreover, the CPDs considered do not factor the joint

distribution. Hence, we maximize the pseudo-likelihood which is maximizing the log-

likelihood of each individual CPD separately. Pseudo-likelihood estimators are unbiased

estimators of the true values of the parameters [13]. The CPD estimation process is

done using one of the two models namely; the Relational Bayes Classifier (RBC) [28]

or the Relational Probability Tree (RPT) [27]. In the experiments below we use the

RBC for CPD learning and hence we now describe only this relational learner. The

RBC considers the values of the attribute on the left of the conditional sign (i.e. X in

P [X|Z]) to have a multinomial distribution given the values of the attributes on the

right (i.e. Z in P [X|Z]). The individual CPDs are estimated using these multinomials.

The RBC does not perform feature selection and hence the attributes in the CPDs are

defined by the model graph itself.

Inference: The RDN has to predict the class labels of the relevant objects of the same

type over the inference graph. The inference graph can have multiple copies of the ob-

jects to be classified linked directly or through other objects (eg. papers linked through

authors). To perform inference we first choose the learned CPDs that correspond to the

attribute values in the inference graph. We thus have a bunch of CPDs with potentially

multiple copies of some CPDs (since two different objects can have the same attribute

values). These CPDs are then used to perform Gibb’s sampling which provides samples

from the joint distribution over the relevant attributes. The final prediction is done over

the samples obtained from this joint distribution.

Synthetic data experiments

We now discuss the setup for the synthetic experiments. We explain below the data

generation models or joint distributions used to generate data and bound the GE of

the RDN classifier trained and tested on this generated data. In subsection 7.2 we

mentioned which factors affect and which do not affect the bound. Considering those

factors the following setup is sufficient to achieve our stated goals.

Joint distributions for data generation and bounding GE: A joint distribution over

relational data is a distribution over the attributes of the related entities or objects.

Hence, the first step in defining such a joint distribution is to define a relational schema

with object types and relationships between these object types. The relational schema

provides information about the attributes (single or multiple copies) that will comprise

the joint distribution. A relational schema that we use in the synthetic experiments is

given in Figure 6a. The schema has 2 types of objects namely; Object 1 and Object 2.

Each type has 2 attributes. The attribute C of type Object 1 is the class attribute (i.e.

the attribute whose value is to be predicted) and the other attributes are explanatory

attributes (i.e. X, Y and Z). Each attribute takes 2 values and the 2 types join on all

values. In Figures 8a, 8b and 8c we consider data generated by joint distributions with

fixed size interactions of size 2, 4 and 5 respectively. The joint distribution with fixed
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Fig. 7 a) represents a relational schema of a real dataset UW-CSE with types, Person, Course

and Publication. The relationship between the related types is many-to-many. The rounded
boxes denote their respective attributes. b) is the corresponding model graph which depicts
the conditional dependencies between the chosen attributes of the 3 types namely; Name (N),
Status (S), Inphase (I), Hasposition (H), Concatenated Titles (CT), Concatenated course Ids
(CId) and Level (L).

size interactions of size s has the following form, P [C1, X1, Y 1, Z1, ..., Cs, Xs, Y s, Zs]

where the superscripts [1, ..., s] denote the corresponding copies of the respective at-

tributes. Thus the parameter space of the joint distribution is 24s (since 4 attributes

each having 2 values with s copies). We assign the probability for each assignment

of attributes to be 1
24s

. This completely characterizes our data generation model for

fixed size interactions. For variable size interactions seen in Figure 8d, we increase the

number of independent interactions from 100 to 1000 to 10000. The case where we

have 100 independent interactions the sizes of the individual interactions are: twenty

interactions of size 10, fifty interactions of size 15 and thirty interactions of size 20. The

sizes for 1000 independent interactions are: two hundred interactions of size 10, five

hundred interactions of size 15 and three hundred interactions of size 20. The sizes for

10000 independent interactions are: two thousand interactions of size 10, five thousand

interactions of size 15 and three thousand interactions of size 20. The probabilities for

each assignment of values to the attributes in each of the independent interactions is

set to 1
24s where s is the size of the corresponding interaction. With this, the data

generation model for variable size interactions is also completely characterized.

RDN Learning and Inference: The model graph for the RDN is shown in Figure 6b.

The corresponding conditionals are learned using using a RBC. The training set size

is set to 1000 for distributions with fixed size interactions. Note that since the goal of

these synthetic experiments is, 1) to show that an RDN (any PMRD in general) can be

trained on the data generated by the joint distributions considered in this paper and

2) to observe the behavior of the bounds, as opposed to evaluating the RDN algorithm

itself, the size of the training set is unimportant. On the other hand the size of the

test set is important for scenarios where we have fixed size interactions since it affects
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Fig. 8 95% confidence bounds for GE w.r.t. HE (a, b, c) and HE′ (d) are shown for data
generation models with a) interactions of size 2, b) interactions of size 4, c) interactions of size
5 and d) variable size interactions.

the tightness of the bound and hence we vary this parameter as observed in Figures

8a, 8b and 8c. For different test set sizes we use the required number of learned CPDs

and perform inference using Gibbs sampling (burn-in 100, samples 1000). For variable

size interactions we train and test on datasets of size 1550, 15500 and 155000 which

have increasing number of independent interactions as seen in Figure 8d. Note that in

this case HE′ is computed and bounded with GE and not HE. Here too we provide

the required number of copies of the learned CPDs and infer using Gibbs sampling

(burn-in 100, samples 100).

Real data experiments

In experiments on real data we choose the UW-CSE dataset [21]. The UW-CSE

dataset consists of people being either students or professors. The dataset has infor-

mation regarding which course is taught by whom, who are the teaching assistants

for a course, the publication record of a person, the phase in which a person is (i.e.
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Fig. 9 95% confidence bound for GE w.r.t. HE′ is shown on the UW-CSE dataset.

pre-qualifier, post-qualifier, post-general), the position of a person (i.e. faculty, affiliate

faculty, adjunct faculty), years in a program and the advisor (or temporary advisor)

of a student. A potential relational schema for this dataset is given in Figure 7a. The

attribute Name refers to person name, Status refers to the person being student or

professor and is the class label in our experiments, Inphase refers to the phase in which

a student is, Hasposition refers to the position of a person, Years refers to the number

of years a student has been in the program, Pname refers again to the person name,

Title refers to the paper titles published by a person, Id refers to a specific course being

offered and Level refers to the difficulty level of a course. The link advisedby relates

students to their advisors (or temporary advisors), taughtby relates courses to their

instructors and ta describes the respective teaching assistants for certain courses.

Having ellucidated the different components of the dataset we now explain how the

bound is computed on the error made by a RDN on this dataset.

Joint distribution for bounding GE: We split the dataset into disjoint training and

test sets with the training set size being 70% of the original dataset. The test set or

the inference graph has variable size interactions and hence to compute the bound we

count the number of independent interactions. The number of independent interactions

turns out to be 57 which determines the width of the bound.

RDN Learning and Inference: The RDN is trained using the model graph given in Fig-

ure 7b. In the model graph we introduce 2 new attributes not present in the relational

schema namely, CT and CId which are formed by concatenating the titles of papers

written by a person and by concatenating Ids of courses taught (or ta) by a person. The

Year attribute is eliminated since it is not particularly discriminative. The respective

CPDs are learned using a RBC and the inference is performed using Gibbs sampling

(burn-in 100, samples 1000) with each entity in the inference graph receiving its copy

of the relevant CPD.

7.4 Observations and implications

In the Figures 8a, 8b, 8c we see that the width of the bound reduces rapidly with

increasing test set size. Similarly, in Figure 8d the width of the bound reduces rapidly

with increasing number of independent interactions. These synthetic experiments show
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that the data generation models considered in this paper generate data which is consis-

tent with the structure of standard relational datasets and hence can be used to train

relational classification algorithms developed by the SRL community. Moreover, they

show that the derived bounds are tight enough for a reasonable choice of parameters

(N , r). In Figure 9 we see that the bound is acceptable when applied to a real dataset

which implies that the derived bound can be used in realistic settings. In addition, it

strengthens our claim that the data generation models introduced by us are realistic

and capture the complex dependencies in real relational datasets.

8 Discussion

In the previous sections we derived and evaluated bounds on the GE of a classifier in

the presence of interactions. In this section we discuss ideas and lines of future research

in an attempt to derive tighter bounds.

1. Bounds w.r.t. different estimators of GE: In Lemma 2 we bounded GE with

HE′ which is not the usual empirical error (HE) that occurs in the Hoeffding

inequality applied to the classification problem in an i.i.d. setting. Since, our main

concern is bounding GE, it really does not matter if we bound it w.r.t. HE or

HE′, as both these estimators can be computed from the sample. Thus, what we

truly care about is being able to derive tight bounds w.r.t. some estimator of GE.

This is precisely what we did in Lemma 2 where we bounded GE with HE′. In

general, we need not limit ourselves in bounding GE with specific estimators such

as HE used in literature, but rather should choose estimators for whom we can

derive the tightest possible bounds and can be computed reasonably efficiently from

the sample. One of the reasons GE was bounded w.r.t. HE in literature, was that

the definition of HE allowed for direct application of the Hoeffding inequality and

hence it was the most natural choice. But in the presence of interactions this may

not be the case (as we have seen in Lemma 2) and we should choose the appropriate

estimator w.r.t. which we can bound GE.

2. Bounds w.r.t. different loss functions: In the paper we derived bounds using

the 0-1 loss function. However, nowhere in the proof of these bounds have we used

any special properties that are specific to this particular loss function except that

its value is between zero to one. Hence, the derived bounds can be directly applied

to other loss functions whose values are between zero to one. An example of such a

loss function that is commonly used in practice is the least squares loss for binary

classification. For loss functions whose values do not lie between zero to one the

bound can be easily adapted. For example, if [a, b] is the interval in which the values

of the loss function lie then the corresponding bound for C2 models (C1 models

are just a special case of C2 models) is, P [HE′ − GE ≥ t] ≤ e
−2rt2

(b−a)2 . A common

example of such a loss function is the exponential loss which widely used in machine

learning.

3. Bounds using algorithms: Most of the distribution free bounds have simple

closed form formulae. Such results are elegant, easy to use and can provide insight

into the behavior of the random variables being bounded. However, from the point

of view of obtaining tight bounds this can have an adverse effect since in the

process of deriving simple formulae the bounds have to be invariably made loose.

An example of this is the Hoeffding inequality itself where intermediate results
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in the derivation of Theorem 1 are tighter [16], but are not as elegant. At the

time when these bounds were derived, computers were not particularly widespread

(if at all they existed) and consequently it made sense to derive simple formulae.

However, in the present circumstances it is unnecessary to constrain ourselves to

just simple closed form formulae but rather we can automate the procedure used

in the deriving these bounds and without much loosening of the bound (bounds

are generally made loose using convexity [19]) obtain much less elegant but tighter

results. Moreover, in the presence of interactions, to obtain tighter bounds than

the ones derived in this paper, it may not be possible to derive simple formulae in

which case developing algorithms might be useful.

4. Bounds as functions of correlation: The bounds we derived in Lemmas 1 and 2

assumed the highest amount of correlation between interacting datapoints. A way

of tightening the obtained bounds is to make the bound depend on the strength of

correlation between the set of interacting datapoints. It is not very clear as to how

this might be accomplished. A possible alternative would be to express the sample

in terms of the information it possesses using information theoretic metrics such

as entropy and then deriving the bounds using this statistic. If such bounds are

derived they would most likely be tighter than the present ones. Moreover, they

would provide us with better estimates of the effective sample size and not a lower

bound. However, such bounds would need more information and may not be as

simple to use or as intuitive as the ones derived in this paper.

9 Conclusion

In this paper we derived distribution free bounds for the GE of a classifier in the

presence of dependencies. We related the derived bounds to the notion of effective

sample size by explaining that the number of independent interactions is in fact a

lower bound on this quantity. In the experiments we validated the claim that the data

generation models considered in this paper are in fact realistic and that the bounds

are tight enough to be applicable in practical scenarios. We also discussed strategies

in obtaining tighter bounds which provides avenues to extend this type of work. In

summary, we have taken an initial step towards finding useful distribution free bounds

in the relational setting.
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