
Multi-step Time Series Prediction in Complex Instrumented Domains

Amit Dhurandhar

IBM T.J. Watson, Yorktown Heights, NY, USA, 10598
adhuran@us.ibm.com

Abstract—Time series prediction algorithms are widely used
for applications such as demand forecasting, weather forecast-
ing and many others to make well informed decisions. In this
paper, we compare the most prevalent of these methods as well
as suggest our own, where the time series are generated from
highly complex industrial processes. These time series are non-
stationary and the relationships between the various time series
vary with time. Given a set of time series from an industrial
process, the challenge is to keep predicting a chosen one as far
ahead as possible, with the knowledge of the other time series
at those instants in time. This scenario occurs, since the chosen
time series is usually very expensive to measure or extremely
difficult to obtain compared to the rest. Our studies on real
data suggest, that our method is substantially more robust to
predicting multiple steps ahead than the existing methods in
these complex domains.

Keywords-time series, non-stationary

I. INTRODUCTION

Time series forecasting has been an active research area

in various disciplines such as econometrics [1], [2], [3], [4]

and machine learning [5], [6], [7], [8], [9] for decades. The

reason being that effective solutions to this problem have

wide spread use in numerous domains such as business

intelligence, weather forecasting, stock market prediction

etc. For example, demand forecasting models predict the

quantity of an item that will be sold the following week

given the sales up until the current week. In the stock

market, given the stock prices up until today one can predict

the stock prices for tomorrow. Using a weather forecasting

engine one can predict the weather for the next day or may

be for the entire week. The farther we predict however,

the more likely we are to err. In any case, in all these

applications predicting the next time step which may be the

next day or the next week is still quite useful from a strategic

point of view or a decision making point of view. When

considering complex industrial processes however, this may

not hold.

In complex instrumented domains certain parameters may

be extremely expensive to obtain as compared to others and

hence, we want to measure these parameters as infrequently

as possible. From a time series forecasting perspective this

amounts to predicting these parameters as far ahead as possi-

ble using information from the other less critical parameters

that may be measured at every point in time. For example,

in the electronic chip manufacturing industry measuring the

Figure 1. The red region with the question mark is to be predicted given
the information in the blue region i.e. time series T1, T2, ..., Td−1 at every
instant and Td till time t.

deposition rate of nitrogen dioxide on a wafer is expen-

sive, however, parameters such as temperature, pressure etc.

can be readily measured without much overhead. Another

example, is the oil production industry, where accurately

predicting daily production can save companies loads of

money in comparison with the alternative, which involves

launching expensive production logging campaigns.

In this paper, we present a methodology that outperforms

other state-of-the-art methods for multi-step time series

prediction in non-stationary domains. The critical aspects of

the methodology include a novel way of identifying distinct

regimes in the data and if needed, a unique way of increasing

the dynamic range of the predictions.

The rest of the paper is organized as follows. In Section II,

we provide a formal definition of the problem we are trying

to solve. In Section III, we review prior work that is related

with time series forecasting. In Section IV, we describe our

methodology in detail. In Section V, we compare our model

with other state-of-the-art models on real industrial datasets.

We then discuss directions of future research and conclude

in section VI.

2010 IEEE International Conference on Data Mining Workshops

978-0-7695-4257-7/10 $26.00 © 2010 IEEE

DOI 10.1109/ICDMW.2010.8

1312

II. PROBLEM DEFINITION

Formally, the problem we are tackling can be stated as

follows: With d time series T1, T2, ...,Td we want to predict
Td as far ahead as possible from some time instant t, given
the other d− 1 time series and values of Td up until time t.

An illustration of this is shown in figure 1, where the

region with the question mark is to be predicted given the

rest of the information.

III. RELATED WORK

Time series forecasting models can primarily be

partitioned into two groups namely; Auto-correlation

models and Markovian models where the states may be

explicit or as in most cases hidden.

Auto-correlation models: Given a time series x1, x2, ..., xt

these models try to predict the next observation xt+1. There

are many models that fall under this category and are based

on different assumptions. The Moving average model [10]

is one of the simplest in this category which computes

the average of the past m observations and reports this as

an estimate of the current value. Exponential smoothing

[10] is a little more sophisticated in that it exponentially

weights down observations that are farther away in time and

reports the result as an estimate. The more sophisticated

models in this category are the auto-regressive models

and combinations of auto-regressive and moving average

models. These models compute the current value in the time

series as a function of a finite past along with some white

noise. Auto regressive moving average model (ARMA) and

Auto regressive integrated moving average model (ARIMA)

[11] are the most common examples in this category. Other

less common but effective models in this category are the

phase space reconstruction methods which assume that the

time series of interest is a one dimensional projection of

a system whose true phase space is higher dimensional

[12]. These methods try to reconstruct the original phase

space and predict current values of the time series by

building statistical models in this reconstructed space.

There are extensions of most of these models to incorporate

exogenous variables as a linear combination.

Markovian models: These models learn a stationary

distribution over a predefined or automatically deciphered

state space. If the state space is not defined, Hidden markov

models [13] and their extensions [5] decipher the hidden

states. Each of the states in these models corresponds to a

unique regression function learned from the training data.

There are variants of these models which learn the state

transitions as a function of the exogenous variables or

input vector [2], however the transitions learned are still

stationary in time.

Given the challenges we face in the problem we are trying

to solve each of these groups suffers from at least a major

limitation. The auto-correlation models do not provide a

natural or powerful way of partitioning the state space and

modeling non-linear dependencies of exogenous variables,

while the markovian models learn stationary distributions

over the state space which may not be applicable in drifting

systems when trying to predict multiple steps ahead. Taking

these facts into consideration, we now decribe a novel

approach which as we will see in the experimental section

outperforms the aforementioned methods.

IV. MODELING

As we discussed in the previous section the Markovian

models learn stationary state transition distributions, which

is their achille’s heel, however, the idea of modeling different

(hidden) states and learning independent regressors is impor-

tant for our problem. The reason for this is that the time

series we consider usually have different regimes, which

need to be deciphered for better modeling. We thus borrow

this idea for our approach. However, the critical question

now is, on what basis do we identify different states which

correspond to different regimes in the data?

To answer the above question it is important to distinguish

when individual time series change from what matters in

terms of prediction. For example, consider two time series

T1 and T2 where we want to predict T2. Say the values for

T1 are (1, 1, 1, 2, 2, 2) and the corresponding values for T2

are (2, 2, 2, 4, 4, 4). If we look at each of the time series in

isolation there is a change at time step 4. However, if we

were to fit a linear model the relationship between the two

time series has remained unchanged i.e. the relationship is

still T2 = 2T1. Hence, though the time series have changed

in isolation, from a prediction point of view there is no

change. We would thus want to conclude that our model

should have 1 state rather than 2 since, from the point of

view of prediction there is just a single regime. On the other

hand if T2 was (2, 2, 2, 10, 10, 10), we would want to split

the data into 2 regimes and our model to have 2 states.

This intuition is captured in algorithm 1, where different

states are based on changes in relationship between pairs of

input time series. The algorithm takes as input a minimum

cluster size (δ), which specifies a lower bound on the

amount of data in each regime and ε which is an error

threshold that we will describe shortly. The idea is to

first consider the entire dataset and fit linear regressors

between all pairs of inputs and compute the cumulative

mean squared error (CMSE). Then the dataset is split into

2 equal parts and linear regressors are fit in each part for

all pairs of inputs with each reporting its corresponding

CMSE. This process continues until a further split of a

particular part leads to a part that is smaller than δ. Hence,

we now have a binary tree-like structure where every node

in this tree is associated with a CMSE value and a set of

1313

Algorithm 1 Regression algorithm where we identify dif-

ferent states and learn a regression function for each state

(Training phase).

Input: d time series T1, T2, ..., Td of length N , where

Td is the target time series, minimum cluster size δ and

CMSE error threshold ε.
Output: Regression functions predicting the target and

pairwise least square coefficients for every pair of input

time series corresponding to each state/regime.

Initialise currentSize = N , currentChildren = 1, Array

States = [], h = 1 {h denotes depth of the tree}
while currentSize ≥ δ do
{Compute CMSE for each node in the tree.}
for i = 1 to currentChildren do

Perform a least squares fit between T
(i)
j and T

(i)
k

∀j ∈ {1, ..., d− 2}, k ∈ {j+1, ..., d− 1} storing the

corresponding MSEjk {T (i)
j corresponds to values

in time series Tj restricted to the ith child at depth

h.}
CMSE(hi) =

∑d−2,d−1
j=1,k=j+1 MSEjk

end for
h = h+ 1
currentSize = � currentSize

2 �
currentChildren = 2currentChildren

end while
currentChildren = currentChildren

2
count = 0

h=h-1

if h==1 then
{Identifying states.}
count = count + 1

States[count] = 11

else
for i = 1 to currentChildren do

p = i

for j = h to 2 do
if CMSE(j� p

2 �) − CMSE(jp) ≥ ε then
count = count+1

States[count] = jp

break

else if j == 2 then
count = count + 1

States[count] = 11

end if
p = �p2�

end for
end for

end if
From the array States note the distinct states and learn

regression functions for each state.

coefficients of the
(d−1)(d−2)

2 linear regressors. It can be

Figure 2. We see the CMSE of a parent part and its child parts. If the
threshold ε is set to 0.01, the parent would be representative of child 1,
while child 2 would represent a different state.

shown that when a particular part is split into 2 child parts

there always exists a child part with mean squared error

(MSE) for any pair of time series less than or equal to the

parent part. In fact, a more general version of this statement

is stated in the following lemma1,

Lemma 1: Consider two real vectors T1 and T2 of

length N , given by t
(1)
1 , t

(2)
1 , ..., t

(N)
1 and t

(1)
2 , t

(2)
2 , ..., t

(N)
2

respectively. Let m equisize sequential partitions of

these vectors be denoted by P1, P2, ..., Pm. Each

Pi (1 ≤ i ≤ m) corresponds to a segment of m
consecutive observations from the two time series given by

{(t((i−1)m+1)
1 , t

((i−1)m+2)
1 , ..., t

((i)m)
1), (t

((i−1)m+1)
2 ,

t
((i−1)m+2)
2 , ..., t

((i)m)
2)}. Without loss of generality with

T1 as the input time series and T2 as the ouput, if we

build m + 1 least square regression models, one for each

of the m partitions Pi and one on the entire time series

denoted by R1, R2, ..., Rm and RT respectively; then there

always exists a partition Pi with the corresponding model

Ri whose mean squared error is less than or equal to the

mean squared error of RT .

It is thus advisable to use a > 0 threshold to decide if to

use the child part as a state or the parent part i.e. only if the

reduction in CMSE from the parent to the child is greater

than or equal to the threshold, do we use the child part to

1Proof in appendix.

1314

Figure 3. Predicted values have a smaller dynamic range than the true
values and we want to ideally, map the predicted to the true range.

represent a state else we use the parent. This is shown figure

2. In algorithm 1, this threshold is given by ε.

After we have identified these different regimes/states we

can train our favorite regression algorithm for each of these

regimes. When testing, a test point is assigned to the regime

whose coefficients when applied to the test inputs lead to

the lowest CMSE.

Hence, our method to identify different states is based
on the assumption that since, the various time series are
generated from the same physical system, the time at which
relationships change significantly between any pair of them
should roughly correspond to changes in relationship be-
tween them and the target time series. Our method does not
assume that this change is of the same amount as that of

the involved time series or is in any way correlated to the

respective time series in quantitative terms. It only assumes

that the change is correlated in time with those time series.2

A. Increasing Dynamic Range

We just described a method to decipher regimes that are

highly coherant from a predictive standpoint. However, it

does occur sometimes that this is not sufficient to capture the

dynamic range of the true values as shown in figure 3. There

could be multiple reasons for this to happen but, one of the

primary reasons is that the target may be drifting with a

certain bias. What we mean by this is that up until the current

time period we may have very few target values above k say,

however this count drastically changes as we try to predict

multiple steps ahead. Since, our regression algorithms try

to minimize some cumulative error, a mediocre prediction

on observations with true value above k does not increase

the cumulative error by much in the current time period.

However, as the proportion of such observations increases

in the future, the impact on the cumulative error becomes

significant.

2It is also important to note that one can perform feature selection after
the states have been identified if needed.

Algorithm 2 Learning scaling factors to increase the dy-

namic range of predictions (Training phase).

Input: d time series T1, T2, ..., Td of length N , where Td

is the target time series, l and u. {l and u are limits to

determine the 3 classes.}
Output: Scaling factors for 3 classes.

Initialize S1 = 0, S2 = 0, S3 = 0, c1 = 0, c2 = 0, c3 = 0
{S1, S2, S3 are the scaling factors.}
for i = 1 to N do

{Create new time series Td+1 of class labels de-

pending on l, u and Td.}if t
(i)
d ≤ l then {Ti =

(t
(1)
i , t

(2)
i , ..., t

(N)
i).}

td+1 = 1

else if t(i)d ≥ u then
td+1 = 3

else
td+1 = 2

end if
end for
Train the classification algorithm chosen, with

T1, ..., Td−1 as input and Td+1 as output.

Ouput a classification function ζ(.). {ζ takes a datapoint

as input and outputs a class label.}
for i = 1 to N do

if ζ(xi) == 1 then
{xi = (t

(i)
1 , ..., t

(i)
d−1)}

S1 = S1+
t
(i)
d

τ(xi)
{τ(.) is the regression function built

by algorithm 1.}
c1 = c1 + 1

else if ζ(xi) == 2 then
S2 = S2 +

t
(i)
d

τ(xi)
c2 = c2 + 1

else
S3 = S3 +

t
(i)
d

τ(xi)
c3 = c3 + 1

end if
end for
if c1 ≥ 1 then
S1 = S1

c1
else
S1 = 1

end if
if c2 ≥ 1 then
S2 = S2

c2
else
S2 = 1

end if
if c3 ≥ 1 then
S3 = S3

c3
else
S3 = 1

end if

1315

In such a scenario, we want to scale our predictions

from the regression algorithm in the appropriate direction

depending on if they are at the lower end of the spectrum,

in the middle or at the higher end of the spectrum. Algorithm

2 describes such a technique. The manner in which one

can decide what threshold to use for the lower end of the

spectrum and analogously the higher end of the spectrum

can be figured out from domain knowledge or by some

standard model selection technique such as cross-validation.

The algorithm outputs scaling factors for each class i.e. the

amount by which the output from an regression algorithm

should be scaled depending on the class in which the input

lies. When testing, the output from the regression algorithm

is multiplied to a convex combination of scaling factors, only

if the probability of being in that class is high (> 0.5) for

that input, where the weights in the convex combination are

probabilities of the particular input belonging to each of the

classes.

The intuition behind such an approach is that, the errors

that the classification and regression algorithms make are

hopefully as uncorrelated as possible and hence, even if

one of them is accurate with the other being moderately

erroneous on certain inputs the cumulative error should most

likely reduce. Loosely speaking, one can think of this as a

logical or i.e. if at least one of the methods does well (and

the other is not great but reasonable) on each of the inputs

the cumulative error should in all likelihood reduce.

A key aspect for the above methodology to work is

to try to get as uncorrelated errors as possible. One way

of maximizing the chances of this happening is by using

models for regression and classification that cover different

parts of the hypothesis space. In other words, using the same

model such as decision trees or some other model for both

classification and regression would not be recommended.

B. Time Complexity

We now analyze the time complexity of the regression

methodology alone and regression along with classification.

If N is the length of the time series, δ is the minimum cluster

size, d is the number of time series and O(R) is the time

complexity of the regression algorithm used in each state,

then the time complexity of algorithm 1 is O((Nδ d)
2 +R).

If the O(C) is the time complexity of the classification

algorithm then the time complexity of algorithm 1 and

algorithm 2 used together is O((Nδ d)
2 +R+ C). Usually δ

isn’t too small since, one needs enough data in each state to

train a regression algorithm and hence, N
δ << N .

V. EXPERIMENTS

In this section we compare our methodology with other

state-of-the-art methods. We do this by performing experi-

ments on 3 real industrial dataset. On each of the datasets we

perform a sequential 90%/10% train/test split (since, some

of the datasets have less number of samples i.e. < 1000) and

Figure 4. Overview of our methodology to predict in complex instrumented
domains.

compare our method with the HMM based model from [5]

and with the best results from ARIMA, ARMA, exponential

smoothing and phase space reconstruction model (i.e. the

auto-correlation models). We report the performance in

terms of R2 as a function of the number of steps ahead

we need to predict. R2 is a standard evaluation criteria

in statistics, which measures how good a given model is

compared to a baseline model that is the mean of target

variable on the training set. Formally,

R2 = 1− MSE(M)

MSE(μ)

where MSE(M) is the mean squared error of your model

M and MSE(μ) is the mean squared error of the mean of

the target variable on the training set. Hence, a R2 close to 1

and away (in the positive direction) from zero indicates that

the model is performing much better than the baseline. While

a negative R2 indicates that the model is doing worse than

the naive baseline. In our experiments, we indicate negative

R2 as zero since, using the model in this case is anyway

useless.

A. Oil production dataset

Oil companies periodically launch production logging

campaigns to get an idea of the overall performance as well

1316

0 2 4 60

0.2

0.4

0.6

0.8

1

Log2(Steps Ahead)

R
2

HMM

RC

Ab

Figure 5. These are the results of the various methods on the oil
production dataset. RC (acronym for regression+clustering) denotes our
method described in algorithm 1. Ab is the best values taken from the
previously mentioned auto-correlation methods and HMM is the hidden
markov model based algorithm described in [5].

as to assess their individual performance at particular oil

wells and reservoirs. These campaigns are usually expensive

and laden with danger for the people involved in the cam-

paign. Automated monitoring of oil production equipment

is an efficient, risk free and economical alternative to the

above solution.

The dataset we perform experiments on, is obtained from

a major oil corporation. There are a total of 9 measures in

the dataset. These measures are obtained from the sensors of

a 3-stage separator which separates oil, water and gas. The 9

measures are composed of 2 measured levels of the oil water

interface at each of the 3 stages and 3 overall measures. In

particular, the measures are as follows:

1) 20LT 0017 mean (stage 1)

2) 20LT 0021 mean (stage 1)

3) 20LT 0081 mean (stage 2)

4) 20LT 0085 mean (stage 2)

5) 20LT 0116 mean (stage 3)

6) 20LT 0120 mean (stage 3)

7) Daily water in oil (Daily WIO)

8) Daily oil in water (Daily OIW)

9) Daily production

Our target measure is the last listed measure which is

Daily production. The dataset size is 992. δ is set to 200

and ε is set to 0.1 in algorithm 1. We use a 2-layer radial

basis neural network in each of the states. Since, algorithm

1 gives us sufficient dynamic range on the training set we

do not use the classification part i.e. algorithm 2 in order to

expand it.

From figure 5 we see that our method does significantly

better than the other methods for all step sizes. RC and

HMM plateau out to a positive R2 while the auto-correlation

methods do not since, the prior methods use also the 8 time

series other than the target to make their predictions, which

is not the case with the auto-correlation models. Hence,

when we try to predict multiple steps ahead the current target

value is not that informative and the auto-correlation models

suffer since, they have no other source of information to rely

on.

B. Semiconductor etching dataset

In a semi-condutor fabrication plant, etching is one of the

important processes that takes place. The acronym for this

process is EPI. This is a key step in chip manufacturing

where a wafer etched out to deposit other material further

downstream. To etch out a wafer a certain compound is

deposited and it is crucial that this compound deposited in

the right quantity. Hence, a key parameter in this process

is deposition rate of that compound, which is expensive to

measure as it requires sophisticated equipment.

The dataset we have has 2026 features where, deposition

rate is one of them. The other features are a combination

of physical measurements (temperature, pressure etc.) and

equipment settings (gas flow offset, temparature flow offset

etc.). The dataset size is 9000. δ is set to 2000 given the

high dimensionality and ε is set to 0.1 in algorithm 1. We

use ridge regression in each of the states. Since, algorithm

1 gives us sufficient dynamic range on the training set we

do not use the classification part i.e. algorithm 2 in order to

expand it.

From figure 6 we see that our method does significantly

better than the other methods for step sizes beyond 1. For

step size 1 the performance is more or less comparable

with the auto-correlation methods but slightly worse. RC

and HMM plateau out to a positive R2 while the auto-

correlation methods do not since, the prior methods use

also the 2025 time series other than the target to make their

predictions, which is not the case with the auto-correlation

models. Hence, again, when we try to predict multiple steps

ahead the current target value is not that informative and

the auto-correlation models suffer since, they have no other

source of information to rely on.

1317

0 5 100

0.2

0.4

0.6

0.8

1

Log2(Steps Ahead)

R
2

RC

HMM

Ab

Figure 6. These are the results of the various methods on the EPI dataset.
RC (acronym for regression+clustering) denotes our method described in
algorithm 1. Ab is the best values taken from the previously mentioned
auto-correlation methods and HMM is the hidden markov model based
algorithm described in [5].

C. Wafer speed prediction dataset

In the chip manufacturing industry predicting speed of the

wafers (which is a collection of chips) accurately ahead of

time can be crucial in choosing the appropriate set of wafers

to send forward for further processing. Eliminating faulty

wafers can save the industry a huge amount of resources in

terms of time and money.

The dataset we have has 175 features where, the wafer

speed is one of them. The other features are a combination

of physical measurements and electrical measurements made

on the wafer. The dataset size is 2361. δ is set to 1000 given

the dimensionality and ε is set to 0.1 in algorithm 1. We use

ridge regression in each of the states. In this case, algorithm

1 does not give us a sufficient dynamic range on the training

set so we do use the classification part i.e. algorithm 2 in

order to expand it. The class ranges are deciphered using

10-fold cross-validation in this case, which are inputs to

0 2 4 6 8 100

0.2

0.4

0.6

0.8

1

Log2(Steps Ahead)

R
2 RC

RCC

HMM

Ab

Figure 7. These are the results of the various methods on the speed dataset.
RCC (acronym for regression+clustering+classification) denotes our method
which is a combination of algorithm 1 and algorithm 2. RC (acronym for
regression+clustering) denotes our method described in algorithm 1 alone.
Ab is the best values taken from the previously mentioned auto-correlation
methods and HMM is the hidden markov model based algorithm described
in [5].

algorithm 2.

Here again both our methods are significantly better than

the other methods with RCC being the best. The classifica-

tion part provides the necessary boost to the regression part

yielding much better estimates.

VI. DISCUSSION

In the future, multiple extensions can be made to the

methodology described in this paper. A simple yet useful

extension would be to combine the various states based on

the closeness of their pairwise regression coefficients. By

closeness we mean that if the coefficients for every pair

of input time series in a particular state are represented as

a single datapoint in the corresponding parameter space,

then the distance between this point and another point

representing a different state lies below a threshold. Another

extension would be to update these coefficients for the

1318

respective states during testing, based on the error3 of the

assigned test points. This may help in better capturing drifts

that may occur in the data.

Another interesting direction would be to frame this

problem as a relational learning problem [14]. One way to

accomplish this, is to consider observations up to say k steps

behind as relational neighbors and use the machinery devel-

oped in statistical relational learning to perform collective

inference. It would be interesting to see the implications

of combining methods from these two seemingly distinct

domains.

To summarize, we have described a novel methodol-

ogy to effectively tackle multi-step prediction problems in

highly complex non-stationary domains. Key aspects of

this methodology are, (1) an effective way of identifying

states from the predictive standpoint and (2) an innovative

classification scheme to improve the dynamic range of the

predictions. We have empirically compared our method on

real industrial datasets with other state-of-the-art methods

and it seems to perform significantly better. In addition, we

have described certain promising directions for the future.

It remains to be seen, how our method and the suggested

extensions would fair, as we apply them to data from other

industrial domains.

ACKNOWLEDGEMENT

Special thanks to Yan Liu for providing the HMM code

and helpful discussions. In addition, we would like to thank

Jayant Kalagnanam and Robert Baseman for providing the

real datasets.

VII. APPENDIX

Proof: Consider two real vectors T1 and T2 of

length N , given by t
(1)
1 , t

(2)
1 , ..., t

(N)
1 and t

(1)
2 , t

(2)
2 , ..., t

(N)
2

respectively. Let m equisize sequential partitions of

these vectors be denoted by P1, P2, ..., Pm. Each

Pi (1 ≤ i ≤ m) corresponds to a segment of m
consecutive observations from the two time series given by

{(t((i−1)m+1)
1 , t

((i−1)m+2)
1 , ..., t

((i)m)
1), (t

((i−1)m+1)
2 ,

t
((i−1)m+2)
2 , ..., t

((i)m)
2)}. Without loss of generality

(w.l.o.g.) let T1 be the input time series and T2 the ouput.

We then build m + 1 least square regression models, one

for each of the m partitions Pi and one on the entire time

series denoted by R1, R2, ..., Rm and RT respectively. Let

their corresponding mean squared errors be Δ1,Δ2, ...,Δm

and ΔT . W.l.o.g. let us assume that R1 has the least MSE

i.e. Δ1 ≤ Δi ∀i ∈ {2, ...,m}. With this we have,

ΔT = 1
N

∑N
i=1(RT (t

(i)
1)− t

(i)
2)2

3This not the prediction error but error w.r.t. the pairwise regression
coefficients which related only to the input time series.

= 1
m [1

N
m

∑m
i=1(RT (t

(i)
1)− t

(i)
2)2+...

+ 1
N
m

∑N
i=N−m+1(RT (t

(i)
1)− t

(i)
2)2]

≥ 1
m [1

N
m

∑m
i=1(R1(t

(i)
1)− t

(i)
2)2+...

+ 1
N
m

∑N
i=N−m+1(Rm(t

(i)
1)− t

(i)
2)2]

= 1
m

∑m
i=1 Δi ≥ 1

mmΔ1 = Δ1

We have thus proved our result. The first inequality in

the above equation comes from the fact that the individual

models have the lowest MSE by definition. The second

inequality is valid since, Δ1 is the least amongst all the

Δi i ∈ {1, 2, ...,m}.

REFERENCES

[1] S. W. S. Makridakis and J. Rob, 1998.

[2] J. L. F. Diebold and G. Weinbach, “Regime switching with
time-varying transition probabilities,” no. 283-302, 1993.

[3] W. Enders, Applied Econometric Time Series, 2nd ed. Wiley
and Sons, 2003.

[4] C. Granger, “Testing for causality: a personal viewpoint,”
2001.

[5] J. K. Y. Liu and O. Johnsen, “Learning dynamic temporal
graphs for oil-production equipment monitoring system,” in
KDD ’09: Proceedings of the 15th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining.
New York, NY, USA: ACM, 2009, pp. 1225–1234.

[6] Y. L. A. Lozano, N. Abe and S. Rosset, “Grouped graphical
granger modeling methods for temporal causal modeling,” in
KDD. ACM, 2009.

[7] Y. L. A. Arnold and N. Abe, “Temporal causal modeling with
graphical granger methods,” in KDD. ACM, 2007.

[8] I. N. N. Friedman and D. Peer, “Learning bayesian network
structure from massive datasets: The ”sparse candidate” al-
gorithm,” in UAI, 1999.

[9] D. Heckerman, “A tutorial on learning with bayesian net-
works,” MIT Press, Tech. Rep., 1996.

[10] G. J. G. Box and G. Reinsel, in Time Series Analy-
sis:Forecasting and Control. Prentice-Hall, 1994.

[11] T. Mills, in Time Series Techniques for Economists. Cam-
bridge University Press, 1990.

[12] A. M. L. Cao and K. Judd, “Dynamic from multivariate time
series,” Physica, pp. 75–88, 1998.

[13] P. H. R. Duda and D. Stork, in Pattern Classification. Wiley-
Interscience, 2000.

[14] L. Getoor and B. Taskar, Introduction to Statistical Relational
Learning. MIT Press, 2007.

1319

