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Motivation

Use Case: Fabrication engineers need to measure the
amount of metal etched on each manufactured wafer
(collection of chips).

Modeling: The engineers are comfortable using decision trees (e.g. CART) to model
their problem because they understand the tool and know how to derive insights from
the solution.

Challenge: Transfer information from complex models with higher accuracy to the
decision trees in a manner that enhances performance and adds valuable insight to
the engineers that is easily consumable by them.



Knowledge Transfer: General Idea
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Applications

Domain Experts Preference: SMEs many times want to use a model they understand
and hence trust. Our methods try to get the most out of these models by significantly
enhancing their performance.

Small Data settings: Small client data where complex neural networks might overfit so
simple models are preferred. However, possible to improve performance if we have a
pretrained network on a large public or private corpora belonging to the same feature
space.

Resource Constrained Settings: In memory and power constrained settings only
small models can be deployed. Here improving small neural networks with the help of
larger neural network can be useful.



Types of Knowledge Transfer (to Simple Models)



Fit to Black-Box Models Predictions

Knowledge Distillation

« Obtain soft predictions from a complex neural network (for different temperature scalings).
 Usethemto regress a simpler neural network with cross-entropy loss.

 Model compression (Bucila et. al, 2006) where you fit to the logits or hard targets is a special
case.

Soft Prediction

input layer

hidden layer 1 hidden layer 2

Distilling the Knowledge in a Neural Network. Hinton et. al. NeurIPS 2014
Interpreting Blackbox Models via Model Extraction. Bastani et. al. 2017
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Sample Reweighting Methods

ProfWeight

« Find area under curve (AUC) based on confidence scores at each probe whose accuracy > o of

the simple model for each example based on complex neural network.
« Weight each training example by corresponding AUC and retrain simple model such as a

decision tree.

e B v A

Confidence profiles

Easy example -?

Hard example E

Probel Probe2 Output

input layer

hidden layer 1 hidden layer 2

Improving Simple Models with Confidence Profiles. Dhurandhar et. al. NeurIPS 2018
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Sample Reweighting Methods

SRatio

« Compute AUC like Profweight (also applicable to other classifiers than NNs).
« Divide by simple models confidence for that sample where the ratio is upper bounded by a

tunable parameter (B) which is its weight for retraining the simple model.

.

Confidence profiles Simple Model Confidences

Easy example

i‘

Hard example
input layer E Sample weights

hidden layer 1 hidden layer 2 Probel Probe2 Output

Enhancing Simple Models by Exploiting What They Already Know. Dhurandhar et. al. ICML 2020
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Local Explanations to Global Understanding

TreeExplainer MAME GBFL
Combining SHAP based models Jointly learning LIME-like models Learning from Contrastive Explanations

Salary =< 60K
AND

Debt >= 10K

\ 4

Loan Denied
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From local explanations to global understanding with explainable AI for trees. Model Agnostic Multilevel Explanations. Learning Global Transparent Models Consistent
Lundberg et. al, Nat. Mach. Intl. 2020 Ramamurthy et. al, NeurIPS 2020 with Local Contrastive Explanations.
Pedapati et. al, NeurIPS 2020
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Sample Reweighting Methods



12

Sample Reweighting Methods

What are Probes?

» Probes are logistic classifiers i.e. a linear model with bias followed by softmax.

« We train them on intermediate representations of a neural network (NN) keeping the weights
of the NN fixed.

P(y=7) = 0.65 P(y=7)=0.8

e R v A

output layer P=7)=0.9

input layer
hidden layer 1 hidden layer 2

Understanding intermediate layers using linear classifier probes. G. Alain and Y. Bengio, arXiv preprint arXiv:1610.01644, 2016
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Sample Reweighting Methods

ProfWeight

« Find area under curve (AUC) based on confidence scores at each probe whose accuracy > o of

the simple model for each example based on complex neural network.
« Weight each training example by corresponding AUC and retrain simple model such as a

decision tree.

e B v A

Confidence profiles

Easy example -?

Hard example E:

Probel Probe2 Output

input layer

hidden layer 1 hidden layer 2

Improving Simple Models with Confidence Profiles. Dhurandhar et. al. NeurIPS 2018
https://www.kdnuggets.com/2020/09/deep-learning-dream-accuracy-interpretability-single-model.html
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Algorithm 1 ProfWeight
Input: & unit neural network N, learning algorithm for simple model Ls, dataset Dy used to
train N, dataset Ds = {(z1,%1). ... (Tm,¥m)} to train a simple model and margin parameter a.

1) Attach probes P, ..., P to the k units of V.

2) Train probes based on Dy and obtain errors ey, ..., e on Dg. {There is no backpropagation of
gradients here to the hidden units/layers of N}

3) Train the simple model S « Ls(Ds, 3, 1,») and obtain its error es.{S is obtained by unweighted
training. 1,, denotes a m dimensional vector of 1s.}

4) Let [I + {u | ey < es — a}{{I contains indices of all probes that are more accurate than the
simple model § by a margin a on Dg.}

5) Compute weights w using Algorithm 2 or 3 for AUC or neural network, respectively.

6) Obtain simple model Sy 3 < Ls 3(Dg, 3, w) {Train the simple model on Dg along with the
weights w associated with each input.}

return S, 3
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5
Ideally (ProfWeight Version 2),

5% = Sye g« = minmin E [A (S z(z),y)]

wcl BcB
Function (eg. NN) of probes weights Simple model parameters

1. Minimize loss of simple model (Bs) for current weights.
2. For given parameters of the simple model minimize over the weights (w).
3. Repeat steps 1 and 2 until convergence or max iterations.
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In practice,

Problem: Weights may all go to zero

Solution: Add regularization R(w) = (£, wi — 1)

5% = S4. g« = minmin E [A (5S4 g(x),y)!
A weC AeB [A( (). y)]

Subjectto: R(w) = (23" wi —1)?

m -—-H‘ l”!
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Theoretical Justification

Theorem 1. Ep, )y [war (X, y)] = 1 implies that wyy: (x, y) = JJ—:—I;:I"IE‘I?;I.

It is well-known that the error of the performance of the best classifier (Bayes optimal) on a distribution
of class mixtures is the total variance distance between them. That is:

Lemma 2. [8] The error of the Baves optimal classifier trained on a uniform mixture of two class

distributions is given by: Il]ﬂil’lzﬂ[_[.-m[:l‘._ y)] = 1 — 1 D1v(P(x|y = 1), P(x|y = 0)) where L(-)

is the 0., 1 loss function and @ is parameterization over a class of classifiers that includes the Baves

optimal classifier. DTy is the total variation distance berween two distributions. P(x|y) are the
class distributions in dataset 1.

From Lemma 2]and Theorem[1] it is clear that:

min . Efj [T.L'MFI[K,}-’}_[.-ﬂf_K,y}] - -DT\-r(P(xlly — lj P[}{ly — ﬂ]} (2)

M'0st. Ep [wh]=1

bl | =
b | =



Experiments

Dataset:
CIFAR-10

Complex Model:

18 Unit Resnet

Simple Models:
3 Unit Resnet
5 Unit Resnet
7 Unit Resnet
9 Unit Resnet

Performance
Improvement:
3-4%

SM-3 SM-5 SM-7 SM-9
Standard 73.15(+ 0.7) 75.78(+0.5) | 78.76(+0.35) 79.9(%0.34)
ConfWeight 76.27 (£0.48) | 78.54 (£0.36) | 81.46(%0.50) | 82.09 (0.08)
Distillation 65.84(+0.60) | 70.09 (+0.19) | 73.4(4+0.64) | 77.30 (+0.16)
ProfWeight“¢“"V | 77.52 (£0.01) | 78.24(%0.01) | 80.16(%=0.01) | 81.65 (%0.01)
ProfWeight*““ | 76.56 (£0.62) | 79.25(%0.36) | 81.34(%0.49) | 82.42 (+0.36)

Performance of Information Transfer Methods - CIFAR10
T T

T
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g3 | Conf-Weight
Distilled- Temp-0.5
Distilled- Temp-40.5
Profweight(==13)
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Experiments

Dataset:
Semi-conductor
manufacturing

(Complex) Neural Network Accuracy

Performance

Complex Model:
6 layer Neural Network

Simple Models:
Decision Tree (CART)

Percentage Accuracy
=~ o s
o o
I |

Improvement: I I I

13% Standard ProfWeightRev ProfWeightA'c ConfWeight Distillation
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Takeaways from ProfWeight

Conceptual Contribution: Upweighting simpler examples (w.r.t. the complex model)
helps (somewhat opposite intuition to boosting, but not really ...).

Algorithmic Contribution: Proposed a method, called ProfWeight, based on the above
conceptual idea that actually accomplishes improvement using Probes.

Theoretical Contribution: We show that the alternating optimization scheme has
justification (although hard to control in practice).



21

Sample Reweighting Methods

SRatio

« Compute AUC like Profweight (also applicable to other classifiers than NNs).
« Divide by simple models confidence for that sample where the ratio is upper bounded by a

tunable parameter (B) which is its weight for retraining the simple model.

.

Confidence profiles Simple Model Confidences

Easy example

i‘

Hard example
input layer E Sample weights

hidden layer 1 hidden layer 2 Probel Probe2 Output

Enhancing Simple Models by Exploiting What They Already Know. Dhurandhar et. al. ICML 2020
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Intuition for SRatio

Covariate Shift

p IS source, g is target
pylx) = qlylx)
But p(x) = q(x)

Typical Soln:
Weight by q(x)/p(x)

Classifiers

p is simple, q is complex
p(x) = q(x)
But p(y[x) # q(ylx)

Our (analogous) Soln:
Weight by q(y|[x)/p(y[x)

(Inverse covariate shift?)
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Theory

Lemma 3.1. Let po(y|x) be the softmax scores on a specific model 0 from simple model space ©.
Let 0° € © be the set of simple model parameters that is obtained from a given learning algorithm
for the simple model on a training dataset. Let p.(y|x) be a pre-trained complex classifier whose

loss is smaller than 0* on the training distribution. Let [3 > 1 be a scalar clip level for the ratio
pe(ylx)/po- (y|x). Then we have:

E|—logpe(ylz)| < E [max (l.min ( Pe(ylx) .13)) log ( : )‘
po-(y|x)

po(y|x)

—E [Iog (min ( Pe(y17) : H))] + log(/3). (1)
po-(y|x)
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Probes: To judge hardness of examples in NNs

Probe 1 Probe 1

input layer
hidden layer 1 hidden layer 2

Improving Simple Models with Confidence Profiles. Dhurandhar et. al. NeurIPS 2018
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Generalization of Probes: Graded Classifiers

Definition (d-graded) Let X x Y denole the input-output space and p(x, y) the joint distribution
over this space. Let (1, (2, ..., (» denote classifiers that output the prediction probabilities for a given
input x € X for the most probable (or true) class y € Y determined by p(y|x). We then say that
classifiers (;, (o, ..., (,, are d-graded for some 4 € (0, 1| and a (measurable) set Z C X if Vr € Z,
(ilx) < Golx) < --- < (,(x), where fr zplx) > A,

Deep Neural Networks: (Linear) probes to intermediate representations.
Boosted Trees: Average predictions of first k trees, first 2k trees, ...

Random Forests: Order trees by accuracy and average predictions of first k trees,
first 2k trees, ...

Other Models: Taking increasing order Taylor approximations or do functional decomposition.
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SRatio Algorithm

Algorithm 1 Our proposed method SRatio.
Input: n (graded) classifiers (. ..., (,,, learning algorithm for simple model Lg, dataset Dg of
cardinality N, performance gap parameter y and maximum allowed ratio parameter /3.

1) Train simple model on Dg, S + Ls(Ds,1x) and compute its (average) prediction error
€5.{Obtain initial simple model where each inpul is given a unit weight. }
2) Compute (average) prediction errors €y, ..., €,, for the n graded classifiers and store the ones that

are at least y more accurate than the simple model ie. / < {i € {1,...n}|es — €& > v}
3) Compute weights for all inputs x as follows: jw(z) = %%I—) where m is the cardinality of

set / and S(x) is the prediction probability/scor€ Tor The true class of the simple model.

4) Setjw(x) < 0, if w(x) > S| {Limit the importance of extremely hard examples for the simple
model. }

5) Retrain the simple model on the dataset Ds with the corresponding learned weights w, S,
LS( Db' ’ W)

6) Return S,
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Comparison with other transfer methods

Distillation NN NN Complex

ProfWeight NN Any Complex

SRatio Any Any Complex and
Simple
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Results

Complex Models
Table 1. Dataset characteristics. where N denotes dataset size and

e Boosted Trees d 1s the dimensionality.
e Random Forests Dataset N d # of Classes
e ResNet 18 Ionosphere 351 34 2
Ovarnan Cancer 216 4000 2
Heart Disease 303 13 2
Simple Models Waveform 5000 40 3
Human Acuvity | 10299 561 6
« Decision tree Musk 6598 166 2
« SVM CIFAR-10 60000 | 32 x 32 10

* ResNet 3,5, 7
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Results

Complex CM Simple | SM Distill-proxy 1 | ConlWeight SRatio
Datasel Model Error  Muodel | Error Error (8M) Error (SM) | Error (SM)
Trec 10.95 10.95 11.42 ERiv
Boosted &.10 +().4 +(.4 +H.8 +0.5
Trees +0).4 SVM 12.38 11.90 11.90 10.47
Jonospbere .6 +(.6 .6 +0.5
Trec 10,95 100.95 11.42 10.42
Random 6.19 +(.4 +0.4 +.4 +0.1
Forest +0).4 SVM 12.38 12.38 12.38 11.42
.6 +.6 .6 +0.3
Trec 15.62 15.62 15.62 15.62
Boosted 4.68 +0.8 +0.8 +1.0 +0.5
Trees +0).4 SVM 1.56 1.56 1.56 1.56
Ovarian Cancer +0.4 +0.4 +0.4 +0.4
Trec 15.62 15.62 14.06 14.04
Random 6.25 +H0.8 +(.8 +0.1 +0.1
Forcst +().8 SVM 1.56 1.56 1.56 1.56
+0.4 +0.4 +0.4 +0.4
Trec 23.88 22.7T 23.33 2277
Boosted 15.55 H).T +0.1 +.3 +0.2
Trees +().6 SVM 17.22 16.67 17.22 16.77
. +().2 +0.3 +().2 +0.2
Heart Discasc Trec | 23.88 23.88 .55 22.77
Random 15 88 H).T .7 +.5 +0.3
Forest 30).6 SVM 17.22 17.22 16.67 16.67
+H().2 +().2 +0.3 +0.2
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Results

Tree 25.43 25.06 25.10 25.06

Boosted 12.96 +(.2 +0.1 +0.1 +0.1
Trees +0.1 SVM 14.70 15.33 14.70 13.72

Wavelorm +0.2 +0.0 +.2 +0.2
Tree 25.43 25.43 25.43 25.06

Random 10.90 +0.2 +0.2 +H).2 +0.1
Forcst +0.1 S5VM 14.70 14.33 14.30 12.72

+0.2 +0.0 +.2 +0.5

Tree 7.93 7.93 7.86 T.15

Boosted .32 +0.2 +0.1 +H).2 +0.1
Trees +{).0) SVM 14.56 15.85 13.92 13.92

Human Activity .1 3.1 +0.1 +0.2
Recognition Tree 7.93 7.23 7.21 6.67
Random 2.4 +0.2 +0.1 +.1 +0.0

Forest +{).0) SVM 14.56 13.92 14.24 13.92

+.1 +0.1 +.1 +0.1

Tree 4.49 f.11 4.45 4.06*

Boosted 4.06 +0.1 +0.1 +.1 +0.1

Trees +{).1 SVM fi.ll 6.29 fi.4l 5.48

Musk +0.1 +0.1 +.1 +0.1
Tree 4.49 4.49 4.47 3.89

Random 2.45 +.1 +(0.1 +.1 +0.1

Forest +0.1 S5VM fi.ll .16 5.96 5.53

+0.1 +0.1 +.1 +0.1
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Results
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Results

Bl Zero weighted points
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Results

Table 3. Below we see the % of training points whose weights based on SRatio have changed by > 1% compared to just considering
the complex model, i.e., ignoring simple model confidences in Step 3 of algorithm 1. This depicts the impact of considering the simple
models confidences in the weighting, which is our main conceptual contribution. Results are averaged over both complex models.

lonosphere oC HD Waveform HAR Musk

Tree SVM Tree SVM Tree SVM Tree SVM Tree SVM Tree SVM

37.40 | 90.65 8.55 6.57 | 92.02 | 99.06 449 99.7 5.9 29.45 7.5 13.93

(£24) | (£ LD [ (£02) | (£1) | (£18) | (£0.1) | (£24) | (£0.1) | (£0.9) | (£1.3) | (£05) | (£0.7)
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Results on CIFAR-10

Table 4. Below we observe the averaged accuracies (%) of simple models SM-3 (3 Res units), SM-5 (5 Res units) and SM-7 (7 Res units)
trained with various weighting methods and distillation. The complex model achieved 84.5% accuracy. Statistically significant best

results are indicated in bold.

SM-3 SM-5 SM-7

Standard | 73.15 (£ 0.7) | 75.78 (£0.5) | 78.76 (0.35)
ConfWeight | 76.27 (+0.48) | 78.54 (£0.36) | 81.46 (+0.50)
Distillation | 65.84 (£0.60) | 70.09 (£0.19) | 73.4 (+0.64)
ProfWeight | 76.56 (£0.51) | 79.25 (£0.36) | 81.34 (+0.49)
SRatio | 77.23 (+0.14) | 80.14 (£0.22) | 81.89 (+0.28)
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Takeaways SRatio

Conceptual Contribution: Simple models can be useful to improve themselves
(without increasing complexity).

Algorithmic Contribution: Proposed a method, called SRatio, based on the above
conceptual idea that actually accomplishes that.

Theoretical Contribution: We show that our weighting scheme is principled as it is a
(tight) upper bound on the simple models expected loss.

Formalization: We propose a notion of delta-graded classifiers which is a formalization
and generalization of the idea of probes.
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Future Work

1. Experiments on more domains and datasets.

2. Try to more deeply understand why the ratio weighting works.

3. Develop other adaptive methods that perform better (viz. multihop methods
(blog to come out Oct. end in kdnuggets)).

4. Develop methods that are also resilient to hardware faults.
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Concluding Remark

Even If you desire just a simple model...

build the most accurate model you can
and
transfer information to the simple model
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Thank you
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Other Directions: Contrastive Explanations

Orig Pred CEM PP CEM PN

HHH :

Explanations based on the Missing: Towards Contrastive Explanatlons
with Pertinent Negatives. Dhurandhar et. al. NeurIPS 2018

observed

:mz

(a) |deviation| ~ 0

Anomaly Attribution with Likelihood Compensation. Ide et. al. 2020

(b) |gradient| ~ 0

Tree Path

(root to leaf)

[PP (top—3)]

Existing Checking Acct. - Existing Checking Acct.

4

Other Installment Plans -di= Other Installment Plans

a

Credit History Foreign Worker

- Credit Amount

-

Credit Amount <& # of Existing Credits

a

Age in Years i}

——lp- Age in Years

a) [PN (top-3)]

Model Agnostic Contrastive Explanations for Structured Data.
Dhurandhar et. al. arxiv 2019

old, male,
not smiling

old, male,
smiling

20 features

+ cheekbones

Generating Contrastive Explanations with Monotonic Attribute Functions.
Russ et. al. arxiv 2019



0 Other Directions

1.

Meta-Methods Local to Global: a) From LIME-like techniques can build a tree of explanations and b)
From contrastive/counterfactual explanations can generate global Boolean features which can be
used to train simple models.

Modeling and Handling Cognitive Biases: We have done some recent work on modeling cognitive
biases and user tested an adaptive time based strategy to debias.

Explaining Similarity Based Classifiers: Feature based and analogy based (new type) explanations.
Causal Disentanglement: Uncovering latents with particular causal structures.

Generating Neighborhoods with Business Rules: For local explainability techniques how do we
generate good neighborhoods that represent business rules well.

Interpretable Strategies: Given a complicated strategy by an agent can we disentangle it into
understandable, but accurate sub-goals.

Explaining Representations: Given an arbitrary representation can I explain it in terms of an
understandable representation.



