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Abstract In multiple domains, actively acquiring missing input information at a rea-

sonable cost in order to improve our understanding of the input-output relationships

is of increasing importance. This problem has gained prominence in healthcare, public

policy making, education, and in the targeted advertising industry which tries to best

match people to products. In this paper we tackle an important variant of this prob-

lem: Instance Completion, where we want to choose the best k incomplete instances

to query from a much larger universe of N(>> k) incomplete instances so as to learn

the most accurate classifier. We propose a principled framework which motivates a

generally applicable yet efficient meta-technique for choosing k such instances. Since

we cannot know a priori the classifier that will result from the completed dataset, i.e.

the final classifier, our method chooses the k instances based on a derived upper bound

on the expectation of the distance between the next classifier and the final classifier.

We additionally derive a sufficient condition for these two solutions to match. We then

empirically evaluate the performance of our method relative to the state-of-the-art

methods on 4 UCI datasets as well as 3 proprietary e-commerce datasets used in pre-

vious studies. In these experiments, we also demonstrate how close we are likely to be

to the optimal solution, by quantifying the extent to which our sufficient condition is

satisfied. Lastly, we show that our method is easily extensible to the setting where we

have a non-uniform cost associated with acquiring the missing information.

Keywords Instance completion, Active feature acquisition, Missing data

1 Introduction

Incomplete or missing data is a bane that plagues insightful data analysis in almost

every industry. Researchers and practitioners alike have come up with a variety of
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Fig. 1 Above we see the 10-fold test set accuracy of the state-of-the-art methods relative to
the best possible set of k = 2 instances (found exhaustively) that could be queried at each
iteration for the UCI credit approval dataset. We incrementally query sets of k instances based
on the different strategies and at each stage retrain a SVM with radial basis kernel.

solutions to deal with this issue. On the one hand, there are statistical or machine

learning techniques [9] that try to best estimate the missing information based on

known data. On the other hand, there are domain specific data filling techniques [29]

that use expert knowledge to estimate the missing information. These two strategies

have been the most popular in literature when it comes to dealing with missing data. In

some cases there is a third and potentially better alternative, which involves trying to

actively acquire the missing information within certain cost constraints. In healthcare

for example, to get a better understanding of the efficacy of a flu vaccine in relation to

demographics, private and government health agencies might want to contact healthy

and sick individuals who were administered the vaccine and query them about their

lifestyle/habits. In education, to evaluate standardized tests, education boards and

schools might want to obtain more information about their students to find correlations

of which students performance well and their backgrounds. Of course in any practical

scenario it is virtually impossible to ask everyone and acquire all the information. The

question thus becomes, which individuals must we target to learn the most about these

associations.

This problem is also seen in the targeted advertising industry, which tries to best

match people to products. Hence, while you might be able to estimate correlations or

more generally build classification models by associating available demographic features

to consumer buying decisions, such models are generally far from perfect. For example,

we may not know the age and/or gender and/or geography of some customers, which

might be critical in determining their preference for a certain product. The question

then again becomes, which individuals must we target to maximize the improvement

in prediction/classification performance.

Formally, the problem addressed in this paper can be stated as follows: Given that

we can query k instances from a dataset of size N with incomplete input information

but with known outputs, which instances when queried would maximize the classification

performance? This problem was introduced by Melville et. al. [19] and is commonly

referred to as Instance completion. In the application domains described before, this

formulation would correspond to choosing k people to call that will most likely signif-

icantly enhance classification accuracy having obtained their additional information.
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The better the classifier the more confidence we are likely to have in the insight it

provides by identifying features that it deems significant. This is complementary to

the traditional active learning problem where only a single attribute (i.e. the label)

is missing. It can, however, be considerably harder to design effective techniques for

instance completion, since there could be multiple different sets of (input) attributes

missing for each of the instances.

Other than this being a highly relevant problem in todays world, one of the primary

motivations for this work is that there is still a significant performance gap between the

state-of-the-art methods [24,20,22,13] and the best possible solution. This is seen in

Figure 1, where we see the accuracy of various methods being much worse than the best

possible solution at different completion percentages. At every iteration/completion

percentage, the Best Case solution is found by exhaustively searching across all possible

k incomplete instances, and then choosing those k instances which upon completion

and retraining of the classifier, lead to the highest accuracy over a (10%) validation set

that was part of the training1. These results are on the Credit Approval UCI dataset

where a random 50% of the attributes are assumed to be missing for each incomplete

instance (in keeping with the experimental methodology used in previous works [24,

20])2. A qualitatively similar performance gap is also seen on other datasets from

previous studies.

We believe that an important conceptual reason why such a performance gap still

exists is that none of the existing methods attempt to explicitly approach the best

possible classifier. State-of-the-art methods such as joint instance completion (JIS)

[24] and expected utility (EU) [20] are optimal at the instance and entry (i.e. instance-

feature combination) level respectively but only with respect to the current classifier.

In other words, there could be other querying mechanisms that would lead to better

classifiers that are closer to the final classifier, than those obtained by using the above

methods, where the final classifier is the one obtained by training on the complete

dataset3.

In this paper, we thus provide a general framework built on the philosophy of

trying to get as close as possible to the final classifier as we query instances in sets

of k and update the classifier at each iteration. In particular, we make the following

contributions,

– We define a novel, intuitive distance metric between two classifiers relative to a

dataset that is independent of the classification hypothesis/function classes, but

rather dependent on their performance.

– We show equivalance between the original problem of minimizing the distance be-

tween the next classifier and the final classifier, and the problem of maximizing the

error reduction between successive classifiers (obtained by querying instances in

sets of k), and then upper bounding it by a function that is independent of the fi-

nal classifier. We also provide an exponential (upper) bound on the error reduction,

which reaffirms our strategy.

– We provide a sufficient condition under which optimizing this upper bound would

lead to the same solution as optimizing the original function.

1 We chose k = 2 since exhaustively searching across larger values of k becomes computa-
tionally too intensive to obtain the best-case results.

2 Thus, each incomplete instance can have different sets of attributes missing.
3 We assume that the classifier trained on the completed dataset (the final classifier), though

unknown, will be the best possible one and therefore, we want to learn it as early as possible,
which we feel is a reasonable goal.
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– Motivated by these developments, we provide a meta-algorithm to choose k in-

stances. To illustrate its easy of applicability to popular classification algorithms

we instantiate it for linear and non-linear SVMs as well as logistic regression.

– We demonstrate the superiority in performance of our method over the state-of-

the-art on a collection of UCI and proprietary e-commerce datasets. In these ex-

periments, we also show how close we are likely to be to the optimal solution, by

presenting the extent to which the derived sufficient condition is satisfied.

The rest of the paper is organized as follows: In Section 2, we position our work

relative to advances in traditional active learning as well as relative to our problem of

instance completion. In Section 3, we provide a general overview of our method and

describe the interplay between the following three sections. In Section 4, we describe in

detail our framework. This includes defining the performance based distance function

and the sufficient condition for optimality. In Section 5, we elucidate our method that

is motivated by the developments in the previous section. In Section 6, we provide

example instantiations of our technique to linear and non-linear SVMs as well as logistic

regression. This section showcases how the univariate probabilities that our method in

the previous section requires can be computed. In Section 7, we empirically compare

our method with other state-of-the-art methods on real data and report how close

we are to satisfying the derived sufficient condition. In Section 8, we discuss how our

method can be extended given a cost matrix along with promising future directions.

2 Related Work

The problem setting described in this paper is quite different from traditional active

learning [25,3], which involves the complementary problem of missing outputs with

all inputs known and the goal being to query those output labels that can maximize

classification performance. Other related work includes work on budgeted learning [16,

14], where one is trying to find which entry (i.e. instance-feature combination) to query

given a certain cost constraint. Knowledge gradient methods [6] are a different class of

methods which also try to find the optimal entry to query that will maximize the gain

in information. However, both these classes of methods are suited for a setting that is

different from ours. Budgeted learning and knowledge gradient methods are generally

modeled as Markov decision processes (MDPs) and, as mentioned before, try to find

which entry to query rather than a set of entries comprising of multiple instances. To

determine the reward in querying an entry, an optimization problem has to be solved

for each entry using these methods, which can be expensive. Moreover, even if one were

to extend these methods in a straightforward manner for instance completion (where

we want to choose k instances out of a possible N), there would be N !
k!(N−k)! possible

actions4 for the corresponding MDP to choose from, which would make this framework

computationally infeasible.

While the above methods are designed for selecting one entry at a time, there are

other methods in traditional active learning that try to optimally select a set of entries

at a time and are referred to as batch mode active learning methods [12,28,7]. Loosely

speaking, these methods try to minimize the overlap of information in the chosen set

along with classification uncertainty. However, none of them can be easily adapted to

4 ! denotes factorial.
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our setting as we can have an arbitrary number of attributes missing for any particular

instance. Moreover, many of them are based on heuristics such as minimizing the Fisher

information or uncertainty of classification, which does not necessarily translate into

obtaining the best possible classifier.

In our setting, we seek to maximize the classification performance on a dataset

during model building (at training time). However, there is work on active feature

acquisition with the objective of getting the best possible performance during model

application (at testing time) [13,2,1,26]. The authors in one of these works [13] try

to query instances in the test set so as to minimize classification uncertainty, while

in other works [2,1,26] the goal is to query test instances so as to select the most

important features. There are also works [5] that assume that a certain set of features

are known for all instances, with the remaining features missing, and given feature

acquisition costs, the goal is to decipher which features should be queried for which

instances. While in works [21], both labels and features may be missing for an instance

and the goal is to find out which of the two should be queried. Their method uses

Expectation Maximization to impute the missing features for each instance, which can

be expensive in real settings where hundreds to thousands of features could potentially

be missing. Clearly, all these lines of work address a goal different from ours.

There are works [24,30,19,20] that address the same problem as ours. In one of

these works [30], a method called Goal Oriented Data Acquisition (GODA) is described,

which initially builds a model based only on complete instances. It then rebuilds a

model for each incomplete instance that is completed based on imputed values, by

adding it to the complete instances and choosing those incomplete instances that give

maximum improvement in performance. In another of these works [19], a method called

Error Sampling (ES) is described for picking the k instances to query which works as

follows: If there are m misclassified instances with missing values and if m > k, then k

of these m instances are randomly picked. Otherwise if m ≤ k, then after picking all of

thesem instances, the remaining k−m are randomly chosen from the correctly classified

instances based on an uncertainty score [15,23]. Not only was the accuracy obtained by

ES shown to be better than GODA, but GODA was also computationally much more

expensive as one has to first impute all missing values and then retrain a classifier as

many times as the number of incomplete instances. In Melville et. al. [20], the authors

provide a method to score each missing entry based on the calculation of expected

utility. It is easy to adapt this scheme to the task of instance completion by simply

adding the expected utilities for the missing values corresponding to each instance and

obtaining a score. The most recent work [24] chooses (misclassified) instances that have

the highest probability of correct classification w.r.t. the current classifier. One of the

key improvements in this method over and above previous methods is that it jointly

estimates the probability of correct classification, though requiring only univariate

probability estimation.

One of the conceptual deficiencies of the above approaches is that they do not score

instances based on their likelihood of producing the best possible classifier that would

be as close as possible to the final classifier. Even the EU and JIS methods, which

are optimal at the entry and instance level respectively, are only so w.r.t. the current

classifier, not the final one. Addressing this deficiency is the primary motivation behind

our work. Moreover, the probability estimations involved in the resultant approach are

still just univariate keeping the implementation tractable.
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3 Overview

The crux of our method is described in section 5. However, sections 4 and 6 help in

providing a more complete picture in terms of the motivation behind our approach and

an illustration of its inner workings respectively.

In Section 4, we define a distance function between classifiers, based on their per-

formance on a given dataset and independent of their functional form. This makes the

distance easily computable. We propose the problem, where we want to minimize the

distance between the next classifier that we build and the final classifier that we would

ideally have if the dataset was complete. Using properties of our distance function we

relax this problem into the problem where we want to query instances that maximize

the distance between the current and the next classifier. Given that our goal is to pro-

vide a generally applicable meta-algorithm, in section 5 we provide such an (heuristic)

algorithm based on asymmetric uncertainty, which is motivated by developments in

the previous section. The algorithm requires computation of multivariate probabilities

over the missing features of an instance, which could be highly inefficient to compute.

However, we provide a (approximate) strategy, which requires only univariate density

estimation and is quite effective as is witnessed in the experimental section. Instantia-

tion of this strategy to popular classification techniques such as linear and non-linear

SVMs, and logistic regression is given in section 6.

Hence, the next three sections together provide a well rounded view of our proposed

solution. In a certain sense we move from more conceptual to operational as we proceed

through these sections.

4 Framework

Let X × Y denote the input-output space and let S = {(x1, y1), ..., (xN , yN )} be a

subset of this space be a dataset. Let ζi : X → Y denote the classifier built on the

complete instances of S available after the ith iteration of querying incomplete instances

in batches of size k, where i ∈ {0, ..., f}. ζ0 denotes the initial classifier. After querying

f times the dataset is complete so that ζf denotes the final classifier.

We next develop a distance function between classifiers relative to the dataset so

that such a metric is agnostic to the intricacies of the functional representations or

hypothesis classes of classifiers. Let λ(., ., .) be a loss function such that for any real

a, b, c,

λ(a, b, c) =


1, if b = c and a 6= c

1, if a = c and b 6= c

0, otherwise

(1)

Using this λ(., ., .), we define the distance between classifiers ζi and ζj on the dataset

S as,

dS(ζi, ζj) =
∑

(x,y)∈S

λ(ζi(x), ζj(x), y) (2)

Put simply, the distance between any two classifiers relative to a dataset is the

number of instances in the dataset that exactly one of them correctly classifies. In
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the binary label setting, this corresponds to the number of instances that they classify

differently. In the multilabel setting, if the two classifiers classify an instance in different

classes both of which are incorrect, then the distance on that instance is still zero. This

instance adds to the distance only when exactly one of them correctly classifies it.

It is easy to see that such a metric that does not depend on the function classes of

classifiers is particularly useful when we consider non-linear classifiers (viz. SVMs with

RBF kernel, etc.).

In traditional active learning, there has been some work on trying to reach the

final classifier under restricted settings [4]. In particular, the work on the disagreement

coefficient [10] is the most relevant as their distance function is essentially an expecta-

tion of a simplified version of our metric which just counts the number of instances the

classifiers label differently. However, as is the case with the works mentioned before, it

is not straightforward to extend their work and obtain a practical generally applicable

algorithm for our instance completion setting. In fact, even in the traditional active

learning setting, the work presented is applicable primarily for binary labeling and

simple hypothesis classes in low dimensions. In higher dimensions, additional distri-

butional assumptions have to be made. Moreover, as opposed to using disagreement

between classifiers as a distance function, our distance function differentiates classifiers

based on their performance even in the multiclass setting, which is desirable. This is

the case since, as mentioned before, the distance between any two classifiers is zero

even if they classify instances in a dataset into different classes but all of which are

incorrect. These classifiers are thus considered to be equivalent, which is not the case

when using disagreement as a distance. A consequence of this, as we will soon see,

is that our distance function yields a more efficient strategy, that does not have to

consider all pairs of labels to maximize the distance between successive classifiers in

each iteration.

We now state certain properties of our distance function which are useful in the

developments that follow5.

Proposition 1 dS(., .) is non-negative, symmetric and satisfies triangle inequality6.

Now at any iteration of querying i let Ii−1 and Ci−1 denote the set of incomplete

and complete instances before querying respectively. From Ii−1 we want to query k

incomplete instances qk such that,

Qki = argmin
qk|qk∈Ii−1

dS(ζi, ζf ) (3)

Notice here that we want to reach the final classifier as fast as possible, since we assume

that ζf is the best possible classifier i.e. ∀i ∈ {0, ..., f−1}, dS(Y, ζf ) ≤ dS(Y, ζi), where

Y are the labels of the instances in S. In other words, ζf has the lowest error relative

to the other classifiers that can be learned with a chosen classification algorithm on an

incomplete S.

Even though in equation 3, ζf is not known, we do know that dS(., .) satisfies

triangle inequality from proposition 1. Thus ∀i ∈ {1, ..., f} we have

dS(ζi−1, ζf ) ≤ dS(ζi, ζf ) + dS(ζi−1, ζi)

dS(ζi−1, ζf )− dS(ζi, ζf ) ≤ dS(ζi−1, ζi)
(4)

5 All proofs are in the appendix
6 For a finite dataset the distance can however be zero between two different classifiers if

they produce the same classification on it.
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From equation 3 and given that dS(ζi−1, ζf ) is an (unknown) constant at iteration

i7 we have,

Qki = argmin
qk|qk∈Ii−1

dS(ζi, ζf )

= argmax
qk|qk∈Ii−1

dS(ζi−1, ζf )− dS(ζi, ζf )
(5)

However, since we do not know ζf , we maximize the upper bound of the function

in equation 5 based on equation 4,

Q̄ki = argmax
qk|qk∈Iki−1

dS(ζi−1, ζi) (6)

Now if we assume that the data is drawn independently and identically from some

underlying distribution, then given the uncertainty in the missing values, we minimize

the expectation of dS(ζi, ζf ), which would lead us to query the following set based on

the developments in this section

Q̂ki = argmax
qk|qk∈Ii−1

E[dS(ζi−1, ζi)]

= argmax
qk|qk∈Ii−1

(
P (ζi−1(x) 6= y, ζi(x) = y)

+ P (ζi−1(x) = y, ζi(x) 6= y)
) (7)

since, the inequality in equation 4 is pointwise true and hence, E[dS(ζi−1, ζf )−dS(ζi, ζf )] ≤
E[dS(ζi−1, ζi)]. Note that the computation of Q̂ki does not require knowledge of ζf .

We can also derive an exponential bound on the probability of error reduction

across successive runs, which is given in the following lemma.

Lemma 1 Given a dataset S of size N , with dS(., .), ζi and ζf defined as before, we

have for t > pi,

P [dS(ζi−1, ζf )− dS(ζi, ζf ) ≥ Nt] ≤ e−2N(t−pi)2 (8)

where, pi = 1
NE[dS(ζi−1, ζi)].

While ideally we would want to maximize the left side probability, but since we

do not know ζf we maximize the exponential bound. The bound is maximized when

pi = 1
NE[dS(ζi−1, ζi)], is maximized and is thus consistent with what we surmised

before. This idea of maximizing the distance between successive classifiers is the main

motivation behind our algorithm in the next section. It is indeed useful that we were

able to be move from a function that was dependent on ζf to a one that is independent

of it.

Additionally, we seek to characterize the settings under which the solution obtained

by maximizing the expected error reduction would be the same as maximizing the

expected distance between consecutive classifiers. We now state a sufficient condition

that ensures the same.

7 Since, ζi−1 is known and ζf though not known is a fixed entity.



9

Algorithm 1 The proposed method MDIS to choose k instances to query.

Input: I0, C0, k, ζ0, g, L(.) {g is the maximum number of iterations and L is the learning
algorithm.}
Output: Q, C {Sets of k instances queried at each iteration and the corresponding classifiers
{ζ0, ..., ζg}}

Let Q = φ, C = {ζ0}
for i = 1 to g do
S = φ, qk = φ {S stores the scores for each instance and qk are the k instances to be
queried.}
b = min(0.5 + k

2|Ci−1|
, 1) {|.| denotes cardinality. We are setting the bias for asymmetric

uncertainty.}
for all (x, y) ∈ Ii−1 do
p = Prob(Ii−1, Ci−1, ζi−1(x), x, y) {Call Prob() function in algorithm 2.}
Compute scorex =

p(1−p)

(−2b+1)p+b2

S = S ∪ scorex
end for
Let qk = {(x, y) : scorex is among the top/highest k in S}
Q = Q ∪ qk
Ii = Ii−1 − qk and Ci = Ci−1 ∪ qk
ζi = L(Ci)
C = C ∪ ζi

end for
Return Q, C

Proposition 2 If we have a dataset S, and ζi at least correctly classifies those in-

stances that were correctly classified by ζi−1 where i ∈ {1, ..., f}, then the k instances

that would be queried if we could maximize E[dS(ζi−1, ζf )−dS(ζi, ζf )] in any iteration

i are the same as those queried by maximizing E[dS(ζi−1, ζi)].

The above proposition specifies a sufficient condition for the two solutions to match.

This condition may however not be necessary for this to happen. Therefore, approxi-

mating or almost satisfying this condition where most but not all instances are correctly

classified by ζi−1 are now also correctly classified by ζi, may also lead to an optimal

or at least close to the optimal for the left hand side. It is also useful to note that

in practice, any reasonable classification algorithm will not take any extra effort to

misclassify instances unnecessarily, and thus will not degrade the performance of our

querying strategy even if the sufficient condition is not 100% satisfied.

In the experimental section, we report how close we are to the satisfaction of this

condition on several real datasets based on our algorithm presented in the next section.

This will then provide us with an insight into the quality of our solution relative to the

best possible case.

5 Method

As described in the previous section at any iteration i the idea is to query k instances

such that ζi will be as different as possible from ζi−1 with respect to our distance

metric. Since we try to maximize the distance between successive classifiers we refer to

our method as, maximum distance instance selection (MDIS). A prerequisite for the

next classifier to be as different as possible from the current classifier is that the queried
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Algorithm 2 Prob(I, C, ζ, x, y): Routine to compute P (ζi−1(x) 6= y).

Input: F (.) {F is an univariate density estimator.}
Output: P (ζ(x) 6= y)

Let A = C ∪ {x̂ ∈ I|x̂Mi−1(x) ⊆ Ti−1(x̂)}
{A is the set of all instances for whom the missing features in x are known.}

Compute B = {ζ(x̂)|x̂ ∈ A}
{Apply the classification function based on the missing features in x to all x̂ ∈ A and obtain
a set of values.}

Perform density estimation F (B)

Return P (F (B) ≤ v), where v depends on y and ζ and corresponds to ζ(x) 6= y
{This will be clearer in section 6, where we provide example instantiations to some popular
classification techniques.}

Fig. 2 Above we see our score function based on asymmetric uncertainty for b = 0.7. We
observe the behavior of the function for different values of P (.) = P (ζi−1(x) 6= y).

instances must encourage the classification algorithm to learn a different classifier or

diverge from the current classifier.

When k << |Ci−1|, where |.| denotes cardinality, any reasonable classification

algorithm will in all likelihood learn a classifier ζi that is different from ζi−1, only

if the queried k instances when completed are close to the boundary of ζi−1 but are

misclassified. Moreover, based on our strategy we also want the queried instances and

if possible other misclassified instances to be correctly classified by the next classifier.

Thus, we want to choose instances that have a misclassification probability above but

close to 0.5. In the other two cases namely, if we choose instances that are likely to

be correctly classified or if we choose instances that have a high probability of being
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Fig. 3 Above we see an illustration of how our algorithm would behave for low and high
b. The black line denotes the learned classifier. The circles are complete instances, while the
triangles are incomplete ones. The color denotes the class label. The purple circle around the
triangle denotes the instance that would be completed for k = 1.

misclassified, the classification algorithm is unlikely to change ζi−1 thus not maximizing

the distance. In the first case, since the k instances are likely to be correctly classified

after completion by ζi−1, there is no incentive for the classification algorithm to learn

a different ζi. In the second case, since the k instances are likely to be misclassified

and far away from the boundary, which makes them hard to correctly classify, the

classification algorithm will most likely give up on them as k << |Ci−1| and therefore

again not diverge from the current classifier. When k is comparable to |Ci−1|, we can be

more ambitious and choose instances that are likely to be misclassified but farther away

from the boundary. The reason being that the k instances are no longer insignificant in

terms of the training error and hence the classification algorithm will learn a different

classifier in an attempt to correctly classify them. However, here too we do not want

to query extreme instances or outliers that are almost impossible to correctly classify,

since based on our strategy we want the next classifier to be able to correctly classify

them.

In algorithm 1, we capture these intuitions by building a scoring function based on

asymmetric uncertainty [17]. This function (scorex in algorithm 1) is a smooth, strictly

concave function defined over [0, 1]. It reaches a maximum at b ∈ [0, 1] and is zero at the

extremeties of its domain i.e. when P (ζi−1(x) 6= y) = 0 or when P (ζi−1(x) 6= y) = 1.

Therefore, when b = 0.5 it behaves like the standard uncertainty function and achieves

its maximum at P (ζi−1(x) 6= y) = 0.5. However, at other values of b the function shifts
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with the maximum occuring when P (ζi−1(x) 6= y) = b. This is seen in Figure 2, where

b = 0.7 and hence, the function achieves its maximum at 0.7.

Given this and the intuitions described above to implement our strategy, we set

b = 0.5 + k
2|Ci−1| . Typically, k ≤ |Ci−1| so in practice b ≤ 1. This assignment of b

ensures that we query instances that are likely to be misclassified and close to the

boundary with us being more ambitious when k is comparable to |Ci−1|. Of course the

multiplier 2 of |Ci−1| is tunable depending on how ambitious one wants to be especially

early on when |Ci−1| is not too large. Another desirable property of this function is

that it tapers down to zero faster on the side closer to the maximum, which should

in all likelihood guard against choosing extremely hard to classify outliers making it

again consistent with our strategy.

A simple illustration of this is seen in Figure 3. With few complete examples and

high b our method is more aggressive and chooses an instance to be completed that

is highly likely to be currently misclassified. For low b, it chooses an instance with

low misclassification probability, that is, one which is likely to be much closer to the

decision boundary once completed but on the incorrect side. In either case, our method

is unlikely to choose the extreme outlier belonging to the red class, since our scoring

function tapers rapidly to zero on the side of the maximum. As we query more and

more instances the aggresiveness gets moderated, since b monotonically reduces, with

our method choosing instances that our likely to be close to the decision boundary and

prefferably misclassified.

Hence in general, our algorithm composes of the following steps. For a given k in

any iteration i of our algorithm we:

– Compute the asymmetry parameter b.

– Compute P (ζi−1(x) 6= y) for each incomplete instance, i.e., the probability of

incorrectly classifying it based on the current classifier as described in algorithm 2.

– Compute the asymmetric uncertainty score for each incomplete instance based on

b and P (ζi−1(x) 6= y).

– Query k instances with the highest score computed in the previous step.

6 Example Instantiations

In the previous subsection, we discussed our general strategy to choose the k instances

to query. An integral part of this strategy is to compute the probability P (ζi−1(x) 6= y)

for each incomplete x ∈ Ii−1. Given the classification algorithm and the fact that the

features are randomly (i.e. not consistently) missing for an instance we can compute

this probability. The idea is to compute the functions ζi−1(x) by substituting the

missing values in x by the corresponding values in x̂. x̂ is an instance for which we

know values for at least those features that were missing in x. Thus, x̂ could be complete

or incomplete. We compute the function for each such x̂ and then perform univariate

density estimation on the corresponding values of the function. Based on this estimated

density we can compute the above probability and consequently our score for x. The

implicit assumption here is that for each incomplete x, we have a x̂ for which the

missing values in x are known. In other words, if we have more than 50% features

missing for each instance then our approach cannot be directly applied since, there will

be no x̂. We have seen however that this is not an unrealistic assumption in practice as

in many cases we have large datasets with knowledge of most of the attributes, if not
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all, for at least a small fraction of instances. Moreover, we can always exclude instances

for whom this condition is not met initially and query based on the rest. After just the

first round of querying this issue, if it existed, would vanish since, we would have at

least one complete instance.

Let us now see how the function looks for some popular classification techniques.

Let Ti−1(x) and Mi−1(x) denote the set of features with known values and missing

values for instance x prior to querying in iteration i respectively. Correspondingly, let

zTi−1(x) and zMi−1(x) denote the set of entries i.e. features in instance z, whose values

are known for x and missing for x in iteration i respectively.

6.1 Linear and Non-linear SVMs

Support vector machines [27] are one of the most commonly used classification tech-

niques in academia and industry. They are considered to be quite robust and can

be used to perform linear and non-linear classification. Non-linear classification is ac-

complished by employing the kernel trick. If we denote the kernel function by K(., .)

and if αzl denotes the dual variable in SVM optimization corresponding to instance

z obtained by learning over Cl, which gives us the classifier ζl, then the classification

function for x based on ζi−1 is given by,

ζi−1(x) :∑
(z,yz)
∈Ci−1

αz(i−1)yzK(z, x)

=
∑

(z,yz)
∈Ci−1

αz(i−1)yzK
(
zTi−1(x) ∪ zMi−1(x), xTi−1(x) ∪ xMi−1(x)

) (9)

where, yz ∈ {1,−1}. Thus, we have a function in the missing features of x, i.e. in

xMi−1(x), since the other values are known. Now we can, as mentioned before, compute

the function for instances where Mi−1(x) are known and perform univariate density

estimation using standard methods [11]. The above function can be instantiated for,

– Linear Kernels:

K(z, x) = z · x

= zTi−1(x) · xTi−1(x) + zMi−1(x) · xMi−1(x),

– Polynomial Kernels:

K(z, x) = (z · x)a

=
(
zTi−1(x) · xTi−1(x) + zMi−1(x) · xMi−1(x)

)a
,

– Radial Basis Kernels:

K(z, x) = e−γ||z−x||
2

= e−γ||z
Ti−1(x)−xTi−1(x)||2e−γ||z

Mi−1(x)−xMi−1(x)||2

or any other kernel that one wants to use.
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Dataset Source Type Source Name Size Dimensionality Attribute Types

Credit Approval Public UCI Rep. 690 15 Categorical/Real
Spambase Public UCI Rep. 4601 57 Real

Adult Public UCI Rep. 48842 14 Categorical/Real
Etoys Private Etoys 270 41 Categorical/Real

Priceline Private Priceline 447 41 Categorical/Real
Isolet Public UCI Rep. 7797 617 Real

Expedia Private Expedia 3125 41 Categorical/Real

Table 1 The above table provides information about the real datasets used in this study.

Without loss of generality (w.l.o.g.) assume that the label of x is 1, i.e., y = 1, then

our score for x based on the estimated density would be,

P (ζi−1(x) ≤ 0)(1− P (ζi−1(x) ≤ 0))

(−2b+ 1)P (ζi−1(x) ≤ 0) + b2
(10)

6.2 Logistic Regression

Logistic regression [18] uses the logit link function to relate an input x to its output

Y = {0, 1} as follows,

ln

(
P (y = 1)

1− P (y = 1)

)
= xβl (11)

where y ∈ {0, 1} and βl is the learned parameter vector over Cl. x is classified into

class 1 iff P (y = 1) ≥ 0.5. In this case, the classifier is given by,

ζi−1(x) :

exβi−1 = ex
Ti−1(x)β

Ti−1(x)

i−1 ex
Mi−1(x)β

Mi−1(x)

i−1

(12)

Given this and w.l.o.g. assuming y = 1 our score for x based on the estimated

density would be,

P (ζi−1(x) < 1)(1− P (ζi−1(x) < 1))

(−2b+ 1)P (ζi−1(x) < 1) + b2
(13)

These instantiations demonstrate how our strategy can be employed for standard

classification techniques.

7 Experiments

We now compare our method MDIS with three state-of-the-art techniques namely;

JIS, EU and ES. We do this on four UCI datasets Credit Approval, Adult, Spambase

and Isolet, and three e-commerce datasets Priceline, Etoys and Expedia, some of which

were used in prior works [20,22,24]. The e-commerce datasets contain information

about the online behavior of customers that visit the company’s (retail) websites. The

output variable in these datasets is indicative of a purchase being made during such
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a visit. The input features are a combination of browsing behavior and demographic

information about the customers.

We perform 10 runs of 10 fold cross validation for the setting described next. For

each instance in a dataset, we randomly assume 50% of its input features to be missing.

We incrementally complete instances in steps of 10 (i.e. k = 10) by querying them based

on the decisions of the respective methods with the model being updated after each

completion. This is the same experimental methodology as seen before [24,20]. We

report the test accuracy at each completion averaged across all runs along with the

95% confidence intervals as the measure of performance.

For our method we also show the extent to which our sufficient condition is satisfied.

This gives us a sense of how close we are likely to be to the optimal solution. We do this

by reporting the percentage of instances correctly classified by ζi that were correctly

classified by ζi−1 averaged (with a 95% confidence interval) over the classifiers learned

in the three ranges of completion; low (0, 33], medium (33, 66] and high (66, 100]. The

ranges signify the percentages of completed instances relative to a dataset. Rather than

averaging the results over the whole dataset this quantization provides a more granular

view of how well our method is performing at different stages of completion.

We tested the different instance completion methods based on two baseline classi-

fication techniques namely, SVM with radial basis function (RBF) kernel and logistic

regression. The density estimation for MDIS and JIS is done using the well known

kernel density estimation (KDE) technique with Gaussian kernels. The SVM, logistic

regression as well as the KDE used are part of Weka’s implementation [8]. We run

the SVM with Weka’s default parameters for γ and the slack variables. The KDE is

performed assuming one Gaussian kernel per value used in the estimation (which is

also the default) with precision set to 0.01.

We also performed experiments where the percentage of missing features was non-

uniform, i.e., for one third of the instances we had 80% randomly missing, for another

one third we had 50% randomly missing and for the remaining one third we had 20%

randomly missing. As you will see later the results were qualitatively similar to the

uniform case with our method performing significantly better than its competitors. We

also experimented with varying k (5, 10, 20, 50) and varying the multiplier of |Ci−1|
that determines b, and found that our method is quite robust to these choices. We

provide representative examples for these cases on the Credit Approval and Expedia

datasets respectively, with SVM using RBF kernel as the baseline method.

7.1 Observations

From figures 4a, 4b, 4c, 4d, 4e, 4f, and 4g, we see that our method MDIS consistently

produces more accurate classifiers than the other methods across the different comple-

tion percentages. This remains unaltered even when we change the base classification

method to logistic regression as is seen in Figures 5a-5g. Not only is the average accu-

racy high but the confidence intervals also do not overlap with the other methods for

the most part making our method significantly better than the others in the statistical

sense. It is especially encouraging to see that our method is significantly better than

its competitors at low to moderate completion percentages, which is what we would

usually encounter in many of these applications. At higher completion percentages, i.e.

close to 100, almost all techniques will produce equally good classifiers since very few

instances remain incomplete. This behavior is seen in the figures, where the gap in
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Fig. 4 Above we see the performance of the different methods on 7 real datasets, where the
base classification method is SVM with RBF kernel. The last figure h) depicts the extent to
which our sufficient condition is satisfied. In particular, it shows the percentage of instances
that ζi correctly classifies given that they were correctly classified by ζi−1, averaged over all
such successive classifiers in the specified ranges.
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Fig. 5 Above we see the performance of the different methods on 7 real datasets, where the
base classification method is logistic regression. The last figure h) depicts the extent to which
our sufficient condition is satisfied. In particular, it shows the percentage of instances that
ζi correctly classifies given that they were correctly classified by ζi−1, averaged over all such
successive classifiers in the specified ranges.



18

a) Credit Approval 

50

55

60

65

70

75

80

85

90

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100

C
ro

ss
 V

al
id

at
io

n
 T

e
st

 A
cc

u
ra

cy
 (

%
) 

% Instances Completed 

MDIS

JIS

EU

Error Sampling

b) Spambase 

60

65

70

75

80

85

90

95

100

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100

C
ro

ss
 V

al
id

at
io

n
 T

e
st

 A
cc

u
ra

cy
 (

%
) 

% Instances Completed 

MDIS

JIS

EU

Error Sampling

c) Adult 

50

55

60

65

70

75

80

85

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100

C
ro

ss
 V

al
id

at
io

n
 T

e
st

 A
cc

u
ra

cy
 (

%
) 

% Instances Completed 

MDIS

JIS

EU

Error Sampling

d) Etoys 

50

55

60

65

70

75

80

85

90

95

100

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96

C
ro

ss
 V

al
id

at
io

n
 T

e
st

 A
cc

u
ra

cy
 (

%
) 

% Instances Completed 

MDIS

JIS

EU

Error Sampling

e) Priceline 

55

60

65

70

75

80

85

90

95

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100

C
ro

ss
 V

al
id

at
io

n
 T

e
st

 A
cc

u
ra

cy
 (

%
) 

% Instances Completed 

MDIS

JIS

EU

Error Sampling

g) Isolet 

50

55

60

65

70

75

80

85

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100

C
ro

ss
 V

al
id

at
io

n
 T

e
st

 A
cc

u
ra

cy
 (

%
) 

% Instances Completed 

MDIS

JIS

EU

Error Sampling

f) Expedia 

50

55

60

65

70

75

80

85

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100

C
ro

ss
 V

al
id

at
io

n
 T

e
st

 A
cc

u
ra

cy
 (

%
) 

% Instances Completed 

MDIS

JIS

EU

Error Sampling

h)  

0

10

20

30

40

50

60

70

80

90

100

Low Mid High

%
 o

f 
In

st
an

ce
s 

C
o

rr
e

ct
ly

 C
la

ss
if

ie
d

 b
y 
ζ_

{i
} 

 
th

at
 w

e
re

 C
o

rr
e

ct
ly

 C
la

ss
if

ie
d

 b
y 

 ζ
_{

i-
1

} 
 

% Instances Completed 

Credit
approval
Adult

Spambase

Etoys

Priceline

Expedia

Isolet

Fig. 6 Above we see the performance of the different methods on 7 real datasets, where the
base classification method is SVM with RBF kernel and the percentage of missing values per
instance is non-uniform. The last figure h) depicts the extent to which our sufficient condition
is satisfied. In particular, it shows the percentage of instances that ζi correctly classifies given
that they were correctly classified by ζi−1, averaged over all such successive classifiers in the
specified ranges.
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Fig. 7 Above we the performance of our
method on the Expedia dataset, where the
base classification method is SVM with RBF
kernel for different values of k.
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Fig. 8 Above we the performance of our
method on the credit approval dataset, where
the base classification method is SVM with
RBF kernel and the multiplier of |Ci−1| which
affects b is varied from 1.5 to 3.

performance between the various methods generally reduces as most of the instances

get completed.

In addition to evaluating the performance of our method relative to the other state-

of-the-art methods, it is also interesting to get a feel for how close we are to the best

possible solution. It is computationally too intensive to exhaustively search through all

possible sets of k = 10 instances that give the best performance at each completion

percentage on all the datasets. However, a good proxy for indicating the closeness of our

solution to the optimal would be to study the extent to which our sufficient condition

in proposition 2 is satisfied. As discussed before, approximately satisfying the sufficient

condition might be good enough as this condition may not be necessary to obtain an

optimal solution. Moreover, any reasonable classification algorithm will not take undue

effort to misclassify instances that were previously correctly classified.

Given this, we observe in Figures 4h and 5h the extent to which our sufficient

condition is satisfied for the different datasets at low, medium and high completion

percentages. 100% satisfaction is of course ideal, but we see that in most cases the

percentage is extremely close to 100. In fact, even the lowest is around 88% for the

Adult dataset at low completion percentages, which is promising. Therefore, we observe

that even at low completion percentages our method is close to satisfying the sufficient

condition and thus seems to be competitive with respect to the best case solution.

In Figure 6, we see that even when the percentage of missing features is non-uniform

our method remains significantly better than its competitors, with the results being

qualitatively similar to the uniform case.

Figures 7 and 8, are an illustration of the fact that our method is robust to different

values of k and b, although there are slight visible differences at low and intermediate

completion percentages. Qualitatively similar results were seen on the other datasets.

From the above experimental results, we can see that not only is MDIS significantly

better than the other state-of-the-art methods in the uniform and non-uniform (missing

values) case but is also robust to different choices of k and the multiplier that determines

b and is most likely close to the best possible solution relative to our distance function,

which is a particularly encouraging observation.
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8 Discussion

Some previous works have suggested incorporating a cost matrix κ, which indicates the

cost of querying each entry. However, empirical studies in these works were performed

on real datasets where this matrix was not available. Obtaining such a cost matrix in a

practical scenario is quite challenging and we therefore did not include it in our problem

statement so as to keep the exposition clear. Nevertheless, the proposed method MDIS

can in fact be easily extended to scenarios where this additional information is available.

If κji is the cost of querying the attribute j of instance xi, then the total cost for

querying all the missing entries for an instance xi is given by, κi =
∑
j∈M(xi)

κji . With

this, the score for each instance xi obtained from MDIS would just be scaled down by

κi. Thus, if scorexi was the original score for xi, the new score would be given by,

scorenewxi
=

1

κi
scorexi (14)

Our algorithm MDIS was one particular way of implementing our strategy of maxi-

mizing the distance between successive classifiers. Although it seems to be significantly

better than the state-of-the-art methods in literature and possibly competitive with

the optimal, it would be interesting to explore other approaches that implement our

strategy in a more effective manner. Such approaches would probably pick support

vectors earlier and outliers later than MDIS does. An approach worth exploring might

be to find a proxy for the next classifier ζi and then query instances that this and

the current classifier ζi−1 disagree the most on. Finding a suitable proxy could be

challenge, but one possibility could be to choose a classifier from the sequence of past

classifiers {ζ0, ..., ζi−2} whose distance to the current classifier is the highest based

on the current completed set. Another possibility could be to assume a distribution

over the classifiers and sample the proxy for the next classifier from this distribution

conditioned on the previous classifiers.

Alternatively, one may define other distance metrics possibly by restricting the

hypothesis space viz. angles for linear hypothesis, and provide algorithms that work

well in these settings.

In summary, we proposed a novel framework for the instance completion problem.

Based on this framework we proposed a new meta-technique, which as we have shown

can be easily instantiated for popular classification algorithms. Computationally, it still

has the benefit of JIS, which requires only univariate probability estimation, although

they both consider a function over all the missing features of an instance, thus analyzing

the features jointly rather than independently as is the case for some other methods.

We have also witnessed the strength of our technique, in the experimental section,

where it is much superior in performance compared with other state-of-the-art methods.

Moreover, based on the extent of satisfaction of our sufficient condition we have seen

that our method in all likelihood is also competitive with the optimal method which

would minimize our distance to the final classifier.
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Appendix

Proof of Proposition 1

Proof It is easy to see that dS(., .) ≥ 0 as it is the sum of non-negative functions. It

also easy to see that it is symmetric as our loss functions are symmetric in the first two

arguments which are the arguments of dS(., .) and the sum of symmetric functions is

a symmetric function.

The argument for triangle inequality is more interesting. Consider 3 classifiers

ζ1, ζ2 and ζ3. W.l.o.g. assume that ∀i ∈ {1, 2}, dS(ζ1, ζ2) ≥ dS(ζi, ζ3), i.e., ζ1 and

ζ2 are the farthest away relative to dataset S. Let T ⊆ S such that ∀(x, y) ∈ T ,

λ(ζ1(x), ζ2(x), y) = 1 and ∀(x, y) ∈ S/T ,

λ(ζ1(x), ζ2(x), y) = 0 i.e., the set of instances in S that ζ1 or ζ2 classifies correctly.

With this we have,

dS(ζ1, ζ2)

=
∑

(x,y)∈T

λ(ζ1(x), ζ2(x), y)

=
∑

(x,y)∈T

(λ(ζ1(x), ζ3(x), y) + λ(ζ2(x), ζ3(x), y))

≤
∑

(x,y)∈S

(λ(ζ1(x), ζ3(x), y) + λ(ζ2(x), ζ3(x), y))

= dS(ζ1, ζ3) + dS(ζ2, ζ3)

The second equality in the above equation comes from the fact that ζ3 will either

correctly or incorrectly classify an instance and since either ζ1 or ζ2 (but not both)

correctly classify instances in T , ζ3 will have a loss of 1 with exactly one of them. The

next steps follow easily and, since as per our assumption ζ1 and ζ2 are the farthest, we

have our proof.

Proof of Lemma 1

Proof Given a dataset S of size N , with dS(., .), ζi and ζf defined as before, we have

for t, h > 0

P [dS(ζi−1, ζf )− dS(ζi, ζf ) ≥ Nt]
≤ P [dS(ζi−1, ζi) ≥ Nt]

≤ E[eh(dS(ζi−1,ζi)−Nt)]

= e−hNtE[ehdS(ζi−1,ζi)]

= e−hNt
N∏
j=1

E[ehλ(ζi−1(xj),ζi(xj),yj)]

= U

Let λj denote λ(ζi−1(xj), ζi(xj), yj). Now from Jensens inequality we have, ehλj ≤
λj(e

h − 1) + 1. Thus,

E[ehλj ] ≤ pi(eh − 1) + 1
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where, pi = E[λj ] = 1
NE[dS(ζi−1, ζi)].

Now let l(h) = ln(pi(e
h − 1) + 1). By second order Taylor expansion around zero,

we get l(h) ≤ 1
8h

2 + pih. Thus,

U ≤ e−hNt+
1
8Nh

2+Nhpi (15)

Minimizing the above equation w.r.t. h and setting it to zero, we get the optimal

value of h = 4(t− pi).
Now substituting this value of h in equation 15, we get,

U ≤ e−2N(t−pi)2

which is our result.

Proof of Proposition 2

Proof Considering the left side of the inequality i.e. the error reduction part, we would

query instances that will lead to the greatest reduction in error, since ζf is the classifier

with lowest error. Given our assumption of ζi correctly classifying at least those in-

stances that were correctly classified by ζi−1, mathematically, we would query instances

such that P (ζi−1(x) 6= y, ζi(x) = y) is maximized.

Considering the right side of the inequality, we want to query instances that would

maximize the distance between ζi−1 and ζi. Unconstrained this would be the set

that would lead to ζi flipping the predictions of ζi−1 to the correct/incorrect class.

Mathematically, this would be equivalent to querying instances such that P (ζi−1(x) 6=
y, ζi(x) = y) + P (ζi−1(x) = y, ζi(x) 6= y) is maximized. However, we assume that ζi
classifies correctly at least those instances that were correctly classified by ζi−1, which

implies

P (ζi−1(x) = y, ζi(x) 6= y)

= P (ζi(x) 6= y|ζi−1(x) = y)P (ζi−1(x) = y)

= 0

since P (ζi(x) 6= y|ζi−1(x) = y) = 0. Hence, in this case too we would query instances

that would maximize P (ζi−1(x) 6= y, ζi(x) = y), which is identical to the left side.
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