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Abstract—Temporal causal modeling has been a highly active
research area in the last few decades. Temporal or time series
data arises in a wide array of application domains ranging
from medicine to finance. Deciphering the causal relationships
between the various time series can be critical in understanding
and consequently, enhancing the efficacy of the underlying pro-
cesses in these domains. Grouped graphical modeling methods
such as Granger methods provide an efficient alternative for
finding out such dependencies. A key parameter which affects
the performance of these methods is the maximum lag. The
maximum lag specifies the extent to which one has to look into
the past to predict the future. A smaller than required value of
the lag will result in missing important dependencies while an
excessively large value of the lag will increase the computational
complexity alongwith the addition of noisy dependencies. In
this paper, we propose a novel approach for estimating this
key parameter efficiently. One of the primary advantages of
this approach is that it can, in a principled manner, incorporate
prior knowledge of dependencies that are known to exist
between certain pairs of time series out of the entire set and
use this information to estimate the lag for the entire set. This
ability to extrapolate the lag from a known subset to the entire
set, in order to get better estimates of the overall lag efficiently,
makes such an approach attractive in practice.
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I. INTRODUCTION

Weather forecasting, business intelligence, supply chain
management are a few but important application areas in
which we observe (multiple) time series data. Given these
multiple time series, the goal in most of these domains is
to use the available time series data of the past to make
accurate predictions of future events and trends. In addition
to this primary goal, an important task is also to identify
causal relationships between time series wherein, data from
one time series significantly helps in making predictions
about another time series. This problem of identifying causal
relationships between various time series is a highly active
research area [1], [2], [3].

Graphical modeling techniques which use Bayesian net-
works and other causal networks [4], [5], [6], [7] have been
considered as a viable option for modeling causality in the
past. Statistical tests [8] such as specific hypothesis tests
have also been designed to identify causality between the
various temporal variables. Both the graphical methods as
well as the statistical tests mentioned above are focused on
deciphering causal relationships between temporal variables
and not between time series. In other words, these techniques

are unable to answer questions of the form, ”does time
series A cause time series B?”. Granger causality [1], a
widely accepted notion of causality in econometrics, tries to
answer exactly this question. In particular, it says that time
series A causes B, if the current observations in A and B
together, predict the future observations in B significantly
more accurately, than the predictions obtained by using
just the current observations in B. Recently, there has been
a surge of methods that combine this notion of causality
with regression algorithms [9], [2] namely; Group Lasso,
Group boosting to name a important few. These methods
fall under a class of methods commonly referred to as
Grouped Graphical Granger Methods (GGGM). The primary
advantage of using these methods as against performing the
Granger test for every pair of potentially causally related
time series is their scalability. If the number of time series
is large, which is likely to be the case in most real life
problems, then performing the Granger test for each pair
individually can be tedious.

The GGGM have a parameter called the maximum lag,
which is a key parameter that needs to be specified in
order to decipher the appropriate causal relationships. The
maximum lag for a set of time series signifies the number
of time units one must look into the past to make accurate
predictions of current and future events. Accurately esti-
mating this parameter is critical to the overall performance
of the GGGM since, a smaller than required value of the
lag will result in missing important causal relationships
while an excessively large value of the lag will increase
the computational complexity alongwith the addition of
noisy dependencies. A standard approach to estimate this
parameter is to try different values for the lag and then to
choose a value where the error in regression is significantly
lower than a smaller value of the lag but not significantly
worse than that for higher values of the lag. In other words,
choosing the smallest value of the lag after which the
learning rate more or less flattens out. One of the main issues
with this approach is that, it cannot incorporate additional
prior information that the user might have. Moreover, if we
get large lags then we cannot be sure if the lag we have is the
true value or a noisy value obtained because of overfitting
(since, there are many variables).

In many real circumstances depending on the domain, we
might have information about the shape of the distribution
that the lags might follow as well as knowledge about certain



pairs of time series (with their lags) that we know for sure
are causally related and we want to somehow leverage this
information to get a better estimate of the maximum lag
for the entire set. A striking example of such a scenario is
in business intelligence where we may have different key
performance indicators (KPI) (as time series) for a store
such as; sales amount, sales quantity, promotion quantity,
inventory age and sales age. We know here for sure that
more the promotion quantity (i.e. quantity of goods that is
on sale or has some rewards associated with it) more will be
the sales quantity (i.e. amount sold) which will lead to higher
sales amount. Hence, we know that promotion quantity has
a causal relationship to sales quantity and both have a causal
relationship with sales amount. In many cases we may even
know the lag for these causally related pairs. In other cases,
we may know with reasonable confidence that the lag is most
likely to be small (say around or below 2 weeks) since, the
specific promotions were run for approximately that period,
in which case we may assume the lags are drawn from
a distribution resembling an exponential. We do not know
however, the relationships between the other pairs of time
series and we want to find out other existing relationships
using the information we have. Another example is supply
chain where KPI’s such as goods received by a retailer
from a manufacturer and goods ordered by a retailer would
be causally related but the lags here are more likely to
be normally distributed with a moderately high mean than
exponentially, since there can be a reasonable time delay
from when the order is made to the time that the shipment
is received. Other problems such as gene regulatory network
discovery, weather forecasting also may contain this kind
of additional information, which if modeled appropriately
can aid in better estimating the maximum lag leading to
performance improvements in causal discovery for GGGM.

In this paper, we propose an approach based on or-
der statistics that can use this additional information in
a principled manner and provide accurate estimates for
the maximum lag. One of the primary advantages of this
approach is that it is highly efficient and can be used as a
quick diagonostic to get an estimate of the maximum lag.
Our method as we will see in the experimental section tends
to give accurate estimates of the maximum lag even when
the lags are correlated.

The rest of the paper is organized as follows. In Section
II, we take a closer look at Granger causality and GGGM. In
Section III, we formally describe the basic setting and pro-
vide a list of desirable properties that a reasonable approach
should be able to successfully incorporate. In Section IV, we
first state and justify the modeling decisions we make. We
then derive the estimator for the maximum lag. If the lags
for the known causally related pairs are not given, we give
a simple and efficient algorithm for finding these lags. In
Section V, we perform synthetic and real data experiments to
test the performance of the estimator. We discuss limitations

of the current approach and promising future directions in
section VI.

II. PRELIMINARIES

In this section we discuss Granger causality and a class
of efficient methods namely, GGGM, that can be used to
decipher causal relationships when the number of time series
is large.

A. Granger Causality

Clive Granger, a Nobel prize winning economist, gave
an operational definition of causality around three decades
back [1]. This notion of causality is commonly referred
to as Granger causality. Loosely speaking, he stated that
time series X ”causes” time series Y , if future values of Y
predicted using past values of X and Y is significantly more
accurate, than just using past values of Y . In other words,
X plays a substantial role in predicting Y .

Formally, let X = {xt}Lt=1 and Y = {yt}Lt=1 be the
variables of the time series X and Y (of length L )
respectively. Let d denote the maximum lag for this pair
of time series1. The Granger test then performs two linear
regressions which are given by,

yt ≈
d∑
i=1

eiyt−i +

d∑
i=1

fixt−i (1)

yt ≈
d∑
i=1

eiyt−i (2)

and checks to see if the estimates obtained from equation
1 are more accurate than those obtained from equation 2
in a statistically significantly way. If so, then X is said to
Granger cause Y .

B. Grouped Graphical Granger Methods

GGGM are a class of methods, that perform non-linear re-
gression with group variable selection, in order to figure out
existing causal relationships between different time series.
These methods efficiently decipher causations when given a
large set of time series and are shown to be more desirable
than their pairwise counterparts [3]. Some examples of
the regression algorithms that these methods use are the
Group Lasso [9], the recently introduced Group Boosting
and Adaptive Group Boosting [2]. Given a set of N time
series {X1, X2, ..., XN} these methods report for each i ∈
{1, 2, ..., N} the time series {Xj : j 6= i, j ∈ {1, 2, ..., N}}
that ”Granger cause” time series Xi. We will now provide
details about the Group Lasso since, we deploy this method
for causal discovery in the experiments. Notice that the focus
of the paper is finding out the maximum lag for these models
and not to compare these models and hence we choose a

1Notice that the value of d greatly affects output of the Granger test



single method that is commonly used in practice for our
experiments.

In a particular run of the GGGM using Group Lasso,
assume that Xi is the time series we want to regress
in terms of X1, ..., XN . Given a lag of d and L being
the length of the time series (or the maximum length
considered), let Y = (xiL, x

i
L−1, ..., x

i
1+d)

T denote the
vector of variables to be regressed belonging to time
series Xi. Let X = (Z1, ..., ZL−d)

T , where Zi =
(x1
L−i, ..., x

1
L−d−i+1, ..., x

N
L−i, ..., x

N
L−d−i+1)T be a (L −

d)×dN predictor matrix. With this the Group Lasso solves
the following objective,

α(λ) = argminα ‖ Y −Xα ‖2 +λ

N∑
i=1

‖ αi ‖

where λ is a regularization parameter, α is a dN×1 vector of
coefficients and αi is a d× 1 vector containing coefficients
from α with the following indices {(i − 1)d + 1, ..., id}.
Minimizing the l2 norm for groups of coefficients forces
entire time series to be either relevant or irrelevant.

III. SETUP

We have seen in the previous sections that the maximum
lag is a key parameter in GGGM. The causations reported
can vary significantly for different values of the lag. In this
section, we first describe the basic setup. Based on this
setup and the problem we are trying to solve, we state some
intuitions that a desirable approach should incorporate.

Let there be N time series X1, X2, ..., XN of length L.
Given this there are T = N(N−1)

2 pairs which can potentially
be causally related. If there are certain pairs that you know
for sure are not causally related you can consider T to be
the total number of pairs after their removal. Note that there
might be a group of time series (3 or more) that may be
causally realted in which case we consider every pair in
that group to be potentially causally related and part of the
T pairs. Thus, T is the effective number of pairs that may
be causally related. Out of these T pairs assume that for a
subset M of these we know for sure that they are causally
related. We may in some scenarios even know the lag for
each of these M pairs or at least a range in which the lags
may lie. Moreover, depending on the domain we would have
a farely good idea of the shape distribution that these lags
are likely to follow. Given all this information the goal is to
estimate the maximum lag dT for the T pairs.

Considering the goal and the basic setup it seems reason-
able that any good estimator of dT should capture at least
the following intuitions:

1) As M approaches T the estimator should increasingly
trust the available data in predicting maximum lag, as
against the prior distributions specified over the lags.

2) Ideally, we should get the exact value of the maximum
lag. However, if this is not possible, it is better to

get a reasonably accurate but conservative estimate
of the maximum lag than an optimistic one since,
in the latter case we will definitely miss important
causations, which is not the case with the former.
Moreover, a not too conservative estimate will in all
likelihood not add many, if any, false positives.

3) The distributions allowed for modeling prior informa-
tion and the ones learned using the data should be
able to represent a variety of shapes viz. exponential
decreasing, uniform, bell-shaped etc. depending on the
application. In addition, the domain should be bounded
since, GGGM regress a finite number of variables, that
is time series of length L.

4) The estimated maximum lag for the T pairs of time
series should at least be dM i.e. dT ≥ dM , which is
the maximum lag for the M causally related pairs.

IV. MODELING

In this section, we derive the estimator for the maximum
lag for the T pairs of time series. Initially, we state and
justify certain modeling decisions that we make. We then
derive the estimator assuming that we know the lags for
the M pairs, in a way that is consistent with the intuitions
mentioned in the previous section. Finally, we give an
algorithm to figure out the lags for the M pairs if they are
not known apriori.

A. Assumptions

We assume that the ratio of the lags to the length of
the time series or maximum length considered i.e. 0 ≤
d
L ≤ 1, are drawn independently from a beta distribution
for all T pairs. Formally, we assume that di

L ∼ β(a, b)
∀i ∈ {1, ..., T}, where di is the lag for the ith pair and
a, b are the shape parameters of the beta distribution.

We choose the beta distribution since, it captures intuitions
mentioned in item 3 in the previous section. The distribution
has a bounded domain ([0,1]) and by varying the parameters
(a, b) we can get different shapes as per the application.
For example, if we want the lags to be drawn from a flat
uniform distribution we can set a = 1, b = 1. If we want
an exponential kind of behavior we can set a to be small
and b to be large depending on the rate of decay we desire.
If we want a bell-shaped (normal like) behavior we can set
a and b to both have the same large value depending on
the variance we desire. Hence, a beta distribution is a good
choice if one wants the flexibility to model different shapes.

Though the beta may be able to model different shapes,
the assumption that lags are drawn independently may not
match reality. It is very much likely that the lags are
correlated. For example, more fresh goods stocked-in at
a store causes more sales which leads to higher revenue.
The lag between stocked-in fresh goods and revenue is in
all likelihood positively correlated with the lag between
stocked-in and sales and also with the lag between sales



and revenue. Another example is in weather forecasting
where a change in temperature may cause a change pressure
which results in increased wind speeds. Here the lag between
temperature and wind speeds is positively correlated with
the lag between temperature and pressure as well as the lag
between pressure and wind speed. We hence can see that the
lags can be correlated in very realistic situations. However,
all of these lags are positively correlated. It is hard to come
up with a realistic scenario where a larger lag between
a pair of time series leads to smaller lag between some
other pair. It is important to note here that we are arguing
for the sign of correlation between lags and not between
time series. There are many real life scenarios where two
time series may be negatively correlated such as increased
inventory at a store implies less sales at that store, however
when it comes to lags, a realistic situation which leads to
negative correlation does not seem easy to find. The reason
we mention this is that, if the lags are in fact positively
correlated, assuming them to be independent leads to a
conservative estimate of dT [10], which is consistent with
intuition 2 mentioned before. In Section VI, we will discuss
some preliminary ideas about how one might proceed to
model such correlations, but this is part of future work and
beyond the scope of this paper.

As we have seen our assumptions are consistent with our
intuitions and given these we will derive our estimator of
dT .

B. Derivation

Assume we know the lags for the M pairs of time series
and dM is the maximum lag for these pairs. Let β(ap, bp)
be the distribution over the lags (divided by L, the length of
the time series or maximum length considered) based on the
users prior knowledge. Given the lags for the M pairs we can
learn the parameters for the beta distribution from the data
using maximum likelihood estimation (mle). There are no
simple closed form formulae to estimate these parameters,
however, as for many complicated distributions the values
of the parameters have been tabulated as functions of the
available sample [11]. Using these tables the mle estimates
for the parameters can be found extremely efficiently, that
is in O(M) time.

Let β(al, bl) be the distribution over the lags (divided
by L) learned from the data. Notice that, we are trying to
estimate the maximum lag for the T pairs and hence we
need to find the distribution of the maximum order statistic
given the individual distributions over the lags.

In general, if we have N independently and identically
distributed random variables X1, ..., XN with cumulative
distribution function (cdf) F (x), the cdf of the kth order
statistic Fk(x) [12] is given by,

Fk(x) =

N∑
i=k

F i(x)(1− F (x))N−i

Hence in our case, since we are looking for the distribution
of the max order statistic, this distribution would be given
by FN (x) = FN (x). Based on the prior distribution over
the lags, the distribution over the maximum lag would be
βT (ap, bp), while based on the data the distribution would be
βT (al, bl). Considering intuition 1 in the previous section,
we combine these two sources of information to get a
mixture distribution over the maximum lag,

d̄T
L
∼ M

T
βT (al, bl) +

T −M
T

βT (ap, bp)

where d̄T is our estimator of dT . Thus a point estimate for
the maximum lag could be the mean of this distribution i.e.
d̄T = L(MT µl + T−M

T µp), where µi = mean(βT (ai, bi)).
Note however, that intuition 4 is still not captured, since
this estimated value may not necessarily be greater than or
equal to dM . Hence, taking this into consideration our final
estimator is given by,

d̄T = max([L(
M

T
µl +

T −M
T

µp)], dM ) (3)

where [.] indicates rounding to the closest integer. Note
that there is no closed form formula for µl or µp for
arbitrary choice of parameters of the beta distribution.
However, these means can be estimated efficiently in the
following manner. We first create an array containing
the cdf values of the corresponding distribution over the
max order statistic, for a particular quantization of the
domain of the beta distribution. For example, in case the
quantization is 100, the array would have 100 cdf values
for the following values of the domain, {0.01, 0.02, ..., 1}.
We then sample from a Uniform(0,1) and using inverse
probability integral transform [10] we would map to the
closest (or interpolated) value in the domain to get samples
from the respective distribution over the max order statistic.
Averaging these samples would give us an estimate of the
corresponding mean.

Special case: If the lags (divided by L) turn out to be
distributed according to an uniform distribution which is
given by β(1, 1), then the mean of the distribution of the
max order statistic has a nice closed form solution. Given T
Uniform(0,1) random variables, the distribution of the max
order statistic is a β(T, 1), whose mean is T

T+1 . Hence, in
this special case we do not need to sample to approximate
the mean as we have a simple closed form formula.

C. Estimating lags for the M time series

In the previous subsection we derived an estimator for
the maximum lag assuming that we know the lags for the
M causally related time series. However, this might always
not be true. In fact, in many cases we may know the range
in which the lag is likely to lie rather than the exact value.
Sometimes we may have no such information, in which case



the range would be the entire time series i.e. (1, ..., L). In
such scenarios we can use the procedure given in Algorithm
1 to find the lag for a pair of causally related time series.

Algorithm 1 Estimating lags for a pair of causally related
time series.

Input: Time series X and Y of length L where X causes
Y , a range for the lag (l, ..., u) where 1 ≤ l ≤ u ≤ L and
error threshold ε > 0.
Output: Lag given by d.
Initialize lower = l, upper = u, d = 0
repeat

Initialize mid = b lower+upper2 c
Regress Y in terms of X for a lag upper and let the
error of regression be eu
Regress Y in terms of X for a lag mid and let the error
be ec
Regress Y in terms of X for a lag lower and let the
error be el
if eu − ec ≥ ε then
lower = mid

else if ec − el ≥ ε then
upper = mid

else
d = lower

end if
until (d == lower or lower == upper)
d = lower

The procedure essentially does a binary search in the
given range and outputs a lag d for which the error in
regression is significantly lower than that for a smaller lag
but almost the same for higher lags. The time complexity
of this procedure is O(log(u− l)TR), where {l, ..., u} is the
range and O(TR) is the time it takes to perform regression
which depends on the method used. The algorithm is thus
simple and efficient. It is easy to see that the error of
regression cannot increase as the lag increases since, we
have a superset of the variables for larger lags of what we
have for smaller lags, leading to a better fit to the available
data. The lag that we get from this procedure is very likely
to be the true lag (or at least extremely close to it) and
not a consequence of overfitting in the case that it is large
(i.e. close to L), since we know apriori that the pair under
consideration is causally related. If we did not have that
information we could not have made this claim with much
conviction. Moreover, using Algorithm 1 to estimate the
lags for the entire set would take O(T log(u− l)TR) which
is more expensive than our proposed solution of using the
derived estimator after the lags for the M causally related
time series have been deciphered.

Table I
THE TABLE SHOWS THE ERROR I.E. MEAN (ROUNDED TO 3

DECIMALS) +- 95% CONFIDENCE INTERVAL (ROUNDED TO 2
DECIMALS) OF THE ESTIMATOR UNDER DIFFERENT SETTINGS
WHEN THE LAGS FOR THE M CAUSALLY RELATED PAIRS OF

TIME SERIES ARE KNOWN.

a, b M ρ Error

1,1 100 0.1 0.003+-0.01
1,1 100 0.5 0.053+-0.07
1,1 100 0.8 0.131+-0.12
1,1 5000 0.1 0
1,1 5000 0.5 0.002+-0.01
1,1 5000 0.8 0.012+-0.05
1,5 100 0.1 0.006+-0.01
1,5 100 0.5 0.061+-0.04
1,5 100 0.8 0.07+-0.06
1,5 5000 0.1 0.004+- 0.01
1,5 5000 0.5 0.006+-0.02
1,5 5000 0.8 0.008+-0.03
5,5 100 0.1 0.004+-0.04
5,5 100 0.5 0.02+-0.06
5,5 100 0.8 0.155+-0.08
5,5 5000 0.1 0.002+-0.03
5,5 5000 0.5 0.01+-0.04
5,5 5000 0.8 0.018+-0.06

D. Time Complexity

From the previous subsections we know that there are two
scenarios, the first where the lags for the M causally related
time series are known and second where these lags are not
known. It is interesting to see what the time complexities
are for these two cases and how they compare with standard
approaches.

With this, if we know the lags for the M causally related
time series then the lag for the entire set can be estimated in
O(M) time. This is the case since, parameter estimation for
the beta and obtaining the final estimate for the maximum
lag using our estimator takes O(M) time. If we do not
know these lags then the maximum lag can be estimated
in O(Mlog(u − l)TR) time, since Algorithm 1 needs to
be run M times. The standard model selection approaches
such as cross-validation or those based on regularization,
which essentially try out different lags and which are un-
able to incorporate the available domain knowledge take,
Ω(T (u − l)TR) time. Hence, our approach is significantly
more efficient than these other approaches.

V. EXPERIMENTS

In this section, we perform synthetic and real data ex-
periments in order to evaluate our estimator. As we will
see our estimator is robust and gives accurate estimates of
the maximum lag even when assumptions such as the lags
being independently distributed are violated. In addition,
we compare the accuracy of our approach with a standard
approach used for these applications namely; 10-fold cross-
validation, which as we mentioned earlier is much more
computationally intensive.



Table II
THE TABLE SHOWS THE ERROR I.E. MEAN (ROUNDED TO 3

DECIMALS) +- 95% CONFIDENCE INTERVAL (ROUNDED TO 2
DECIMALS) OF OUR ESTIMATOR AS WELL AS THAT OF 10-FOLD
CROSS-VALIDATION (CV ) UNDER DIFFERENT SETTINGS WHEN

THE LAGS FOR THE M CAUSALLY RELATED PAIRS OF TIME
SERIES ARE UNKNOWN.

a, b M ρ Error CV Error

1,1 100 0.1 0.004+-0.01 0.15+-0.01
1,1 100 0.5 0.05+-0.08 0.143+-0.02
1,1 100 0.8 0.135+-0.13 0.121+-0.01
1,1 5000 0.1 0.001 0.15+-0.03
1,1 5000 0.5 0.004+-0.01 0.143+-0.01
1,1 5000 0.8 0.011+-0.03 0.121+-0.02
1,5 100 0.1 0.007+-0.02 0.132+-0.05
1,5 100 0.5 0.066+-0.03 0.113+-0.04
1,5 100 0.8 0.071+-0.06 0.09+-0.04
1,5 5000 0.1 0.005+- 0.01 0.132+-0.05
1,5 5000 0.5 0.007+-0.01 0.113+-0.04
1,5 5000 0.8 0.009+-0.04 0.09+-0.04
5,5 100 0.1 0.002+-0.05 0.091+-0.03
5,5 100 0.5 0.02+-0.07 0.087+-0.02
5,5 100 0.8 0.161+-0.06 0.082+-0.01
5,5 5000 0.1 0.001+-0.05 0.091+-0.03
5,5 5000 0.5 0.01+-0.04 0.087+-0.02
5,5 5000 0.8 0.02+-0.05 0.082+-0.01

A. Synthetic Experiments

Through our experiments on synthetic data, we want to
find out how our method behaves for different shapes of the
lag distribution, for different amounts of pairwise correlation
between the lags and for different values of M . In the first
set of experiments, we assume that the M lags are given,
while in the second set of experiments we assume that only
the M pairs of causally related time series are given but the
lags are not for the same set of time series. In this case,
we generate the time series using the standard Vector Auto-
Regression (VAR) model [13] and the regression method
used in Algorithm 1 is Group Lasso. An overview of the
procedure used to conduct experiments is as follows:

1) Let the total number of time series be Q. Sample
T = Q(Q−1)

2 lags that are correlated from a multivari-
ate beta distribution. The procedure for doing so is as
follows [14]: Specify a, b, ρ where a, b are parameters
of a univariate beta distribution and ρ is the pairwise
correlation between lags. Generate a sample p from
β(a, b), followed by a sample k from Binomial(N, p)

where N = [ (a+b)ρ
1−ρ ]. Finally, generate T samples

from β(a+ k,N + b− 1) and after mulitplying by L
round the values to the closest integer. Note that these
sequentially generated T samples are a single sample
from a T variate beta distribution with marginals
β(a, b) and pairwise correlation ρ.

2) Assign each lag to a directed edge on a complete graph

(with no cycles)2 uniformly at random. The vertices
of this graph denote individual time series.

3) Choose a value for M ≤ T .
4) Randomly sample M lags without replacement from

the set of T lags. In the first set of experiments, just
note the M lags since we assume that they are readily
available. In the second set of experiments where we
assume the M lags are not known, generate Q time
series using the VAR model in accordance with the T
lags. The way to accomplish this, is to have dT (max
lag in the T lags) coefficient matrices. An entry (i, j)
in the coefficient matrix Ar where i, j ∈ {1, ..., Q},
r ∈ {1, ..., dT } is 0, if time series j does not ”cause”
time series i or if the lag between i and j is less than
r, otherwise the entry is a sample from a N(0, 1).
For our method, identify the M pairs of time series
that correspond to the randomly sampled M lags and
find out the lags for these M pairs using Algorithm
1. For 10-fold cross-validation, randomly partition the
T pairs of time series into 10 parts and compute
the average error in regression (average L1 loss) for
different choices of lags.

5) In the first set of experiments where the M lags
are known, estimate the maximum lag using our
method. In the second set of experiments, estimate
the maximum lag using our method and then using
cross-validation where the smallest lag which gives
an average error in regression ≤ 0.1 is chosen as an
estimate of the maximum lag. In both these sets of
experiments compute the absolute error |d̄T−dT |L for
the methods involved where d̄T is the corresponding
estimate of the true lag dT .

6) Repeat steps 4 and 5 multiple times (100 times) and
find the average absolute error with a 95% confidence
interval from all runs.

7) Repeat steps 3, 4, 5, 6 for different values of M .
8) Repeat all the previous steps for different levels of

correlation and different choices of a, b which will
produce different shape distributions.

In all the experiments we set Q = 100 and the length
of the time series is also set (L) to 100. The values of a, b
that we set for the beta are; a = 1, b = 5 (exponential
shaped distibution), a = 1, b = 1 (uniform distribution)
and a = 5, b = 5 (bell (normal) shaped distribution). We
run the experiments for three values of ρ; ρ = 0.1 (low
correlation), ρ = 0.5 (medium correlation) and ρ = 0.8
(high correlation). The values of M that we used in the
experiments are; M = 100 (low M ) and M = 5000 (high
M ). The prior distributions we assume over the lags in
each of the cases are betas with the corresponding a and

2Such a graph can be created by starting at a random node and adding
outgoing edges to all other vertices. Then choosing another node and adding
outgoing edges to all but the nodes that point to it. Repeat the previous
step Q− 1 times.
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Figure 1. We observe the behavior of the number of significant causations
deciphered against the max lag for the business intelligence dataset. The
vertical line (at 17) on the plot denotes our estimate of the max lag and from
its corresponding value on the curve we see that this estimate of the lag is
sufficient to decipher important causations without being too conservative.

b parameters. The a and b learned from the lags of the M
time series is done using mle. The ε parameter in algorithm
1 is set to 0.1.

From tables I and II we observe that the performance of
the estimator is qualitatively the same, when lags for the M
causally related pairs are known or have to be deciphered
using algorithm 1. As expected, with increasing correlation
between the lags (ρ) the estimates worsen, however, they
are still pretty accurate for medium and high correlations,
especially when M is large. The estimates improve with
increasing M for a particular ρ, but are quite good for lower
M when ρ is low or moderate. This implies that our esti-
mator is robust to assumptions such as independence, being
reasonably violated and hence, can prove to be useful in
practice. Moreover, the estimates from our method compare
favorably with cross-validation in most cases, except when
the correlation is high and sample size is low. Given that
cross-validation is also more computationally expensive, this
is a strong case for our method.

B. Real Data Experiments

Business Intelligence: The first real dataset we test our
method on is a business intelligence dataset. The dataset
contains point of sales and age information of a product. In
particular, for 107 stores we have the following 3 KPI’s for
each store namely; sales amount, sales quantity and sales age
of products giving us a total of 321 time series. We know that
sales quantity affects sales amount for the same store and
sales quantity and amount between different stores also share
causal relationships. However, we are interested in finding
out if there are any causal relationships between sales age at
different stores as well as sales age and the other sales KPI’s
within and between stores (termed freshness analytics). With
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Figure 2. We observe the behavior of the number of significant causations
deciphered against the max lag for the chip manufacturing dataset. The
vertical line (at 33) on the plot denotes our estimate of the max lag and
from its corresponding value on the curve we see that this estimate of
the lag is sufficient to decipher important causations without being too
conservative.

this we have M = 214(214−1)
2 = 22791 and T = 51360.

We know the lags for the M pairs of time series to be
14 (days) for KPI’s between stores and 1 for KPI’s within
stores. Hence, the maximum lag is 14 for the M pairs. The
lengths of the time series are 145 (around 5 months worth of
data) but we know that goods get replenished after a month
which means L = 30. The prior belief is that the true lag
can lie anywhere in this interval and hence, we assume a
uniform prior over the (ratios of the) lags i.e. β(1, 1).

With this information we estimate the maximum lag to
be 17 (days). We evaluate this estimate by checking where
on the curve in Figure 1 does a lag of 17 lie, i.e. what
number of significant causations (i.e. causal strengths >
0.1) do we identify using Group Lasso for that lag. A good
lag estimate would be one where we decipher most of the
causations without the estimate being overly conservative.
As we see in the figure, our estimate identifies most of the
important causations without being excessively pessimistic
and hence, seems to be a very good estimate of the true
lag. The 10-fold cross-validation estimate (where average
L1 penalty ≤ 0.1) is 15, which seems to be a little too
optimistic.

Manufacturing: The second real dataset we test our method
on is a chip manufacturing dataset. The dataset has infor-
mation about the measurements taken once a wafer (which
contains around 80-100 chips) is manufactured. There are 30
such measurements which include 17 physical measurements
such as average wafer speed rating etc. and 13 electrical
measurements such as gate length etc. The length of each
of the time series is 1161 (i.e. L = 1161). It is known that
the physical measurements as well as the electrical measure-
ments are causally related amongst themselves. However, the



causal relationships between the physical measurements and
electrical measurements are not known. Given this we have
T = 30(30−1)

2 = 435 and M = 17(17−1)
2 + 13(13−1)

2 = 214.
The exact values of the lags for the M time series are
not known and so we use algorithm 1 to find the lags
(ε = 0.1). It also believed that the lags tend to decay
exponentially with mean around 35 and variance around 5.
From this information we can compute ap, bp, which are the
parameters of the prior.

With this we estimate the lag to be 33. Again, we evaluate
this estimate by checking where on the curve in Figure
2 does a lag of 33 lie, i.e. what number of significant
causations (i.e. causal strengths > 0.1) do we identify using
Group Lasso for that lag. As mentioned before, a good
lag estimate would be one where we decipher most of the
causations without the estimate being overly conservative.
As we see in the figure, our estimate identifies most of the
important causations without being excessively pessimistic
and hence, seems to be a very good estimate of the true
lag. The 10-fold cross-validation estimate (where average L1

penalty ≤ 0.1) is 47, which seems to be overtly pessimistic
in this case.

VI. DISCUSSION

In the previous sections we listed some intuitions that
a good estimator should capture and derived an estimator
consistent with these intuitions. The manner in which we
captured these intuitions in our derivation of the resultant
estimator, may not be the only way of doing so. A bayesian
approach to capture these intuitions rather than a mixture
model approach, might also be plausible. However, in this
case, it is not easy to see how one can derive an estimator
that is efficiently computable and accurate at the same time.

One of the major limitations of our approach was that
we assumed the lags to be independent, which not likely
to be the case in practice. Though we showed that our
estimator is robust to correlations that may exist between
various lags, it would always be desirable if we could relax
this assumption and derive an estimator which takes into
account such correlations. A hint to achieving this might be
to look closely at the procedure of generating data from a
multidimensional beta distribution, described in the experi-
mental section. This procedure generates correlated random
variables (lags), which is what we desire. However, learning
the parameters of this model or specifying priors does not
seem to be a trivial task and needs further investigation.

To summarize, we proposed a novel approach to effi-
ciently and accurately estimate the maximum lag for a
set of causally related time series. This approach is able
to capture prior knowledge that a user might posses in a
principled manner and can be used as a quick diagonostic
to estimate the maximum lag. Given these characteristics
of our estimator along with it being robust to considerable

violations of the independence assumption, we believe, that
it has the potential to be useful in practice.
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