
Noname manuscript No.
(will be inserted by the editor)

Bounds on the Moments for an Ensemble of Random
Decision Trees

Amit Dhurandhar

Received: Sep. 17, 2013 / Revised: Mar. 04, 2014 / Accepted: Jun. 30, 2014

Abstract An ensemble of random decision trees is a popular classification technique,

especially known for its ability to scale to large domains. In this paper, we provide

an efficient strategy to compute bounds on the moments of the generalization error

computed over all datasets of a particular size drawn from an underlying distribution,

for this classification technique. Being able to estimate these moments can help us

gain insights into the performance of this model. As we will see in the experimental

section these bounds tend to be significantly tighter than the state-of-the-art Breiman’s

bounds based on strength and correlation and, hence, more useful in practice.

Keywords bounds, random decision trees, moments

1 Introduction

An ensemble of random decision trees is a widely used classification technique [16,13,

22,14] , especially known for its ability to scale to large domains. This classification

technique was introduced in [13] where the authors portrayed the efficacy of the method

on real applications. According to the description in [13], the technique can be viewed

as a special case of the random forest algorithm given in [7], where an attribute is

chosen uniformly at random from the available list of attributes (i.e., from an uniform

distribution over the available attributes) to form a node in the tree. In a random forest

a set of attributes (say m attributes) are chosen uniformly at random as potential

candidates for a node and then, based on statistical measures such as information gain

(IG), gini gain (GG), etc., an attribute is selected from this set. Hence, an ensemble of

random decision trees is the special case of a random forest, where m = 1. The primary

motivation and the advantage of focusing on this variant is that it is highly scalable,

since measures such as IG or GG do not have to be computed at every node in the

tree. In addition, the prediction accuracy of this model is shown to be quite good in

practice [16,13,22,23].

Amit Dhurandhar
IBM T.J. Watson
E-mail: adhuran@us.ibm.com

2

Realizing the widespread utility of an ensemble of random decision trees, it is

important that we carefully analyze this model. In previous works [11], the authors

provided a moment based methodology to accurately characterize classification models.

In particular, they provided generic expressions to compute the first two moments of

the generalization error – expected error over the entire input, given an underlying

probability distribution. These moments were computed over Z(N), which is the set

of all possible classifiers produced by training a given classification algorithm over

datasets of size N , drawn independently and identically (i.i.d.) from some distribution.

The challenge was then to customize these expressions to specific algorithms in order to

meticulously study them. In [11,10,12], these expressions were customized for the Naive

Bayes Classifier, Nearest Neighbor Classifier and (single) Random decision trees (not

an ensemble). It was seen that such expressions have the potential to provide extremely

tight characterizations of the behavior of individual classification algorithms as well as

certain model selection techniques (viz. cross-validation, hold-out-set estimation). In

addition to being accurate, these moments were also very efficient to compute. In [10],

one of the future challenges that was laid out was to develop strategies to efficiently

and accurately estimate these moments for an ensemble of random decision trees. The

strategies and expressions presented in [10] are practical only for single random decision

trees, since as we will later see, a straightforward extension of those ideas to an ensemble

leads to highly inefficient characterizations.

Estimating moments to evaluate quality of classifiers is a standard procedure in

machine learning [4,5], where a dataset is split into multiple training and test sets,

and the average error with a confidence interval or variance is reported as a measure

of performance. Our methodology is an idealized version of this approach where rather

than reporting the error averaged over a limited number of trials, we want to com-

pute the expected error and maybe in some cases even the variance over all possible

classifiers that would be produced by training over datasets of size N sampled from

the underlying distribution. This as discussed in previous works [11,10,12] is a much

more robust evaluation of classification algorithms. Recently, other such moment based

methodologies [1–3] have also gained prominence for parameter estimation of models

over traditional maximum likelihood and bayesian approaches, which are inefficient

and have a tendency to get stuck in poor local minima.

It is important to stress the fact that the generic expressions provided in [11]

are difficult to customize to specific learning techniques. The customization requires

analyzing the inner workings of the techniques, which are unique to every learning

algorithm. The situation here is analogous to PAC Bayes bounds literature [17,15,18],

where many works have been published describing a way to compute them for different

techniques. Moreover, in all the relevant previous works [11,10,12], exact and efficient

to compute formulations were derived for the respective techniques. For an ensemble of

random decision trees though, exact formulations based on extensions of the results in

[10] lead to highly inefficient characterizations, which are exponential in the number of

trees T . Thus, we in this paper, for the first time in this line of work, describe a novel

way to find accurate and efficient to compute upper bounds. Non-trivial and efficient

to compute upper bounds can be very useful in gaining confidence in a method [6]. In

fact, the gain in time complexity is exponential in T . This is a significant improvement

given that T is usually in the hundreds. The strategies employed to derive this bound

bear little resemblance to previous analysis. Consequently, the contributions in this

paper are by no means attainable by incremental extensions of prior works.

3

Table 1 Notation used in the paper.

Symbol Meaning
X Random vector modeling input.
X Domain of random vector (input space) X.
Y Random variable modeling output.
Y (x) Random variable modeling output for input x.
Y Set of class labels (output space).
N Sample size
ζ Classifier
GE(ζ) Generalization error of classifier ζ.
Z(N) The set of classifiers obtained by application of a

classification algorithm to i.i.d. samples of size N .
EZ(N)[] Expectation w.r.t. the space of classifiers built on a sample of size N .
d Dimensionality of the input space.
h Height of trees in the ensemble.
pathp pth possible path amongst the total number of allowed paths

given by the tree building algorithm.
ξ(pathpy) Count of the number of samples in the training set that

correspond to pathp and class y.
ηyx Denotes the condition that class y gets the maximum number

of votes in classifying x through the respective paths in the ensemble.
mh(S) Number of paths of length h that classify x into class y in the sample S.

To summarize, we provide in this paper a method to efficiently obtain bounds on

these moments for an ensemble of random decision trees grown to a specified height.

We analyze the fixed height variant, since the main strength of this technique is being

able to create an ensemble with high diversity [13]. This is true for most ensemble

techniques as we want to cover different parts of the hypothesis space. Growing trees

too deep limits this and, hence, restricting the height is desirable. Note that the case

where trees are grown to their full height is just a special case in this setting and thus

our analysis is still applicable. Moreover, our analysis does not place any restriction

on the number of classes or the number of splits per attribute and is hence applicable

to a large class of random decision tree ensembles. Through experiments on synthetic

data and bootstrap distributions built on real data, we show that our (upper) bounds

are tighter than the widely used strength and correlation bounds introduced in [7].

The rest of the paper is organized as follows. In Section 2, we first describe the

ensemble algorithm and then briefly review the technical framework that our analysis

is based on. In Section 3, we discuss the issues with directly extending the ideas used for

characterizing single random decision trees to an ensemble. We then provide a solution

by adopting a different perspective than the one in [10]. Moreover, as in the previous

study, our analysis applies to categorical as well as continuous attributes with split

points predetermined for each attribute. In Section 4, we compare the bounds derived

from this analysis with Breiman’s strength and correlation bounds on synthetic and real

datasets. We discuss future lines of research and summarize the major developments

in the paper in section 5.

2 Preliminaries

In this section we first provide a precise description of the algorithm for random decision

trees that we analyze here. We then revisit the generic expressions provided in [11] that

need to be customized to specific classification algorithms; in this case an ensemble

4

Algorithm 1 Procedure to build an ensemble of random decision trees.

Input: T , h, F = {f1, ..., fd} {T is the # of trees in the ensemble, h is the height and the
fis are the d attributes.}
Output: W {The ensemble.}
Set W = φ {No trees in the ensemble initially.}
for i = 1; i ≤ T ; i+ + do

Randomly pick fi ∈ F {Pick the root.}
w = {fi}, wl = {fi} {w denotes the tree built so far and wl the attributes at the leaf of
w.}
for j = 1; j < h; j + + do
wt = φ
for f ∈ wl do

If f has s splits, then randomly pick s attributes Fs ⊂ F one for each split such that
each attribute is distinct from its ancestors.
wt = wt ∪ Fs

end for
wl = wt

w = w ∪ wl

end for
W = W ∪ w

end for
Return W

of random decision trees. Finally, we provide the customized expressions for random

decision trees (not ensemble) of prespecified height and discuss the intuitions in its

derivation.

2.1 Ensemble of Random Decision Trees

In this paper, we consider the following procedure for building each random decision

tree in an ensemble of T trees. The root of a tree is chosen uniformly at random from

the available list of attributes. Nodes at the next level in the tree are chosen uniformly

at random from a list of attributes that excludes the root. Hence, at each level of

the tree a node is picked at random (uniform distribution) from the list of attributes

that excludes its parents and ancestors. The tree is grown to a prespecified height

h. This procedure is clearly elucidated in algorithm 1. It is assumed that the split

points for continuous attributes are predetermined. After T trees have been built using

the aforementioned procedure to form an ensemble, the class label of a datapoint is

determined by taking a majority vote.

The procedure for building random decision trees considered here has been previ-

ously mentioned in [13,10] and is shown to be efficient as well as accurate in practice.

2.2 Generic Expressions

We first introduce some notation that is used primarily in this section. X is a random

vector modeling input whose domain is denoted by X . Y is a random variable modeling

output whose domain is denoted by Y (set of class labels). Y (x) is a random variable

modeling output for input x. ζ represents a particular classifier with its generalization

error (GE) denoted by GE(ζ). Formally,

5

GE(ζ) = E[λ(ζ(X), Y)] (1)

where λ(., .) is a zero-one loss function and the expectation is over the distribution

on the X × Y space. Z(N) denotes a set of classifiers obtained by application of a

classification algorithm to different samples of size N .

The fundamental concept behind the generic expressions is to characterize a class

of classifiers induced by a classification algorithm and an i.i.d. sample of a particular

size from an underlying distribution. We thus have a distribution over classifiers, with

the GE of these classifiers being a random function that has its own distribution.

Computing the entire distribution can be highly inefficient especially for a complicated

function such as the GE of classifiers and hence we resort to efficiently computing the

first few moments. With this we now revisit the expressions for the first two moments

around zero of the GE of a classifier,

EZ(N) [GE(ζ)] =∫
x∈X

P [X=x]
∑
y∈Y

PZ(N) [ζ(x)=y|x]P [Y (x) 6=y|x] dx,
(2)

EZ(N)×Z(N)

[
GE(ζ)GE(ζ′)

]
=∫

x∈X

∫
x′∈X

P [X=x]P
[
X=x′

]
·∑

y∈Y

∑
y′∈Y

PZ(N)×Z(N)

[
ζ(x)=y ∧ ζ′(x′)=y′|x, x′

]
·

P [Y (x) 6=y|x]P
[
Y (x′) 6=y′|x′

]
dxdx′

(3)

It becomes clear from the above equations that to compute these moments we must be

able to characterize the behavior of a classifier on each input independently for the first

moment, and on pairs of inputs for the second moment. More specifically, we need be

able to compute PZ(N) [ζ(x)=y] for the first moment and PZ(N)×Z(N)

[
ζ(x)=y ∧ ζ′(x′)=y′

]
for the second moment for the classification algorithm under consideration1. The other

terms in these equations indicate the error of a single classifier or errors of two classifiers

derived from the underlying distribution for the first and second moment respectively.

This can be better understood from the following simple example. If the class prior for

class 1 is p and that for class 2 is 1-p, then the error of a classifier classifying data into

class 1 is 1-p and the error of a classifier classifying data into class 2 is p.

2.3 Customized Expressions for Random Decision Trees

As we saw in the previous subsection, in order to compute the moments we need to char-

acterize PZ(N) [ζ(x)=y] for the first moment and PZ(N)×Z(N)

[
ζ(x)=y ∧ ζ′(x′)=y′

]
for the second moment for specific classification algorithms. To characterize these prob-

abilities we have to mathematically model the manner in which a particular classifica-

tion algorithm classifies a specific input (or pairs of inputs for the second moment). In

1 These probabilities and P [Y (x) 6=y] are conditioned on x. We omit explicitly writing the
conditional since it improves readability and is obvious from the context.

6

the case of decision trees, a specific input is classified based on the relevant path in the

tree from root to leaf with the majority class being chosen as the class for the input.

Thus, the PZ(N) [ζ(x)=y] for a decision tree algorithm is given by,

PZ(N) [ζ(x)=y] =∑
p

PZ(N)[ξ(pathpy) > ξ(pathpy
′), pathpexists,

∀y′ 6= y, y, y′ ∈ Y]

(4)

where p indexes all allowed paths by the decision tree algorithm in classifying in-

put x. After the summation, the term ξ(pathpy) is the number of (count of) in-

puts in the path ”pathp” that lie in class y. A similar characterization exists for

PZ(N)×Z(N)

[
ζ(x)=y ∧ ζ′(x′)=y′

]
where, rather than single paths, in each proba-

bility after the sum we have pairs of paths. The allowed paths are governed by the

attribute selection method and the stopping criteria in the decision tree algorithm.

For example, if we grow random decision trees of height h where there are total of d

attributes the above probability would be,

PZ(N) [ζ(x)=y] =∑
p

PZ(N)[ξ(pathpy) > ξ(pathpy
′), ∀y′ 6= y, y, y′ ∈ Y](

d

h

) (5)

This is the case, since for any input there are

(
d

h

)
possible paths and every path

is equally likely, i.e., P [pathpexists] = 1 d

h

 ∀p. The

(
d

h

)
possible paths comes from

the fact that as we build the tree there are d choices to pick the root, there are d− 1

choices to pick each of the nodes at the next level and so on till we reach level h, where

we have d− h+ 1 choices. Each of these

(
d

h

)
paths is indexed by p and pathp is the

corresponding path. By similar arguments the probability for the second moment is

given by,

PZ(N)×Z(N)

[
ζ(x)=y ∧ ζ′(x′)=y′

]
=

1(
d

h

)2

(∑
p,q

PZ(N)×Z(N)[ξ(pathpy) > ξ(pathpy
′′),

ξ(pathqy
′) > ξ(pathqy

′′′),

∀y 6= y′′, ∀y′ 6= y′′′, y, y′, y′′, y′′′ ∈ Y]
)

(6)

An important thing to notice in the above formulas is that there are two sources

of randomness, the first due to the tree building method (i.e., path exists) and the

second due to the random samples (i.e., comparing counts) that are generated from

the underlying distribution. As we will see later, this observation will help us in deriving

bounds for the moments of an ensemble of random decision trees.

7

3 Characterizing an Ensemble of Random Decision Trees

In this section, we first show that naively extending the analysis for (single) random

decision trees to an ensemble leads to highly inefficient formulations with no obvious

way of deriving reasonable bounds on the moments. We then suggest a solution using

the generic expressions that is efficient to compute and gives tighter bounds than

directly finding bounds on the moments.

3.1 Straightforward Extension

An ensemble of random decision trees classify an input into a class based on the classes

predicted by individual trees in the ensemble. In particular, any input is classified into

the class that receives the maximum number of votes. To characterize PZ(N) [ζ(x)=y]

we have to characterize all possible ways in which class y receives the maximum number

of votes in classifying input x. Given that the ensemble has T trees with pi indexing

all allowed paths for an input x in the ith tree (i ≤ T) we have,

PZ(N) [ζ(x)=y] =
1(
d

h

)T

(∑
p1,...,pT

PZ(N)[η
y
x]
)

(7)

where ηyx denotes class y gets the maximum number of votes in classifying x through

the respective paths of the T trees. Hence, given a set of paths, PZ(N)[η
y
x] computes the

probability of classifying input x into y over all samples of size N from an underlying

distribution. ηyx is characterized by comparing counts of various classes in the leaves

of the trees in the ensemble. This is a generalization of the characterization for single

trees shown in equation 5, where counts are compared in a single leaf to counts being

compared in the corresponding leaves of all the trees in the ensemble. This leads to

an exponential in T number of massive joint probabilities that need to be computed.

Given that T is generally in the hundreds, exactly computing the above formula is

impractical for even extremely small domains. It is also important to notice that the

joint probabilities containing the counts from different trees cannot be factorized as a

product of probabilities containing counts of individual trees, although the trees are

built independently, the individual tree classifiers are correlated through the sample.

There also does not seem to be any obvious way of deriving efficient and tight bounds

on these expressions. The same issues are faced when estimating or bounding the

probability for pairs of inputs used in the computation of the second moment.

3.2 Main Result

In the previous subsection we observed that a naive extension of the ideas used to

characterize single random decision trees leads to highly inefficient formulations for

an ensemble of random decision trees. As indicated before, there are two sources of

randomness: the first due to the random tree building method and the second due to

the random samples from the underlying distribution. To derive the main result in

this paper, we characterize the second source of randomness, then fix it and compute

probabilities based on the first source of randomness. This strategy leads to bounds

that can be computed efficiently. With this we have the following theorem.

8

Theorem 1 Consider a set of samples drawn from the underlying distribution that

have cumulative measure/probability mass α and let Smax be a sample in this set for

which the number of paths of length h (≤ d), that classify input x into class y is

maximum. Let us denote this maximum number of paths by mh(Smax). Then given

that there are T trees in the ensemble and q =

(
d

h

)
is the total number of paths of

length h we have,

PZ(N) [ζ(x)=y] ≤ βB(
T

2
, T,

mh(Smax)

q
) + (1− β)

where 0 ≤ β ≤ α ≤ 1 and B(T2 , T,
mh(S)

q) =
∑T

i=dT2 e

(
T

i

)
(
mh(S)

q)i(1−mh(S)
q)(T−i).

The bound on the probability for the second moment is analogous to the above

bound with the only difference being that we consider pairs of inputs rather than just

single inputs.

Before we describe the details in deriving the above bound and techniques to effi-

ciently estimate the necessary parameters (viz. mh(Smax) and β), we provide a brief

overview of how these critical parameters can be estimated.

1. To compute mh(Smax) for samples of size N with total measure α, find the (worst)

sample for which the number of paths of length h that would classify input x into

class y is maximum in this set.

2. Given this sample we can easily check to see how many of these q paths classify

input x into class y. The higher the mh(Smax) the looser the bound.

3. β can be estimated using Bonferronis inequality [21] for the given set of samples.

The lower the β the looser the bound. Notice that there can be many sets of samples

of size N with measure α. The best set of samples, i.e., the ones that would give the

tightest bound would be the ones that have the lowest mh(Smax). In this paper,

we provide a strategy that finds a particular set of samples efficiently that are

not necessarily the best. The set of samples our procedure finds seems reasonable,

however, given that our bounds are mostly non-trivial and significantly tighter than

Breiman’s bounds, as witnessed in the experimental section. Deciphering the best

set of samples efficiently is part of future research.

3.3 Derivation and Efficient Parameter Estimation of the Bound

We have seen that a straightforward extension of the ideas that were used to character-

ize single random decision trees cannot be used (due to computational considerations)

to characterize an ensemble of random decision trees. We thus have to come up with

a different strategy or perspective to tackle this problem. There are 3 key elements in

coming up with this characterization, which are as follows:

1. First, characterize the second source of randomness, i.e., randomness due to the

underlying distribution, and then conditioning on this source of randomness char-

acterize the first source of randomness which is due to the tree building process.

2. Define a parameter 0 ≤ α < 1 that denotes the measure of the samples of size N

drawn from the underlying distribution. This parameter affects the tightness of the

bounds.

9

Fig. 1 The figure shows the key steps in deriving the bound for an ensemble of random
decision trees.

3. Find a set of samples whose measure is exactly α can be computationally intensive

and, hence, find samples with measure say β where β ≤ α which can be done

efficiently and still leads to an useful upper bound on the moments.

These elements are also mentioned in figure 1, and the details regarding them are

given below.

Two Sources of Randomness: As mentioned before, there are two sources of ran-

domness that are present: the first due to the tree building method (i.e., path exists)

and the second due to the random samples (i.e., comparing counts) that are generated

from the underlying distribution. In the characterization for random decision trees,

we observe that we compute the probability for a certain path to exist and then,

conditioned on this path, we compute the probability of classifying an input into a

particular class over all samples of a particular size. In other words, we characterize

the first source of randomness and then fix it in the computation of PZ(N) [ζ(x)=y]

and PZ(N)×Z(N)

[
ζ(x)=y ∧ ζ′(x′)=y′

]
. However, there is also the other possibility of

characterizing the second source of randomness and fixing it in order to characterize

these probabilities. In this scenario we would have,

PZ(N) [ζ(x)=y] =
∑

S∈D(N)

P [S]Pt[η
y
x|S] (8)

where D(N) denotes all datasets of size N from the underlying distribution, and

Pt[η
y
x|S] is the probability of classifying input x into class y based on the random

tree generation process denoted by t given a particular dataset S ∈ D(N). For a given

dataset, the number of paths of length h that would classify an input x into class y is

the same for all trees in the ensemble. In addition, the trees are built independently.

10

Hence, if mh(S) is the number of paths of length h that classify input x into class y

given a dataset S and if T is the total number of trees in the ensemble, then Pt[η
y
x|S]

is given by a binomial cumulative distribution function (cdf),

Pt[η
y
x|S] = B(

T

2
, T,

mh(S)

q
) (9)

where q =

(
d

h

)
is the total number of paths of length h and B(T2 , T,

mh(S)
q) =∑T

i=dT2 e

(
T

i

)
(
mh(S)

q)i(1 − mh(S)
q)(T−i). It is thus easy to see that given a sample,

Pt[η
y
x|S] can be computed efficiently. However, the number of samples will be huge

for any reasonable problem size. Hence, directly computing the moments using this

formulation also does not seem feasible. In fact, this formulation is infeasible even for

single random decision trees. Nonetheless, this formulation does present us with an

opportunity to compute bounds on the moments which we will now derive. The solu-

tion we provide is efficient and, as we will see in the experimental section turns out

to be tighter than Breiman’s bounds: κ
(1−s2)

s2
, where κ is the correlation between the

random decision trees in an ensemble and s is the strength of the resultant classifier .2

Defining α: One way of upper bounding PZ(N) [ζ(x)=y], is to find the maximum

Pt[η
y
x|S] over all samples and then to substitute this value for each of the conditionals

in equation 8. The maximum Pt[η
y
x|S] would most likely be 1, since for arbitrary

distributions there might exist samples where mh(S) = q. This would make the bound

trivial (i.e., 1), since
∑

S∈D(N) P [S] = 1. Hence, rather than choosing all samples, we

can choose a fraction of them with measure α to upper bound the probabilities. α = 1

corresponds to choosing all samples while lower values of α (viz. 0.95 or 0.99, etc.)

correspond to choosing a subset of the samples with measure α. For this subset, we

can find the sample which has the maximum mh(S) and, hence, the maximum Pt[η
y
x|S]

for that set. In the experimental section, we will see that our method of finding this

sample and consequently the maximum Pt[η
y
x|S] for that set leads to bounds that are

significantly tighter than Breimans strength and correlation bounds. With this we have

the following inequality,

PZ(N) [ζ(x)=y] =
∑

S∈D(N)

P [S]Pt[η
y
x|S]

≤ αPt[η
y
x|Smax] + (1− α)

(10)

Smax is the sample for which Pt[η
y
x|Smax] has the maximum value in that set of samples

with total measure α. Note that there can be many sets of samples with total measure

α. Ideally, one would want to choose the set for which Pt[η
y
x|Smax] is the least, since

this would lead to the tightest possible bound among the other alternatives. At this

point, it is not clear how this optimal set can be deciphered; however, we provide a

solution where we find one of the feasible sets in an efficient manner and, as we will

see later, this solution tends to give reasonably good bounds.

As mentioned before, our analysis applies to discrete attributes as well as contin-

uous attributes with prespecified split points. Given this, any distribution over the

2 For further details refer to [7] and [8].

11

Table 2 Example data distribution.

X ↓, Y → y1 y2 · · · yc

x̄1 p11 p12 · · · p1c
x̄2 p21 p22 · · · p2c
...
x̄n pn1 pn2 · · · pnc

N

data can be represented as a multinomial with parameters N, p11, p12, ..., pnc as shown

in table 2. Here, N is the sample size and p11, p12, ..., pnc are the probabilities for

the corresponding input-output pairs (n distinct inputs and c classes) to occur with∑n,c
i=1,j=1 pij = 1. Notice that bootstrap distributions built by resampling a dataset

are subsumed by the given class of distributions. Given such a multinomial distribu-

tion, we want to find a set of samples/datasets of size N where the total measure of

these datasets is equal to α.

Computing β: Attempting to directly find these samples would be computationally

intensive, since we would have to sum the measures of each sample in the set in order

to verify that the measure is α. However, since we want to find an upper bound on

PZ(N) [ζ(x)=y], substituting a lower bound for α in equation 10 would give us an

upper bound on PZ(N) [ζ(x)=y], as desired. Finding a lower bound on α can be done

efficiently with the help of Bonferroni’s inequality [21]. Bonferroni’s inequality states

that given g random variables Z1, ..., Zg and 2g real numbers a1, ..., ag, b1, ..., bg the

following relationship holds,

P [a1 ≤ Z1 ≤ b1, ..., ag ≤ Zg ≤ bg]

≥ 1−
g∑

i=1

(
1− P [ai ≤ Zi ≤ bi]

) (11)

Hence, the joint probability of variables can be lower bounded by a function of

the marginals. The reason this result is useful is that one-dimensional confidence re-

gions (i.e., confidence intervals or domain of marginals) of a particular measure can

be efficiently computed as opposed to simultaneous (multidimensional) confidence re-

gions which are much harder to exactly compute [19,20]. One easy way of obtaining

confidence intervals for commonly used measures is by using standard formulas. For

example, if we want the confidence interval of 0.95 measure for Zi, we know that an

approximation of it is given by µi +−1.94σi, where µi and σi are the mean and stan-

dard deviation of Zi. Similar formulas are known for other measures and, hence, one

can compute confidence intervals for these measures in constant time. If we want the

exact confidence interval, we can compute it as a binomial cdf, which can also be done

in essentially constant time using series expansions for the incomplete regularized beta

function. With this if β is the measure on the right hand side of equation 11, then the

measure over the simultaneous confidence region or the relevant set of datasets for our

problem is at least β. If α is the true measure over the set of datasets, but β ≤ α is

what we efficiently compute based on the above inequality, then we have,

12

Table 3 Collapsed view of the underlying distribution as required for bounding
PZ(N) [ζ(xi)=y].

X ↓, Y → y1 y2 · · · yc

x
xi
1 p

xi
11 p

xi
12 · · · p

xi
1c

x
xi
2 p

xi
21 p

xi
22 · · · p

xi
2c

...
x
xi
k p

xi
k1 p

xi
k2 · · · p

xi
kc

Rxi p
xi
R N

PZ(N) [ζ(x)=y] =
∑

S∈D(N)

P [S]Pt[η
y
x|S]

≤ αPt[η
y
x|Smax] + (1− α)

≤ βPt[η
y
x|Smax] + (1− β)

(12)

In our problem, the Zi represent the number of datapoints corresponding to an

input-output pair where the input has at least h attributes with the same value as the

input xi for which the above probability is to be upper bounded. This is seen in table 3,

where xxi
j denotes the jth input which has at least h attributes with the same value as

input xi. If each of the d attributes can take v values3 giving a total of n = vd distinct

inputs, then k =
∑d

i=h

(
d

i

)
(v− 1)d−i < n and Rxi denotes the entry in the table for

the probability remaining after accounting for probabilities of each of the kc pairs i.e.

pxi

R = 1−
∑k,c

j=1,l=1 p
xi

jl and N as usual is the sample size. Hence, we have kc degrees

of freedom i.e. g = kc, since the probabilities sum to 1 and the probability in the last

cell (pxi

R) is determined by the other probabilities. With this we have Z1 is the random

variable corresponding to the count in the cell formed by the intersection of input xxi
1

and class y1, Z2 is the random variable corresponding to the count in the cell formed

by the intersection of input xxi
1 and class y2 and so on until Zg, which is the random

variable corresponding to the count in the cell formed by the intersection of input xxi

k
and class yc. Consequently, one way of obtaining a confidence interval of measure 0.95

for the random variable representing the intersection of input xxi
j and class yl would

be Npxi

jl + −1.94(
√
Npxi

jl (1− pxi

jl)). We can however choose any confidence interval

for each Zi (not necessarily the same) so as to have the appropriate β, which as we

know, lower bounds α. We also need to check that the individual confidence intervals

produce legal datasets, since the total sample size is a fixed number N . This can

be easily done by adding the upper limit of the intervals for each Zi and verifying

that the eventual sum is ≤ N . If it is not, one can adjust the limits of one or more

of the intervals so as to satisfy the condition. The confidence intervals for each Zi

together form a confidence region that represents the relevant set of datasets. From

this set we now have to find Smax, i.e., the dataset for which the number of paths

that classify input x into class y is the highest among the set. This dataset is the one

formed by taking upper limits of the confidence intervals corresponding to class y and

the lower limits of the remaining confidence intervals, with the appropriate value for

3 This is after splitting the continuous attributes.

13

Algorithm 2 Overview of procedure to find Smax and mh(Smax) for an input-output

pair (xi, yb).

Input: h, X = {x̄1, ..., x̄n}, Y = {y1, ..., yc}, P = {p11, ..., pnc} {P is the estimated or given
underlying probability distribution over X × Y .}
Output: Smax, mh(Smax)
Let x

xi
j denote the jth input which has at least h attributes with the same value as input

xi.
Let p

xi
jl be the (rolled-up) probability of being (x

xi
j , yl), which is computed from P.

Let nr = N
for all j ∈ {1, ..., k}, l ∈ {1, .., c} do

if l=b {γjl below depends on desired β, which is the right side of equation 11, and N .}
then

Compute njl = Np
xi
jl + γjl(

√
Np

xi
jl (1− pxi

jl))

else

Compute njl = Np
xi
jl − γjl(

√
Np

xi
jl (1− pxi

jl))

end if
Compute nr = nr − njl

end for
Smax = {n11, ..., nkc, nr}
Compute mh(Smax) = Count # of paths of length h in Smax, where yb is the majority
class.
Return Smax, mh(Smax)

the cell corresponding to Rx, in order to have a total sample size of N . A dataset

formed by this procedure would be Smax, since taking the upper and lower limits as

indicated would indeed produce a dataset with maximum number of paths classifying

the particular input into class y in the relevant set. An overview of this procedure is

given in algorithm 2. With this, we have completely described a process that can be used

to upper bound PZ(N) [ζ(x)=y]. An analogous procedure can be used to upper bound

PZ(N)×Z(N)

[
ζ(x)=y ∧ ζ′(x′)=y′

]
with the slight difference being we have to consider

pairs of inputs rather than single inputs. The basic technique, however, remains the

same.

3.4 Time Complexity

In the previous subsection we provided a strategy to upper bound PZ(N) [ζ(x)=y]

and PZ(N)×Z(N)

[
ζ(x)=y ∧ ζ′(x′)=y′

]
∀x, x′ ∈ X, ∀y, y′ ∈ Y and consequently the

moments. In this subsection, we analyze the time complexity of this strategy and

compare it with the straightforward extension described in section 3.

Consider the following setup, where we have d input attributes each taking v val-

ues, a class attribute taking c values, a sample size of N and T trees in the ensemble

each of height h ≤ d. Given this, the straightforward extension would have a time com-

plexity of O(ncqTNT+1) for the first moment and O(n2c2q2TN2T+2) for the second

moment, where n = vd is the number of distinct inputs and q =

(
d

h

)
is the total

number of paths of length h for a particular input. The nc term in the time complexity

comes from the fact that we have to estimate nc probabilities, the qT term indicates

we have to sum over all combinations of q paths for the T trees and NT+1 is the time

it takes to compute each of the huge probabilities in equation 7. The term NT+1 can

be reduced by approximating each of the probabilities using Monte Carlo sampling,

14

however, the qT term is still very intimidating given that T is usually in the hundreds.

The time complexity of our bound is O(nkc2qT) for the first moment and a quadratic

function of this value for the second moment, where k =
∑d

i=h

(
d

i

)
(v − 1)d−i < n.

This time complexity comes from the fact that tables, such as table 3, can be created

for each input in one pass of the dataset and then for each input-output pair we can

find
mh(Smax)

q followed by the binomial probability in O(kcqT) time. A key component

enabling this exponential gain is the fact that the simultaneous confidence region can

be lower bounded by bounding each variable independently and that mh(Smax) can

be found efficiently as shown before. Hence, there is a huge overall reduction in time

complexity for practical applications as there is an exponential gain in T , with the

sample size N not affecting the analysis. The increased O(kc) factor is more than com-

pensated for by these reductions. We have thus reduced the complexity from something

that was practically impossible to compute even for small-scale problems to something

that is reasonable to compute for medium-scale and even certain large-scale problems.

Moreover, the bounds on the individual probabilities can be computed in parallel.

3.5 Practical Considerations

In the previous subsection we analyzed the worst-case time complexity of computing

our bound. It however may be possible to further speed up its computation in practice.

For instance, to upper bound the moments, we may not have to upper bound the

probabilities for every input-output pair. For every input, it is sufficient to upper

bound every probability starting from the one corresponding to the highest error (i.e.,

highest P [X=x]P [Y (x) 6=y] ∀y ∈ Y) to the ones with lower errors in a (descending)

sorted fashion until the upper bounds exceed 1 or if we reach the probability with the

lowest error, i.e., for the first moment the PZ(N) [ζ(x)=y] need not be upper bounded

if P [X=x]P [Y (x) 6=y] is the lowest error among all of Y and similarly for the second

moment. The weight multiplied to the lowest error term corresponding to input x

is 1 −
∑

y′∈Y,y′ 6=y U(x, y′) where U(x, y′) is the upper bound on PZ(N)

[
ζ(x)=y′

]
if

the sum of U(x, y′) does not exceed 1. This can be done, since the probabilities for

classifying an input into different classes form a convex combination. Conversely, if

we first upper bound the probability with the lowest error for a particular input and

then in a (ascending) sorted fashion upper bound probabilities with successively higher

errors until one of the aforementioned conditions are met, we would get lower bounds on

the moments. Such a strategy would give tighter bounds than blindly upper bounding

every probability.

It is important to realize that, because of the generic expressions, we get tighter

bounds when compared with directly bounding the moments using the procedure men-

tioned in the previous subsection. From Bonferonni’s inequality in equation 11, we see

that as the number of random variables increase, the bound (linearly) loosens. Hence,

having fewer variables will invariably lead to tighter bounds. If we were to derive

bounds directly, we would have to consider the entire dataset with all the cells without

collapsing or aggregation of cells into fewer cells and hence fewer variables [11], as is the

case using the generic expressions. The reason for this is that the generic expressions

consider cells corresponding to an individual input or pairs of inputs rather than the

entire input space.

15

4 Experiments

In the previous section we described a technique to derive bounds on the moments.

In this section, we test the usefulness of these bounds by performing experiments on

synthetic and real data. In particular, we compare the tightness of the upper bound

derived by our method with the commonly used strength and correlation bounds given

by Breiman, which are upper bounds on GE. As we will see, our bound tends to be

significantly tighter than the alternative in most circumstances.

4.1 Setup

The experimental setup that we have here is very similar to the one in a previous study

[10]. In each of the experiments on synthetic and real data that we describe below, we

obtain a robust estimate of EZ(N) [GE(ζ)] by generating 1000 hold-out or test sets

of 10000 datapoints and then averaging the error over these 1000 hold-out sets. Note

that, even in the synthetic case, the EZ(N) [GE(ζ)] cannot be computed exactly, since

the expectation is over all possible classifiers built over datasets of size N , which is

computationally infeasible even for N in the hundreds. We set the confidence intervals

per variable (Zi) to 0.99. The number of trees in the ensemble (T) is set to a 100 for

the real data and varied from 100 to 500 for the synthetic data. We also report the

average computation time in seconds for the respective bounds.

The experimental setup for synthetic data is as follows: In our initial experiments

we fix N to 100 and then increase it to 10000. The number of classes is fixed to two.

We compute the upper bounds on EZ(N) [GE(ζ)] where the number of attributes is

fixed to d = 5 with each attribute having 2 attribute values. We then increase the

number of attribute values to 3 to observe the effect that increasing the number of

split points has on the performance of the estimators. We also increase the number of

attributes to d = 8 to study the effect that increasing the number of attributes has

on the performance. With this we have a d+ 1 dimensional contingency table whose d

dimensions are the attributes and the (d + 1)th dimension represents the class labels.

When each attribute has two values, the total number of cells in the table is c = 2d+1

and with three values the total number of cells is c = 3d × 2. If we fix the probability

of observing a datapoint in cell i to be pi such that
∑c

i=1 pi = 1 and the sample size

to N the distribution that perfectly models this scenario is a multinomial distribution

with parameters N and the set {p1, p2, ..., pc}. In fact, irrespective of the value of d and

the number of attribute values for each attribute, the scenario can be modeled by a

multinomial distribution. In the studies that follow, the pi’s are varied and the amount

of dependence between the attributes and the class labels (ρ) is computed for each set

of pi’s using the Chi-square test [9]. More precisely, we sum over all i the squares of

the difference of each pi with the product of its corresponding marginals, with each

squared difference being divided by this product, that is, correlation =
∑

i
(pi−pim)2

pim
,

where pim is the product of the marginals for the ith cell.

In the case of real data, we perform experiments by building bootstrap distribu-

tions on three UCI data sets that have been used previously in the context of decision

trees [10] and six other industrial datasets obtained from diverse domains. The six

proprietary datasets denoted by Oil, Semiconductor, Store, Spend, Airline and Invoice

in table 6, are obtained from the petrochemical industry, the semiconductor industry,

16

the consumer products industry, the finance domain, the airline industry and the pro-

curement domain respectively.

Oil: The Oil dataset has information obtained from a major oil corporation. There are

a total of 9 measures in the dataset. These measures are obtained from the sensors of

a 3-stage separator that separates oil, water, and gas. The 9 measures are composed

of 2 measured levels of the oil water interface at each of the 3 stages and 3 overall

measures. In particular, the measures are as follows:

1. 20LT 0017 mean (stage 1)

2. 20LT 0021 mean (stage 1)

3. 20LT 0081 mean (stage 2)

4. 20LT 0085 mean (stage 2)

5. 20LT 0116 mean (stage 3)

6. 20LT 0120 mean (stage 3)

7. Daily water in oil (Daily WIO)

8. Daily oil in water (Daily OIW)

9. Daily production normal

Our target measure is the last listed measure: Daily production normal (binary

variable), which indicates if the daily oil production meets the desired level or not. The

dataset size is 992.

Semiconductor: In the chip manufacturing industry predicting wafers lying within

certain spec (which is a collection of chips) accurately ahead of time can be crucial in

choosing the appropriate set of wafers to send forward for further processing. Elimi-

nating faulty wafers can save the industry a huge amount of resources in terms of time

and money.

The dataset we have has 175 features including the target. The target is a binary

variable, which indicates if the wafer conforms to required spec or not. The other fea-

tures are a combination of physical measurements and electrical measurements made

on the wafer. The dataset size is 2361.

Store: In the consumer products industry, predicting when a certain item of a competi-

tor brand may or may not be on promotion can be critical for strategic planning. The

dataset we have has information about past promotions that we have carried out for a

type of bread and, for the corresponding time periods, we also have information about

10 competitors that have carried out promotions. The target here is the binary time

series corresponding to our closest competitor. The dataset size is 140 corresponding

to 140 weeks of data.

Spend: The Spend dataset contains a couple of years worth of (spend) transactions

spread across various categories belonging to a large corporation. There are 145963

transactions which are indicative of the companies expediture in this time frame. The

dataset has 13 attributes namely; requestor name, cost center name, description code,

material group, vendor name, business unit name, region, purchase order type, ad-

dressable, spend type, compliant, invoice spend amount. Our target is the compliance

attribute, which indicates if a transaction was compliant or not. Given this, the goal

is to identify the characteristics of a transaction that highly correlate with it being

compliant/non-compliant. With this information the company would be able to put in

17

Table 4 The table shows EZ(N) [GE(ζ)] and the corresponding upper bounds for different
levels of correlation (ρ) between the attributes and class labels for T = 100. The values before
the commas in the cells under different levels of correlation correspond to our method while
the values following the commas correspond to Brieman’s strength and correlation bounds.

Parameter Settings Split Metric ρ = 0.9 ρ = 0.36 ρ = 0.11 ρ = 0.02

N = 100, binary Bounds 0.22,0.79 0.33,1.23 0.66,1.27 0.57,1.34
d = 5, h = 3 EZ(N) [GE(ζ)] 0.13 0.26 0.49 0.53

Time 0.09,0.11 0.09,0.11 0.09,0.11 0.09,0.11
N = 100, ternary Bounds 0.48,1.37 0.8,2.49 0.67,1.77 0.57,1.7

d = 5, h = 3 EZ(N) [GE(ζ)] 0.19 0.32 0.51 0.54
Time 0.21,0.32 0.21,0.32 0.21,0.32 0.21,0.32

N = 100, binary Bounds 0.71,2.21 0.8,1.89 0.67,1.78 0.57,0.97
d = 8, h = 3 EZ(N) [GE(ζ)] 0.33 0.42 0.48 0.49

Time 0.35,0.56 0.35,0.56 0.35,0.56 0.35,0.56
N = 10000, binary Bounds 0.22,1.89 0.33,0.99 0.47,0.75 0.56,0.69
d = 5, h = 3 EZ(N) [GE(ζ)] 0.11 0.23 0.41 0.50

Time 0.10,0.12 0.10,0.12 0.10,0.12 0.10,0.12
N = 10000, ternary Bounds 0.26,1.15 0.36,3.9 0.49,5.41 0.50,1.42
d = 5, h = 3 EZ(N) [GE(ζ)] 0.17 0.27 0.44 0.48

Time 0.22,0.32 0.22,0.32 0.22,0.32 0.22,0.32
N = 10000, binary Bounds 0.68,1.86 0.8,1.21 0.67,4.86 0.57,0.62
d = 8, h = 3 EZ(N) [GE(ζ)] 0.35 0.47 0.49 0.52

Time 0.34,0.58 0.34,0.58 0.34,0.58 0.34,0.58

place appropriate policies and practices that could lead to potentially huge savings.

Airline: This dataset contains information about flights of a major airline carrier. In

particular, the dataset has information about the date of departure and arrival of a

flight, the airport the flight daparts from and arrives at, the pilots serial number, the

type of aircraft, the dispatchers name, the cost and multiple fuel indicators signifying

the amount of fuel put in the flight, the minimum required by the government and

other safety fuel limits. We have information of over 100,000 flights and the goal is

to identify factors that lead to the flight carrying excess fuel than what is required.

We have a binary indicator, which depicts if the flight carried excess fuel. Controlling

the factors which lead to this can help an airline carrier save money and improve safety.

Invoice: Large corporations have many of business units (BUs) viz. travel, marketing,

auditing, information technology etc. with each BU consisting of various commodity

councils (CCs) viz. office supplies, tech services, communication services, etc. Through-

out a calendar year, each of the commodity councils carry out multiple transactions

and record the corresponding invoices. It is extremely useful for these CCs and BUs at

large to estimate in advance the invoice amounts that are likely to be registered in the

near future. This dataset has 8 BUs with each BU consisting of 150 CCs. The data was

collected daily for a year and, hence, the dataset has only 365 datapoints. Our target

is the CC communication services4 under the BU information technology, which has

one of the highest invoice amounts and therefore is critical to business.

For each of the above datasets, we split the continuous attributes at the mean of

the given data. We thus can form a contingency table representing each of the data

4 Partitioned into 3 categories high, medium and low.

18

Table 5 The table shows EZ(N) [GE(ζ)] and the corresponding upper bounds for different
levels of correlation (ρ) between the attributes and class labels for T = 500. The values before
the commas in the cells under different levels of correlation correspond to our method while
the values following the commas correspond to Brieman’s strength and correlation bounds.

Parameter Settings Split Metric ρ = 0.9 ρ = 0.36 ρ = 0.11 ρ = 0.02

N = 100, binary Bounds 0.23,0.76 0.35,1.13 0.68,1.17 0.60,1.29
d = 5, h = 3 EZ(N) [GE(ζ)] 0.11 0.24 0.46 0.50

Time 0.48,0.56 0.48,0.56 0.48,0.56 0.48,0.56
N = 100, ternary Bounds 0.49,1.17 0.84,2.25 0.67,1.77 0.56,1.8

d = 5, h = 3 EZ(N) [GE(ζ)] 0.16 0.31 0.51 0.55
Time 1.07,1.59 1.07,1.59 1.07,1.59 1.07,1.59

N = 100, binary Bounds 0.73,2.11 0.83,1.71 0.69,1.62 0.56,0.98
d = 8, h = 3 EZ(N) [GE(ζ)] 0.30 0.40 0.47 0.48

Time 1.78,2.89 1.78,2.89 1.78,2.89 1.78,2.89
N = 10000, binary Bounds 0.23,1.76 0.33,0.94 0.46,0.74 0.56,0.67
d = 5, h = 3 EZ(N) [GE(ζ)] 0.11 0.21 0.38 0.49

Time 0.49,0.60 0.49,0.60 0.49,0.60 0.49,0.60
N = 10000, ternary Bounds 0.29,1.02 0.34,3.5 0.49,5.39 0.50,1.41
d = 5, h = 3 EZ(N) [GE(ζ)] 0.14 0.25 0.43 0.47

Time 1.08,1.73 1.08,1.73 1.08,1.73 1.08,1.73
N = 10000, binary Bounds 0.71,1.67 0.78,1.17 0.65,4.74 0.56,0.61
d = 8, h = 3 EZ(N) [GE(ζ)] 0.33 0.45 0.48 0.53

Time 1.73,2.96 1.73,2.96 1.73,2.96 1.73,2.96

Table 6 The table shows EZ(N) [GE(ζ)] for the real datasets with the respective upper bounds
and running time.

Dataset EZ(N) [GE(ζ)] Our Bound, Time Breiman’s Bound, Time

Pima Indians 0.31 0.63, 0.37 2.01, 0.57
Balloon 0.24 0.29, 0.06 0.84, 0.08

Shuttle Landing Control 0.21 0.31, 0.09 0.91, 0.10
Oil 0.32 0.47, 0.41 0.83, 0.63

Semiconductor 0.09 0.16, 293.52 0.27, 342.73
Store 0.11 0.22, 0.53 0.25, 0.71
Spend 0.16 0.27, 267.17 0.86, 313.51
Airline 0.29 0.42, 238.82 0.93, 248.59
Invoice 0.43 0.79, 1226.78 1.37, 1892.29

sets. The counts in the individual cells divided by the data set size provide us with

empirical estimates for the individual cell probabilities (pi’s). Thus, with the knowledge

of N (data set size) and the individual pi’s, we have a multinomial distribution. Using

this distribution we observe the behavior of the bounds.

The results are shown in tables 4, 5 and 6, where we also see the upper bounds

computed using Breiman’s formula [7]: κ
(1−s2)

s2
described before. Estimating κ and s we

find the upper bound on the GE for a particular classifier. Since we need an estimate of

EZ(N) [GE(ζ)], we perform the above procedure multiple times thus building multiple

ensembles and computing an upper bound on GE for each. We then average the upper

bounds that we have computed and report the result as an estimate of the upper bound

on EZ(N) [GE(ζ)].

19

4.2 Observations

In the synthetic experiments, our bound is the tightest when d = 5, h = 3 and when

we have binary splits while it is the worst when d = 8, h = 3. This is because the

number of variables is the least in the first scenario while it is the most in the second

scenario. This trend is especially seen at moderate correlation (0.36), since the number

of paths classifying inputs into the class with high errors for sample Smax increases

more dramatically with the number of variables for this case than at high or low

correlations. In any case, we do significantly better than Breiman’s bound.

Increasing the sample size from 100 to 10000 has little effect on the time it takes to

compute our bound while the quality of the bound remains intact, which is promising.

Increasing the number of trees in the ensemble from 100 (table 4) to 500 (table 5) also

maintains the quality of our bound though the time to compute it linearly increases.

This is consistent with complexity analysis we provided in the previous section.

In the experiments on real data, we see a similar behavior where our bound out-

performs Breiman’s bound on all the nine datasets. These datasets are from diverse

domains and exhibit varied characteristics in terms of sample size, dimensionality and

type of attributes. The type of attributes are a mix of continuous and discrete, with

the discrete attributes having a range of splits. We see in these as well as the syn-

thetic experiments that the time to compute our bound increases as the number of

attributes and the splitting factor increases, though it is still faster than computing

Brieman’s bound. The reason for this is that we do not have to explicitly build the

trees to compute our bound.

Hence, from the experiments we see that our bound is never worse than that com-

puted using Breimans’s formula, though in certain situations it is close to being trivial,

i.e., close to 1.

5 Discussion

In this paper we described a procedure to derive bounds for an ensemble of random

decision trees. It would be interesting to extend such an analysis to the more general

random forest algorithm. In order to derive bounds for the random forest algorithm, we

would have to characterize the probability of choosing a particular attribute based on

two criteria: first, that it is part of the subset of attributes that are randomly chosen

and, second, that it has the maximum IG or GG in that set. For the ensemble of

random decision trees, we just had to deal with the first criteria with a subset size of

one. Deriving acceptable bounds for the random forest algorithm efficiently is thus a

challenge for the future.

In the analysis presented in previous sections, one of the main ideas in comput-

ing the bound efficiently was to use Bonferroni’s inequality. However, this inequality

can lead to loose bounds with increasing dimensionality. In the future, it would be

interesting to come up with better characterizations of the simultaneous confidence

region leading to tighter and, hence, more useful bounds. The challenge, however, is to

decipher these regions in a scalable fashion.

To conclude, we have presented a novel procedure to derive bounds on the moments

of GE for an ensemble of random decision trees. This procedure is efficient and leads to

tighter bounds than the well established Breiman’s strength and correlation bounds.

The derivation of these bounds required a perspective and a set of analytical tools

20

that are significantly different from the strategies used to characterize (single) random

decision trees [10]. It would be interesting to see if the ideas used in analyzing the

ensemble of random decision trees can be used to analyze other such ensembles in the

future.

Acknowledgement

I would like to thank the editor and the anonymous reviewers for their constructive

comments. I would also like to thank Katherine Dhurandhar for proofreading the paper.

References

1. A. Anandkumar, D. Foster, D. Hsu, S. Kakade and Y. Liu. A Spectral Algorithm for
Latent Dirichlet Allocation. In NIPS, page 926-934, Lake Tahoe, USA, 2012.

2. B. Boots and G. Gordon. Two Manifold Problems with Applications to Nonlinear System
Identification. In ICML, page 338, Edinburgh, Scotland, UK, 2012.

3. N. Bshouty and P. Long. Finding Planted Partitions in Nearly Linear Time using Arrested
Spectral Clustering. In ICML, page 135-142, Haifa, Israel, 2010.

4. T. Hastie, R. Tibshirani and J. Friedman. Elements of Statistical Learning. Springer, 2
edition, 2001.

5. R. Duda, P. Hart, D. Stork. Pattern Classification. Wiley New York, 2 edition, 2001.
6. A. Dhurandhar and A. Dobra. Distribution free bounds for relational classification. Knowl-

edge and Information Systems, 2012.
7. L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001.
8. S. Buttrey and I. Kobayashi. On strength and correlation in random forests. In Proceedings

of the 2003 Joint Statistical Meetings, Section on Statistical Computing, 2003.
9. J. Connor-Linton. Chi square tutorial. http://www.georgetown.edu/faculty/ballc/webtools/

web chi tut.html, 2003.
10. A. Dhurandhar and A. Dobra. Probabilistic characterization of random decision trees.

Journal of Machine Learning Research, 9:2321–2348, 2008.
11. A. Dhurandhar and A. Dobra. Semi-analytical method for analyzing models and model

selection measures based on moment analysis. ACM Transactions on Knowledge Discovery
and Data Mining, 2009.

12. A. Dhurandhar and A. Dobra. Probabilistic characterization of nearest neighbor classifiers.
Intl. Journal on Machine Learning and Cybernetics, 2012.

13. W. Fan, H. Wang, P. Yu, and S. Ma. Is random model better? on its accuracy and efficiency.
In ICDM ’03: Proceedings of the Third IEEE International Conference on Data Mining,
page 51, Washington, DC, USA, 2003. IEEE Computer Society.

14. P. Geurts, D. Ernst, and L. Wehenkel. Extremely randomized trees. Machine Learning,
63(1):3–42, 2006.

15. John Langford. Tutorial on practical prediction theory for classification. J. Mach. Learn.
Res., 6:273–306, December 2005.

16. F. Liu, K. Ting, and W. Fan. Maximizing tree diversity by building complete-random
decision trees. In PAKDD, pages 605–610, 2005.

17. D. McAllester. Pac-bayesian model averaging. In In Proceedings of the Twelfth Annual
Conference on Computational Learning Theory, pages 164–170. ACM Press, 1999.

18. David Mcallester. Simplified pac-bayesian margin bounds. In In COLT, pages 203–215,
2003.

19. S. Roy and R. Bose. Simultaneous confidence interval estimation. Annals of Mathematical
Statistics, 24(3):513–536, 1953.

20. C. Sison and J. Glaz. Simultaneous confidence intervals and sample size determination for
multinomial proportions. JASA, 90(429):366–369, 1995.

21. Y. Tong. Probabilistic Inequalities for Multivariate Distributions. Academic Press, 1
edition, 1980.

22. K. Zhang and W. Fan. Forecasting skewed biased stochastic ozone days: analyses, solutions
and beyond. Knowl. Inf. Syst., 14(3):299–326, 2008.

23. X. Zhang, Q. Yuan, S. Zhao, W. Fan, W. Zheng, and Z. Wang. Multi-label classification
without the multi-label cost. In SDM ’10: Proceedings of the Siam Conference on Data
Mining, pages 778–789, 2010.

21

Author Biography

Fig. 2 Amit Dhurandhar is a research staff member in the Mathematical Sciences Dept.
at IBM T.J. Watson. He received his B.E. in computer engineering from Pune University
in 2004. He then received his Masters and P.h.d. in computer engineering from University
of Florida in 2005 and 2009 respectively. He is the acting Knowledge Discovery and Data
Mining Professional Interest Community (KDD PIC) chair at IBM T.J. Watson. Broadly
speaking, Amit’s research interests primarily span the areas of machine learning, data mining
and computational neuroscience. He has authored several papers and has been a reviewer for
many top quality conferences and journals.

