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ABSTRACT
The problem of intelligently acquiring missing input infor-
mation given a limited number of queries to enhance clas-
sification performance has gained substantial interest in the
last decade or so. This is primarily due to the emergence
of the targeted advertising industry, which is trying to best
match products to its potential consumer base in the ab-
sence of complete consumer profile information. In this pa-
per, we propose a novel active feature acquisition technique,
to tackle this problem of instance completion prevalent in
these domains. We show theoretically that our technique is
optimal given the current classifier and derive a probabilistic
lower bound on the error reduction achieved with our tech-
nique. We also show that a simplification of our technique is
equivalent to the expected utility approach, which is one of
the most sophisticated solutions for this problem in existing
literature. We then demonstrate the efficacy of our approach
through experiments on real data. Finally, we show that our
technique can be easily extended to the scenario where we
have a cost matrix associated with acquiring missing infor-
mation for each instance or instance-feature combinations.

Categories and Subject Descriptors
H.2.8 [Knowledge Management]: Data Mining

General Terms
Classification

Keywords
Classification, Instance completion, Missing values

1. INTRODUCTION
In this day and age of customization and personaliza-

tion of products, targeted advertising has gained prominence
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with the emergence of many start-ups focused solely on se-
lecting the right consumer base that will buy certain prod-
ucts. One of the main challenges faced here is having to
deal with incomplete customer information. Hence, while
you might be able to build classification models by asso-
ciating available demographic features to consumer buying
decisions, such classification models are usually far from per-
fect. For example, we may not know the age and/or gender
and/or address of some customers, which might be critical in
determining their preference for a certain product. The goal
then is to improve our understanding of their behaviors by
obtaining this missing information. One way in which this
is tackled is by identifying a subset of individuals to target
so as to maximize the improvement in classification keep-
ing in mind the constraints associated with obtaining such
information (budget costs, number of calls you can make,
etc.). This problem is not just limited to the targeted ad-
vertising industry, but is also relevant to institutions such
as government agencies who conduct surveys to understand
social tendencies or behaviors. In such cases identifying and
contacting the right people can lead to greatly improved
understanding of relevant social dynamics at a manageable
cost.

More formally, the problem addressed in this paper can
be stated as follows: Given that we can query k instances
from a dataset of size N having incomplete input informa-
tion but known outputs, which instances when queried would
maximize the classification performance? In the application
domains described before, this would correspond to choosing
k people to call that will most likely significantly enhance
classification accuracy having obtained this additional in-
formation. This problem has been introduced before in [12]
and is commonly referred to as instance completion [13, 7,
19].

It is easy to see that this problem setting is quite dif-
ferent from the traditional active learning problem [16, 2],
which involves the complementary problem of missing out-
puts with all inputs known with the goal now being to query
those outputs that can maximize classification performance.
Other related work includes work on budgeted learning [10,
8], where one is trying to find which entry (instance-feature
combination) to query given a certain cost constraint. Knowl-
edge gradient methods [4] are a different class of methods
which are also trying to find the optimal entry to query that
will maximize the gain in information. However, both these
classes of methods are suited for a different setting than ours.



Budgeted learning and knowledge gradient methods are gen-
erally modeled as markov decision processes (MDPs), and
as mentioned before, are trying to find which entry to query
rather than a set of entries comprising of multiple instances.
To determine the reward in querying an entry, an optimiza-
tion problem has to be solved for each entry using these
methods, which can be expensive. Moreover, even if one
were to extend these methods in a straightforward manner
for instance completion (where we want to choose k instances
out of a possible N), there would be N !

k!(N−k)! possible ac-

tions1 for the corresponding MDP to choose from, which
would make this framework computationally infeasible.

In our setting, we seek to maximize the classification per-
formance on a dataset during model building (at training
time). However, there is work on active feature acquisition
with the objective of getting the best possible performance
during model application (at testing time) [7, 1, 17]. In [7],
the authors try to query instances in the test set so as to
minimize classification uncertainty, while in [1, 17] the goal
is to query test instances so as to select the most important
features. Clearly, both these lines of work address a goal
different from ours.

The most relevant work that addresses the same problem
as ours is [19, 12, 13]. In the work of [19], a method called
Goal Oriented Data Acquisition (GODA) is described, which
initially builds a model based only on complete instances.
It then rebuilds a model for each incomplete instance that
is completed based on imputed values, by adding it to the
complete instances and choosing those incomplete instances
that give maximum improvement in performance. In [12],
a method called Error Sampling (ES) is described for pick
the k instances to query which works as follows: If there are
m misclassified instances with missing values and if m > k,
then k of these m instances are randomly picked. Otherwise
if m ≤ k, then after picking all of these m instances, the
remaining k − m are randomly chosen from the correctly
classified instances based on an uncertainty score [9, 15]. Not
only was the accuracy obtained by ES shown to be better
than GODA, but GODA was also computationally much
more expensive as one has to first impute all missing values
and then retrain a classifier as many times as the number of
incomplete instances. In [13], the authors provide a method
to score each missing entry (instance-feature combination)
based on the calculation of Expected Utility (EU). It is easy
to adapt this scheme to the task of instance completion by
simply adding the expected utilities for the missing values
corresponding to each instance and obtain a score.

One of the conceptual deficiencies of ES is that it does
not rank instances, especially the misclassified ones, based
on any criteria that is directly related to the goal of correctly
classifying them, and therefore, most likely to improve classi-
fication performance. Even the correctly classified instances
are picked based on the classifier margin, which is unrelated
to the likelihood that the chosen instance would improve
classification upon completion. Addressing this deficiency is
the primary motivation behind our technique, and we there-
fore propose an approach to rank the incomplete instances
by directly calculating the probability of correctly classifying
each instance given the current classifier based on a function
of all the corresponding missing entries. We compute the
probability by taking into account all of missing features for

91! denotes factorial.

an instance together, rather than looking at them indepen-
dently. An important fact to notice here is that though there
are multiple missing features for each instance, since we are
computing a function over all of them, we only need to em-
ploy a univariate probability estimation technique instead of
a multivariate approach, which makes our method efficient.
A further motivation for choosing instances to query with
high probability of being correctly classified is that we learn
useful actionable information about our data once they are
completed. In particular, if we pick instances by our method
to query, then after completion they may be correctly or in-
correctly classified. If most of them are correctly classified,
then we can be reasonably confident that the classifier we
have is reliable. If they aren’t, then that implies that our
current data is not representative of the underlying data
generation process and that we either need to query many
more instances and/or collect additional discriminative fea-
tures. On the other hand, if we had picked instances with
high misclassification probability to query, which is diamet-
ric to our strategy, then in either case we do not learn much
in terms of improving performance. This is because, if most
of them are incorrectly classified after completion, then that
just confirms what we already knew, while if most of them
are correctly classified after completion, then that simply
tells us that the problem is in all likelihood easier than we
thought.

It is also important to note that in the EU method, the
expected utility score for an instance is based on marginals
as the expected utility is computed independently for each
missing entry. Hence, even though the decision based on
their method is optimal for an entry given the current clas-
sifier, it isn’t optimal for the instance. It turns out that
computing the expected utility for each entry can be com-
putationally intensive and they therefore suggest randomly
choosing a subset, which makes the method sub-optimal
even when choosing which entries to query. Moreover, their
method is restricted to categorical input features. We demon-
strate that our strategy is optimal at the instance level, and
applies to continuous as well as categorical features. We
also show that a simplification of our method restricted to
categorical features and assuming independence is in fact
equivalent to the EU method.

The rest of the paper is organized as follows. In Section
2, we describe in detail the proposed method and show how
it would apply in the context of some commonly used classi-
fication methods. In Section 3, we show that our strategy is
optimal given the current classifier. We then derive a prob-
abilistic lower bound on the error reduction for the optimal
classifier on the updated dataset obtained after querying. In
Section 4, we describe a simplified univariate version of our
method and show that it is equivalent to the EU method
when restricted to categorical features. In Section 5, we em-
pirically show that our method is robust and outperforms
other competing methods under varying levels of label noise.
In Section 6, we describe an easy way to extend our method
if a cost matrix is available and discuss promising directions
for future research.

2. METHODOLOGY
Before describing our method, we introduce some nota-

tion. Let X,Y denote the input and output spaces respec-
tively and DN = {(x1, y1), ..., (xN , yN )} denote a dataset of
size N containing missing input values. Let ζ : X → Y be



Algorithm 1 The proposed method (JIS) to choose k in-
stances to query so as to maximize classification perfor-
mance.

Input: DN , k, ζ
Output: DQ {dataset of k instances to query}
Let Q = φ
if m > k {Number of misclassified and incomplete in-
stances is > k.} then

for all x ∈ Dm do
Compute f(xM(x)) ∈ Sx where xM(x) ∈ Vx such that,

∀ v ∈ Vx, ζ(xT (x)∪v) = yx {Finding the criteria (or
function) the missing features have to satisfy to cor-
rectly classify x into yx based on ζ.}
Estimate scorex = P (f(xM(x)) ∈ Sx)
Q = Q ∪ scorex

end for
Let Qk contain the highest k scores in Q
Let DQ = {x ∈ Dm|scorex ∈ Qk}

else
Let DQ = Dm
if m < k {Number of misclassified and incomplete in-
stances is < k.} then

for all x ∈ Dr do
Compute f(xM(x)) ∈ Sx where xM(x) ∈ Vx such

that, ∀ v ∈ Vx, ζ(xT (x)∪v) = yx {Finding the crite-
ria (or function) the missing features have to satisfy
to keep x in the correct class yx based on ζ.}
Estimate scorex = P (f(xM(x)) ∈ Sx)
Q = Q ∪ scorex

end for
Let Qk−m contain the highest k −m scores in Q
Let DQ = DQ ∪ {x ∈ Dr|scorex ∈ Qk−m}

end if
end if
Return DQ

the optimal classifier (the classifier with the highest accu-
racy) learned over DN . Let Dm ∈ DN be the set of m ≤ N
instances having missing information misclassified by ζ(.)
while Dr denote the set of r instances with missing informa-
tion correctly classified by ζ(.). Let T (xi) and M(xi) denote
the set of features with known values and missing values for

instance xi respectively. Correspondingly, let x
T (xi)
j and

x
M(xi)
j denote the set of entries i.e. features in xj , whose

values are known for xi and missing for xi respectively.

2.1 Method Description
Algorithm 1 elucidates our strategy for choosing the k

instances to query. Similar to some prior studies, we first
focus on the misclassified instances because trying to correct
them could have a greater impact on the final accuracy than
those that are already correctly classified. However, it is
strategy of deciding exactly which k instances to pick that
is critical to the success of this task and is therefore the novel
contribution of our method.

The simplest scenario is where m = k in which case we
simply choose all the instances from Dm to query.

Now if m > k, then for each misclassified instance x in
Dm we compute a function of the missing features and the
corresponding set of values Sx, such that if the function
takes values in the set Sx, which implies the missing features

would take values in some other set Vx, then x gets classified
into the correct class by ζ. Essentially what we are trying
to find is based on the current inductive function ζ, what
set of values for a function of the missing features would
result in ζ correctly classifying the instance (the details of
how this function is computed for some popular classification
techniques is described in the next section).

The criteria f(M(x)) ∈ Sx for any x can be viewed as a
sufficient condition where the total error (number of mis-
classified instances) reduces at least by 1 for an updated
classifier that is trained on DN but now with completed in-
stance x (i.e. x = xT (x)). This is explained in detail in the
section 3 where we discuss error reduction.

The next step in our algorithm is to compute the proba-
bility of this function having values in the corresponding set.
This probability signifies the likelihood of the instance to be
classified correctly after querying it given the current classi-
fier, and can be estimated using common parametric (normal
density, exponential, etc.) or non-parametric (histograms,
parzen windows [6]) density estimation techniques based on
the already known values. One could also use probabilis-
tic inequalities such as Markov inequality or Chebyschev’s
inequality [5] to get fast upper bounds on the desired prob-
ability.

An important fact to note here is that even though we can
have multiple missing features, since we are directly comput-
ing a function over all of them, we simply need to employ a
univariate probability estimation on the values that the func-
tion takes. This important observation makes the procedure
tractable, which would not have been the case if we were to
find the appropriate ranges for each missing feature sepa-
rately that would correctly classify the instance, and then
employ a joint probability estimation procedure.

The probabilities of these functions are used as scores for
these instances and using them we query the top k instances
with the highest scores. Since we compute the probability of
a function of the missing features considering them together
rather than analyzing them independently, we refer to our
method as Joint Instance Selection (JIS).

In the case where m < k, then we first choose all of Dm in-
stances to query. For choosing the remaining k−m instances
from the set Dr (instances that are correctly classified hav-
ing missing values), the strategy is similar to the previous
case. We first compute the function with values for it that
will keep the instance correctly classified. We then compute
the probability for this function to have those values giving
us the score for that instance. We now choose the top k−m
instances sorted by their scores, which along with Dm result
in the k instances we choose to query.

2.2 Example Instantiations
In the previous subsection, we discussed our general strat-

egy to choose the k instances to query. An integral part of
this strategy is to compute a function of the missing features
satisfying certain conditions that would result in correctly
classifying the instance. In this subsection, we show how this
function could be computed for some popular classification
techniques.

2.2.1 Linear and Non-linear SVM
Support vector machines (SVMs) [18] are one of the most

commonly used classification techniques in academia and in-
dustry. They are considered to be quite robust and can be



used to perform linear and non-linear classification. Non-
linear classification is accomplished by employing the kernel
trick. If we denote the kernel function by K(., .) and if αi
denotes the dual variable in SVM optimization correspond-
ing to instance xi obtained by learning over DN which gives
us the classifier ζ, then the correct classification for xi is
encoded in the following well known inequality,

yi

N∑
j=1

αjyjK(xj , xi) ≥ 1 (1)

where, Y = {1,−1}. Without loss of generality (w.l.o.g.)
assume that yi = 1, then the above equation can be written
as,

N∑
j=1

αjyjK(xj , xi) ≥ 1

N∑
j=1

αjyjK(x
T (xi)
j ∪ xM(xi)

j , x
T (xi)
i ∪ xM(xi)

i ) ≥ 1

f(x
M(xi)
i ) ≥ 1

(2)

The reason the left hand side of the above equation can be
written as simply a function of the missing features in xi
is that, for the other missing values we can substitute the
values used while building the classifier ζ (which could be
class conditional means, modes, etc.). To demonstrate this,
we next look at some commonly used kernel functions and
further clarify our approach.

Linear SVM: In case of Linear SVMs the kernel function is
given as,

K(xj , xi) = xj · xi
= x

T (xi)
j · xT (xi)

i + x
M(xi)
j · xM(xi)

i

(3)

Using the above equation along with Eqn.2 we have,

N∑
j=1

αjyj [x
T (xi)
j · xT (xi)

i + x
M(xi)
j · xM(xi)

i ] ≥ 1

f(x
M(xi)
i ) ≥ 1

(4)

Even though this could be further simplified by moving the
terms with T (xi) (known values) to the right hand side leav-
ing only terms with M(xi) on the left, we avoid doing so in
order to keep the approach consistent because such further
simplifications may no necessarily be possible for other ker-
nel functions, as we shall see next.

SVM with Polynomial Kernel: In case of Polynomial Kernel
SVMs the kernel function is given as,

K(xj , xi) = (xj · xi)b

= (x
T (xi)
j · xT (xi)

i + x
M(xi)
j · xM(xi)

i )b
(5)

Employing this in Eqn.2 we get,

N∑
j=1

αjyj
(
x
T (xi)
j · xT (xi)

i + x
M(xi)
j · xM(xi)

i

)b
≥ 1

f(x
M(xi)
i ) ≥ 1

(6)

Notice that a further simplication to obtain an explicit func-

tion of x
M(xi)
i independent of the T (xi) terms on the left

hand side isn’t possible. However, this is immaterial as this

is still an implicit function of x
M(xi)
i .

SVM with Radial Basis Kernel: In this case, the kernel func-

tion is given asK(xj , xi) = e−γ||xj−xi||
2

, where γ > 0. Given
this and equation 2 we have,

N∑
j=1

αjyje
−γ||xj−xi||2 ≥ 1

N∑
j=1

αjyje
−γ||xT (xi)

j −xT (xi)
i ||2e−γ||x

M(xi)
j −xM(xi)

i ||2 ≥ 1

f(x
M(xi)
i ) ≥ 1 (7)

Similar to the earlier case, this again is an implicit function

of x
M(xi)
i .

2.2.2 Logistic Regression
Logistic regression [11] uses the logit link function to relate

an input xi to its output Y = {0, 1} as follows,

ln

(
P (yi = 1)

1− P (yi = 1)

)
= xi · β (8)

where β is the learned parameter vector over DN . xi is
classified into class 1 iff P (yi = 1) ≥ 0.5. Given this and
w.l.o.g. assuming yi = 1 the criteria to classify xi into the
correct class is,

exi·β ≥ 1 (9)

Further expressing xi in terms of T (xi) and M(xi) we get,

ex
T (xi)
i ·βT (xi)+x

M(xi)
i ·βM(xi) ≥ 1

ex
T (xi)
i ·βT (xi)

ex
M(xi)
i ·βM(xi) ≥ 1

ex
M(xi)
i ·βM(xi) ≥ 1

ex
T (xi)
i ·βT (xi)

f(x
M(xi)
i ) ≥ 1

ex
T (xi)
i ·βT (xi)

(10)

Here we were able to obtain an exclusive function of x
M(xi)
i

on the left hand side.
These instantiations demonstrate how our strategy can

be employed for standard classification techniques. We next
proceed to examine the performance of the proposed method
in terms of its optimality and bounds on error reduction.

3. PERFORMANCE ANALYSIS
In this section we prove two results. First we show that

given the current information (i.e. the current classifier ζ
and the input-output), the proposed method is the optimal
strategy for minimizing the expected error. We then derive
lower bounds on probability of total error reduction in the
range of {1, ...,min(m, k)}.



3.1 Optimality
W.l.o.g. assume that the first m ≤ N instances denoted

by Dm in DN are misclassified by ζ(.) and have missing
information. If λ : N×N → {0, 1} denotes the classification
loss function, then the total error ε is given by,

ε =

N∑
i=1

λ(ζ(xi), yi)

=

m∑
i=1

λ(ζ(xi), yi) +

N∑
i=m+1

λ(ζ(xi), yi)

(11)

The task is to query those k instances which will minimize
this error. If m ≥ k the best we can hope to reduce the
error by is k which would occur if after querying, the k
misclassified points get correctly classified. If m < k, then
the maximum reduction in error we can expect is m, which
would require querying all m of these instances.

Formally, if Ds denotes a dataset of size s then,

argmin
Dk∈DN

ε

= argmin
Dk∈DN

 ∑
(xi,yi)
∈Dk

λ(ζ(xi), yi) +
∑

(xi,yi)
∈DN/Dk

λ(ζ(xi), yi)



=



argmin
Dk∈Dm

 ∑
(xi,yi)
∈Dk

λ(ζ(xi), yi)

 , if m ≥ k

Dm ∪ argmin
Dk−m
∈DN/Dm

 ∑
(xi,yi)
∈Dk−m

λ(ζ(xi), yi)

 , otherwise

(12)

Thus, above we want to query instances that will minimize
the error. However, since there is indeterminacy in what the
missing values will be, we minimize the expectation of ε as
follows,

argmin
Dk∈DN

E[ε]

=



argmax
Dk∈Dm

 ∑
(xi,yi)
∈Dk

P (ζ(xi) = yi)

 , if m ≥ k

Dm ∪ argmin
Dk−m
∈DN/Dm

 ∑
(xi,yi)
∈Dk−m

P (ζ(xi) 6= yi)

 , otherwise

(13)

Equation 13 can be interpreted as, when m ≥ k the op-
timal strategy is to query the k misclassified points that
have the highest probability of being correctly classified and
when m < k, the optimal strategy is to query all misclas-

sified points along with the correctly classified points that
have lowest probability of being misclassified. When com-
pared with algorithm 1, it is clear that this is exactly the
strategy proposed in JIS, thus proving the optimality of our
approach.

3.2 Error Reduction
In this subsection, we derive probabilistic lower bounds

on the error reduction of the updated optimal classifier ζuopt
obtained after training on the updated dataset Du

N . The up-
dated dataset is created from the values obtained by query-
ing the k instances chosen using our method.

Let εuopt denote total error of ζuopt on Du
N . If εu is the total

error of ζ on Du
N , then εuopt ≤ εu. This is because ζuopt is the

optimal classifier on Du
N , whereas ζ is just one of possible

classifiers which the classification algorithm considered dur-
ing training. Therefore if ε was the original error (that is the
error of ζ on DN before querying), then the error reductions
of respective classifiers have the following relationship,

εuopt ≤ εu

ε− εuopt ≥ ε− εu

∆εuopt ≥ ∆εu
(14)

where, ∆εuopt = ε− εuopt and ∆εu = ε− εu. This implies that
whenever ∆εu ≥ j, then ∆εuopt ≥ j. Thus,

P (∆εuopt ≥ j) ≥ P (∆εu ≥ j) (15)

We now derive exact formulations for P (∆εu ≥ j) as well
as more efficient to compute lower bounds when m ≥ k and
when m < k. From equation 15, both of these would be the
lower bounds for P (∆εuopt ≥ j), which is our goal.

Let Dp denote a dataset of p instances. Let L
Dp

i and H
Dp

i

denote i instances in the dataset Dp ⊂ DN with the lowest
and highest scores respectively based on JIS applied to DN .

If m ≥ k, then the P (∆εu ≥ j) where j ∈ {1, ..., k}, is just
the sum of the probabilities of j or more misclassified in-
stances getting correctly classified after querying. Formally,

P (∆εu ≥ j) =
∑

Dj∈DQ

 ∏
(x,yx)
∈Dj

P (ζ(x) = yx)



≥ m!

(m− j)!j!


∏

(x,yx)

∈L
DQ
j

P (ζ(x) = yx)


(16)

where DQ is the query set as defined in algorithm 1.
The exact formulation in the above equation requires sum-

ming over all subsets of j instances in Dm, which may be
expensive. However, obtaining the lower bound simply re-
quires multiplying the lowest j scores of the k chosen in-
stances with scaling equal to the number of terms in the
summation.

The case where m < k is more involved. In this case, the
chosen k instances also contain correctly classified instances
and therefore we also have to account for the possibility of
these instances getting misclassified upon completion. In



other words, there are more ways than the previous case
to get an error reduction of j or more. In particular, we
can get an error reduction of j ∈ {1, ...,m} (or more) by
correctly classifying j (or more) misclassified instances and
correctly classifying the k −m instances that were already
correctly classified. We can also get the same error reduction
by misclassifying some (say i) previously correctly classified
instances, but correctly classifying more than i+j misclassi-
fied instances. Thus, to get the formulation for P (∆εu ≥ j)
we sum up over the possibilities that (i) all the k −m cor-
rectly classified instances are still correctly classified, (ii) all
but one of the k −m correctly classified instances are still
correctly classified, (iii) all but two of the k −m correctly
classified instances are still correctly classified and so on. If
DrQ
k−m = Dr ∩DQ denotes the correctly classified instances

that we want to query, then P (∆εu ≥ j) is given by,

P (∆εu ≥ j)

=
∏

(z,yz)∈DrQ
k−m

P (ζ(z) = yz)

 ∑
Dj∈Dm

∏
(t,yt)∈Dj

P (ζ(t) = yt)


+

min(m−j,k−m)∑
i=1

∑
Di∈D

rQ
k−m

∏
(x,yx)∈Di

P (ζ(x) 6= yx)

∏
(z,yz)∈DrQ

k−m
/Di

P (ζ(z) = yz)

 ∑
Di+j∈Dm

∏
(t,yt)∈Di+j

P (ζ(t) = yt)



≥
∏

(z,yz)∈DrQ
k−m

P (ζ(z) = yz)
m!

(m− j)!j!
∏

(t,yt)∈LDm
j

P (ζ(t) = yt)

+

min(m−j,k−m)∑
i=1

(k −m)!

(k −m− i)!i!
∏

(x,yx)∈H
D

rQ
k−m

i

P (ζ(x) 6= yx)

∏
(z,yz)∈L

D
rQ
k−m

k−m−i

P (ζ(z) = yz)
m!

(m− i− j)!(i+ j)!
·

∏
(t,yt)∈LDm

i+j

P (ζ(t) = yt)

=
m!

(m− j)!j!
∏

(z,yz)∈DrQ
k−m

∏
(t,yt)∈LDm

j

P (ζ(z) = yz)P (ζ(t) = yt)

+

min(m−j,k−m)∑
i=1

(k −m)!m!

i!(i+ j)!(m− i− j)!(k −m− i)!∏
(x,yx)∈H

D
rQ
k−m

i

∏
(z,yz)∈L

D
rQ
k−m

k−m−i

∏
(t,yt)∈LDm

i+j

P (ζ(x) 6= yx)

P (ζ(z) = yz)P (ζ(t) = yt)

(17)

We obtain the lower bound from the above equation in
the following manner. The term before the plus sign is
lower bounded using the exact same reasoning that we used
in equation 16 to lower bound P (∆εu ≥ j) when m ≥ k.

There are two lower bounding substitutions made after the
summation over i. The index i indicates the number of cor-
rectly classified instances that could be misclassified after
updation. Here we first lower bound∑
Di∈D

rQ
k−m

∏
(x,yx)∈Di

P (ζ(x) 6= yx)
∏

(z,yz)∈DrQ
k−m

/Di
P (ζ(z) =

yz).

There are (k−m)!
(k−m−i)!i! terms in this summation and the term

with the smallest value is∏
(x,yx)∈H

D
rQ
k−m

i

P (ζ(x) 6= yx)
∏

(z,yz)∈L
D

rQ
k−m

k−m−i

P (ζ(z) = yz),

which is obtained by considering the misclassification prob-
abilities of i instances that have the highest score in DrQ

k−m
and the probabilities to classify correctly of k − m − i in-
stances that have the lowest score in DrQ

k−m.
The second lower bounding substitution is made for

∑
Di+j∈Dm∏

(t,yt)∈Di+j
P (ζ(t) = yt) with similar reasoning as that in

equation 16. Here we just choose the lowest i+j scores of the
m misclassified instances with scaling equal to the number
of terms in the summation.

Thus from equations 15, 16 and 17 we have,

P (∆εuopt ≥ j) ≥
if m ≥ k

m!

(m− j)!j!
∏

(x,yx)∈LDm
j

P (ζ(x) = yx)

otherwise

m!

(m− j)!j!
∏

z∈DrQ
k−m

∏
(t,yt)∈LDm

j

P (ζ(z) = yz)P (ζ(t) = yt)

+

min(m−j,k−m)∑
i=1

(k −m)!m!

i!(i+ j)!(m− i− j)!(k −m− i)!∏
(x,yx)∈H

D
rQ
k−m

i

∏
(z,yz)∈L

D
rQ
k−m

k−m−i

∏
(t,yt)∈LDm

i+j

P (ζ(x) 6= yx)

P (ζ(z) = yz)P (ζ(t) = yt)

These equations provide the lower bounds for error re-
duction using the proposed approach. For particular appli-
cations, the above equations can be computed to quickly
get a feel of how effective our querying strategy is likely to
be and evaluate if they meet the application needs. If sim-
ilar bounds can be computed for other querying methods,
one can compare them and choose the appropriate method
without empirical studies.

4. INDEPENDENT INSTANCE SELECTION
(IIS)

In this section, we first discuss a simplified univariate ver-
sion of our method, where we analyze each missing feature
for an instance independent of the other missing features.
We then show that restricting this method to only categor-
ical features makes it equivalent to the EU method of [13].

4.1 Method Description
In algorithm 1, we compute a function f(.) over all the

missing features. However, it is possible to simplify the
approach and compute f(.) for each missing feature of an



Algorithm 2 Changes to algorithm 1 for IIS during func-
tion and score computation. The other steps are identical.
The below steps are within the for loops which go over all
x ∈ Dm and over all x ∈ Dr in algorithm 1.

scorex = 0
for all A ∈M(x) do

Compute f(xA) ∈ SAx where xA ∈ V Ax such that, ∀
v ∈ V Ax , ζ(x(A=v)) = yx{x(A=v) denotes an instance
created by filling in the missing value of feature A in x
with v.}
scorex = scorex + P (f(xA) ∈ SAx )

end for
Q = Q ∪ scorex

instance independently. This could be useful if there is in-
sufficient data to accurately estimate the probabilities of the
functions over multiple missing features.

In this case the function f(.) would be computed similarly
as before except that we would compute it for each missing
feature assuming the already filled in values for the other
missing features for that instance. Thus, for an instance
we would have as many functions as there are missing fea-
tures. The criteria satisfied by each of these functions would
correspond to sufficient conditions to correctly classify the
instance given everything else. Hence, the score for an in-
stance in this case would be the sum of the probabilities
of each of those functions satisfying their respective critera.
These updates to algorithm 1 that give us the IIS method
are shown in algorithm 2.

4.2 Relation to Expected Utility Method
In the EU method, given a dataset with categorical vari-

ables we find the expected utility for each missing entry
(instance-feature value). For example, if A ∈ M(x) is a
missing feature for the instance (x, yx) with possible cate-

gorical values V A = {a1, a2, ..., ag} and x(A=aj) denotes an
instance created by filling in the missing value of A in x with
aj , then the utility function U(.) is defined as:

U(xA = aj) = λ(ζ(x), yx)− λ(ζ(x(A=aj)), yx) (18)

where λ(., .) is a 0 − 1 classification loss function. Based
on this definition of utility, the expected utility for querying
entry xA is given by:

E[U(xA)] =

g∑
j=1

P (A = aj)U(A = aj) (19)

Consequently, the score for the instance x can be defined
as the sum of the expected utilities of the corresponding
missing features,

scorex =
∑

A∈M(x)

E[U(xA)] (20)

From equation 18 we can see that the utility function can
only have values from the set {1, 0,−1}. If a misclassified
instance gets correctly classified after substitution, then we
obtain a 1. If there is no change in terms of being correctly or
incorrectly classified, then we get a 0. Whereas if a correctly
classified instance gets misclassified after substitution we get

a −1. Thus, in the case that an instance is initially misclas-
sified the value of the utility function for different combi-
nations of missing features and corresponding substituted
value can only be 1 or 0. This is because for a misclassi-
fied instance λ(ζ(x), yx) = 1 and λ(ζ(x(A=aj)), yx) ∈ {0, 1}.
Thus, the utility function is 1 only for those substitutions
that result in correctly classifying the instance, else it is 0.

Given this, the expected value of this utility function com-
puted according to equation 19 would signify the probability
of correct classification if we were to query for the missing
value. The final score would be the sum of these probabili-
ties as follows,

scorex =
∑

A∈M(x)

∑
a∈V A|ζ(x)6=yx,
ζ(x(A=a))=yx

P (A = a) (21)

Similarly, if an instance is correctly classified, then the
utility function is −1 only for those substitutions that result
in misclassifying the instance, else it is 0. Given this, the
expected value of this utility function computed according
to equation 19 would be the negative of the probability of
misclassification if we were to query for the missing value.
The final score again would be the sum of these probabilities
as follows,

scorex = −
∑

A∈M(x))

∑
a∈V A|ζ(x)=yx,
ζ(x(A=a))6=yx

P (A = a) (22)

On sorting these scores, we observe that the initially mis-
classified instances would always have scores no less than the
correctly classified instances because from equations 21 and
22 we see that the scores for the misclassified instances are
lower bounded by 0, while the scores for the correctly clas-
sified instances are upper bounded by 0. This means that
if we were to choose k instances to query and m ≥ k, we
would choose from the misclassified instances that have the
highest chance of being correctly classified based on the sum
of the marginals. If m < k, then we would choose all the
misclassified instances followed by choosing k−m correctly
classified instances that have the least chance of being mis-
classified. This is precisely what we are doing in IIS. This
shows that if we restrict IIS to only categorical features it is
equivalent to the EU method.

5. EXPERIMENTS
Using the techniques proposed in this paper, we next em-

pirically validated them on three UCI datasets – credit ap-
proval, adult, and spambase and two e-commerce datasets –
priceline, and etoys which were used in previous works [14].
We also performed these experiments with varying levels of
noise to test the robustness as compared to its competitors.
We first describe the setup used in all the experiments fol-
lowed by the experimental results and their corresponding
observations.

5.1 Setup
We compared our JIS technique with its univariate ver-

sion IIS and with the most sophisticated methods used for
this problem in literature namely; Error Sampling and Ex-
pected Utility approaches. Since EU requires categorical
inputs, in datasets which contain continuous attributes, we
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Figure 1: Above we see the performance of the four methods on the credit approval dataset. a) is the case
with no noise, b) is the case with 20% noise and c) is the case with 40% noise. For clarity we do not show
the confidence intervals here but they are provided in table 1 along with results for other datasets.

first discretize the continuous attributes into 10 equal bins
calculated from their range of values and then apply EU.

We performed 10 runs of 10 fold cross validation which is
the same experimental methodology as [13], for each of the
settings described next. For each instance in a dataset, we
randomly set 50% of its input features to be missing. To
test robustness of the different methods we introduced label
noise, where we randomly changed the labels of η percent
of the instances. We ran experiments on each dataset for
three values of η, which are 0% (no noise), 20% and 40%.
For each noise level we incrementally completed instances in
steps of 10 by querying them based on the decisions of the
respective methods with the model being updated after each
completion. We report the total number of queried instances
correctly classified up until each completion averaged across
all runs (with a 90% confidence interval) as the measure of
performance. We used SVM with RBF kernel (Weka’s im-
plementation) in all our experiments. The density estima-
tion for JIS and IIS was done using the well known kernel
density estimation technique with gaussian kernels.

5.2 Observations
Figures 1(a), 1(b) and 1(c) show the performance of the

four methods on the credit approval dataset at increasing
levels of noise. We observe that JIS is consistently superior
to all the other methods. In fact, the difference in per-
formance becomes especially noticeable as the noise levels
increase. From table 1 we see that a similar phenomenon oc-
curs on all the other datasets as well, demonstrating that JIS
is significantly more robust than its competitors. It also im-
plies that as the classification problem gets harder, choosing
which instances to complete intelligently based on joint in-
formation (as we do in JIS) becomes more critical, than sim-
ply picking misclassified instances randomly and correctly

classified instances based on classification uncertainty (as is
the case with Error Sampling), or picking instances based
on marginals (as is the case with both EU and IIS).

Though IIS is better than EU on datasets with continuous
attributes, the improvement is not as much as that obtained
with JIS. This is not surprising since both IIS and EU are
based on marginals and are equivalent when the data is cat-
egorical as shown before. The improved performance of IIS
can be attributed to the fact that no discretization of con-
tinuous attributes is required for IIS, which is a necessary
approximation for the applicability of EU.

All three methods JIS, IIS and EU are better than ES,
which substantiates our intuition of picking instances to
query based directly on their likelihood of being correctly
classified instead of relying on other measures.

6. DISCUSSION
In this paper we described a novel technique for instance

completion for improving classification performance on datasets
containing missing input information. We proved that this
technique is optimal given the currently available informa-
tion. We also proved probabilistic lower bounds on the error
reduction of the optimal classifier learned over the updated
dataset that is obtained after following our querying proce-
dure. We described a simplified univariate version of our
method, which when restricted to categorical features was
equivalent to the expected utility method. We then empiri-
cally demonstrated that our method outperforms other com-
peting methods over a wide range of completion percentages
and different noise levels.

Previous works have also suggested incorporating a cost
matrix C which indicates the cost of querying each entry.
However, empirical studies in these works were performed on



No Noise Noise Level 20% Noise Level 40%
% complete 10 20 50 90 10 20 50 90 10 20 50 90

Credit
Approval

JIS 9.4 22.8 59.9 100.6 17.3 29.2 58.4 98.9 15.1 28.5 59.7 96.5
+-0.8 +-1.5 +-2.8 +-4.8 +-0.9 +-1.3 +-2.4 +-4.8 +-0.5 +-0.8 +-2.3 +-4.8

IIS 9.2 22.4 57.8 96.3 16.3 27.06 52.7 86.8 13.6 26 49.5 79
+-1 +-2 +-3.1 +-5.1 +-1.2 +-2.2 +-3.4 +-5.5 +-0.7 +-1.4 +-3.6 +-5.6

EU 8.7 21.7 53.3 87.4 15.4 25.8 48.7 77.6 12.9 23.4 44.9 69.4
+-0.9 +-2.2 +-3.2 +-5.1 +-0.7 +-1.8 +-4.6 +-5 +-0.8 +-1.6 +-3.8 +-5.3

ES 5.4 14.1 41.4 76.9 8.5 14.3 30.8 59.2 7.3 14 31.3 55.5
+-1.6 +-2.3 +-2.4 +-3.3 +-1.2 +-1.7 +-2.4 +-3.3 +-0.7 +-1 +-1.3 +-1.7

Adult
JIS 8.1 15 32.4 56.4 7.1 14.9 35.9 58.1 8.6 16.1 36.3 59.8

+-0.4 +-0.8 +-2.6 +-3.9 +-0.7 +-1.1 +-1.8 +-2.3 +-0.7 +-1 +-1.8 +-2.8
IIS 7.8 14.8 31.5 45.9 8 15.3 33.1 54.4 7.5 15 32.2 47.7

+-0.6 +-0.9 +-2.2 +-3.4 +-0.4 +-1.1 +-2 +-3 +-0.6 +-0.8 +-1.7 +-3.9
EU 7.4 14.6 30.1 44.6 7.8 14.3 30.7 49.4 7.1 13.2 29.6 41.8

+-0.7 +-1 +-1.7 +-2.2 +-0.4 +-1 +-1.9 +-2.9 +-0.5 +-0.8 +-1.6 +-3.6
ES 4.1 8.2 21.1 41.5 3.8 7.5 19.6 36.2 3.9 7.1 18.4 32.9

+-0.5 +-0.9 +-1.3 +-2.2 +-0.7 +-1 +-1.9 +-2.4 +-0.7 +-0.7 +-1.5 +-1.5
Spambase

JIS 8.7 15.6 33.8 61.7 4.9 10.1 29 59.4 4.7 10 25 58.1
+-0.4 +-0.9 +-1.4 +-1.5 +-0.5 +-0.5 +-1.6 +-2 +-0.5 +-0.4 +-1.8 +-2

IIS 8.2 15.1 32.7 60.2 4.8 9.6 27.4 56.7 5.8 11.6 24.3 56.4
+-0.4 +-0.5 +-0.8 +-1 +-0.5 +-0.7 +-1.3 +-1.8 +-0.6 +-1 +-1.2 +-1.8

EU 7.2 13.5 29.3 56.7 4 8.24 20.2 42.7 3.8 7.7 20.8 42.1
+-0.2 +-0.5 +-0.6 +-1 +-0.5 +-0.7 +-1.3 +-1.8 +-0.5 +-0.8 +-1.2 +-1.5

ES 5.3 11.1 28.4 52.5 2 4.5 15.9 34.8 2.2 4.5 11.9 33.8
+-0.5 +-0.7 +-1.1 +-1.8 +-0.6 +-0.9 +-1.6 +-2.5 +-0.6 +-0.9 +-1.6 +-2.5

Priceline
JIS 8 15.7 37.7 65.7 7.2 14.3 36.8 67.6 7.6 14.6 37.8 69.2

+-0.7 +-0.9 +-1.5 +-2.3 +-0.5 +-1.1 +-2.3 +-3.3 +-0.6 +-1.3 +-2.3 +-3.2
IIS 7.5 15.3 37.1 63.3 6.8 14.2 35.5 60.7 6.8 13.6 32.9 57.4

+-0.6 +-1 +-1.5 +-2 +-0.4 +-0.6 +-0.8 +-1.9 +-0.8 +-1.3 +-1.1 +-2.3
EU 6.9 14.1 34.7 58.1 6.5 13.6 32.8 56 6.3 12.6 29.4 52

+-0.6 +-0.9 +-1.4 +-1.8 +-0.4 +-0.6 +-0.8 +-1.7 +-1 +-1.2 +-1 +-2.1
ES 6.3 12.3 31.5 57.7 3.5 8.5 23.3 42 3.8 7.6 19.5 37.7

+-0.5 +-0.9 +-1.4 +-1.8 +-0.6 +-0.7 +-2.2 +-3.3 +-0.5 +-0.6 +-1 +-1
Etoys

JIS 5.6 9.2 21.4 40.8 2.5 10.2 17.8 45.5 3.5 6.38 20.71 48.5
+-0.9 +-0.9 +-1.2 +-1.2 +-0.3 +-0.8 +-1.2 +-0.8 +-0.3 +-0.3 +-1.4 +-1.9

IIS 3.2 6.5 18.1 37.9 2 8 16.5 43.5 1.7 3.8 18.5 41.5
+-0.8 +-1 +-1 +-1 +-0.4 +-1 +-1.3 +-1.5 +-0.8 +-1 +-1.5 +-1.8

EU 2.8 5.9 16.5 34.7 1.8 7.4 13.6 35.8 1.6 3.5 16.5 37.1
+-0.7 +-0.9 +-0.8 +-1 +-0.4 +-0.9 +-1.1 +-1.3 +-0.7 +-0.9 +-1.3 +-1.5

ES 2 4.1 14.5 33.5 1.6 4.1 12.35 33.5 2.91 4.8 15.7 35.5
+-0.5 +-0.9 +-1.2 +-1.2 +-0.4 +-0.5 +-1 +-0.9 +-0.6 +-0.9 +-1.8 +-1.9

Table 1: The above table shows the performance of the different methods with increasing noise levels and
increasing percentage of complete instances. The entries in bold indicate the best performance of the four
methods in the specific scenarios.

real datasets where this matrix was not available. Obtaining
such a cost matrix in a practical scenario is quite challenging
and we therefore did not include it in our problem statement
so as to make the exposition clearer. Nevertheless, both the
proposed methods JIS and IIS can in fact be easily extended
to scenarios where this additional information is available.

If cji is the cost of querying the attribute j of instance xi,
then the total cost for querying all the missing entries for

an instance xi is given by, Ci =
∑
j∈M(xi)

cji . With this, the
score for each instance xi obtained from JIS and IIS would
just be scaled down by Ci. Thus, if scorexi was the original
score for xi, the new score would be given by,

scorenewxi =
1

Ci
scorexi (23)



For the IIS method if we were just trying to find which
entries to query, we would scale each marginal probability
down by the corresponding cost. However, since we are in-
terested in instance completion, where upon selecting an in-
stance we query all of its missing features, it is appropriate
to scale the score for the instance down by the total instance
level cost. This also applies to the EU method, which again
would be equivalent to the IIS method restricted to categor-
ical features.

It is also useful to note that JIS and IIS techniques can
be viewed as two ends of a spectrum where, while the JIS
method computes a function over all missing features for
an instance, the IIS method computes functions for each of
them in isolation. Indeed, we can develop an entire spectrum
of methods which compute functions over different sized sub-
sets of missing features and then compute probabilties over
these functions whose sum then leads to the final score. Such
methods could be of interest as different methods in this
spectrum might perform superior to the others for different
percentages of missing values. The challenge here however,
is to efficiently identify the best subsets. This would require
further investigation.

From a theoretical standpoint, it would be interesting to
study how our querying method compares to a method that
would result in the best updated classifier. Note that our
method is optimal given the current classifier but it does not
guarantee that the classifier trained on the corresponding
updated dataset is the best among all possible classifiers that
would be produced through other querying mechanisms. In
other words, there might be other querying strategies that
are better than ours from the point of view of the final up-
dated classifier. Even if it turns out that our method isn’t
optimal from this other perspective, it would be interesting
to see how much worse we are (i.e. find the regret). This
would probably require assuming some amount of smooth-
ness in the learning of the classification algorithm with re-
spect to the change in inputs. An alternative strategy would
be to restrict the hypothesis space to linear or some other
class of functions. While these directions have been of some
interest in the area of traditional active learning [3], to the
best of our knowledge, there hasn’t been any such work re-
lated to our problem of instance completion.
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