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Abstract Cross-validation is one of the most widely used techniques, in estimating the

Generalization Error of classification algorithms. Though several empirical studies have

been conducted, to study the behavior of this method in the past, none of them clearly

elucidate the reasons behind the observed behavior. In this paper we study the behav-

ior of the moments (i.e. expected value and variance) of the cross-validation Error and

explain the observed behavior in detail. In particular, we provide interesting insights

into the behavior of covariance between the individuals runs of cross-validation, which

has significant effects on the overall variance. We study this behavior on three classifi-

cation models which are a mix of parametric and non-parametric models namely, Naive

Bayes Classifier – parametric model, Decision Trees and K-Nearest Neighbor Classifier

– non-parametric models. The moments are computed using closed form expressions

rather than directly using Monte Carlo since the former is shown to be a more viable

alternative. The work in this paper complements the prior experimental work done in

studying this method since it explains in detail the reasons for the observed trends in

the experiments, as opposed to simply reporting the observed behavior.

Keywords Cross-validation · Covariance

1 Introduction

A major portion of the research in Machine Learning is devoted to building classifica-

tion models. The errors that these models make on the entire input i.e. expected loss

over the entire input is defined as their Generalization Error (GE). Ideally, we would

want to choose the model with the lowest GE. In practice though, we do not have the

entire input and consequently we cannot compute the GE. Nonetheless, a number of

methods have been proposed namely, hold-out-set, akaike information criteria, bayes
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information criteria, cross-validation etc. which aim at estimating the GE from the

available input.

In this paper we focus on cross-validation, which is arguably one of the most popular

GE estimation methods. In v-fold cross-validation the dataset of size N is divided into

v equal parts. The classification model is trained on v − 1 parts and tested on the

remaining part. This is performed v times and the average error over the v runs is

considered as an estimate of GE. This method is known to have low variance [15,18]

for about 10-20 folds and is hence commonly used for small sample sizes.

Most of the experimental work on cross-validation focusses on reporting observa-

tions [15,18] and not on understanding the reasons for the observed behavior. Moreover,

modeling the covariance between individual runs of cross-validation is not a straight-

forward task and is hence not adequately studied, though it is considered to have a

non-trivial impact on the behavior of cross-validation. The work presented in [1,16]

address issues related to covariance, but it is focussed on building and studying the be-

havior of estimators for the overall variance of cross-validation. In [16] the estimators of

the moments of cross-validation error (CE) are primarily studied for the estimation of

mean problem and in the regression setting. The goal of this paper is quite different. We

do not wish to build estimators for the moments of CE rather we want to experimen-

tally observe the behavior of the moments of cross-validation and provide explanations

for the observed behavior in the classification setting. The classification models we

run these experiments on consist of the Naive Bayes Classifier (NBC) – a parametric

model and two non-parametric models namely, K-Nearest Neighbor Classifier (KNN)

and Decision Trees (DT). We choose a mix of parametric and non-parametric mod-

els so that their hypothesis spaces are varied enough. Additionally, these models are

widely used in practice. The moments however, are computed not using Monte Carlo

directly but using the expressions given in [8,7,6] which are also given in the appendix

of this paper. The advantage of using these closed form expressions is that they are

exact formulas (not approximations) for the moments of CE and hence these moments

can be studied accurately with respect to any chosen distribution. In fact as it turns

out approximating certain probabilities in these expressions also leads to significantly

higher accuracy in computing the moments when compared with directly using Monte

Carlo. The reason for this is that the parameter space of the individual probabilities

that need to be computed in these expressions is much smaller than the space over

which the moments have to be computed at large and hence directly using Monte

Carlo to estimate the moments can prove to be highly inaccurate in many cases [8,

7]. Another advantage of using the closed form expressions is that they give us more

control over the settings we wish to study.

In summary, the goal of the paper is to empirically study the behavior of the mo-

ments of CE (plotted using the expressions in the Appendix) and to provide interesting

explanations for the observed behavior. As we will see, when studying the variance of

CE, the covariance between the individual runs plays a decisive role and hence un-

derstanding its behavior is critical in understanding the behavior of the total variance

and consequently the behavior of CE. We provide insights into the behavior of the

covariance apropos increasing sample size, increasing correlation between the data and

the class labels and increasing number of folds.

In the next section we review some basic definitions and previous results that are

relevant to the computation of the moments of CE. In Section 3 we provide an overview

of the expressions customized to compute the moments of CE for the three classification

algorithms namely; DT, NBC and KNN. In Section 4 we conduct a brief literature
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survey. In Section 5 – the experimental section, we provide some keen insights into the

behavior of cross-validation, which is our primary goal. We discuss the implications of

the study conducted and summarize the major developments in the paper in Section

6.

2 Preliminaries

Probability distributions completely characterize the statistical behavior of a random

variable. Moments of a random variable give us information about its probability distri-

bution. Thus, if we have knowledge of the moments of a random variable we can make

statements about its behavior. In some cases characterizing a finite subset of moments

may prove to be a more desired alternative than characterizing the entire distribution

which can be computationally expensive. By employing moment analysis and using

linearity of expectation efficient generalized expressions for the moments of GE and

relationships between the moments of GE and the moments of CE were derived in [8].

In this section we review the relevant results which are used in the present study of

CE.

Consider that N points are drawn independently and identically (i.i.d.) from a

given distribution and a classification algorithm is trained over these points to produce

a classifier. If multiple such sets of N i.i.d. points are sampled and a classification

algorithm is trained on each of them we would obtain multiple classifiers. Each of

these classifiers would have its own GE, hence the GE is a random variable defined

over the space of classifiers which are induced by training a classification algorithm

on each of the datasets that are drawn from the given distribution. The moments of

GE computed over this space of all possible such datasets of size N , depend on three

things: 1) the number of samples N , 2) the particular classification algorithm and 3)

the given underlying distribution. We denote by D(N) the space of datasets of size

N drawn from a given distribution. The moments taken over this new distribution

– the distribution over the space of datasets of a particular size, are related to the

moments taken over the original given distribution which is over individual inputs in

the following manner,

ED(N)[F(ζ)]

= E(X×Y)×(X×Y)×...×(X×Y)[F(ζ)]

=
X

(x1,y1)∈X×Y

X
(x2,y2)∈X×Y

...
X

(xN ,yN )∈X×Y
P [X1 = x1 ∧ Y1 = y1 ∧ · · · ∧XN = xN ∧ YN = yN ]·

F(ζ(x1, . . . , xN ))

=
X

(x1,y1)∈X×Y

X
(x2,y2)∈X×Y

...
X

(xN ,yN )∈X×Y

 
NY

i=1

P [Xi = xi ∧ Yi = yi]

!
F(ζ(x1, . . . , xN ))

where F(.) is some function that operates on a classifier ζ and ζ is a classifier obtained

by training on a particular dataset belonging to D(N). X and Y denote the input and

output space respectively. X1, ..., XN denote a set of N i.i.d. random variables defined

over the input space and Y1, ..., YN denote a set of N i.i.d. random variables defined

over the output space. For simplicity of notation we denote the moments over the space

of the new distribution rather than over the space of the given distribution.
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Notice that in the above formula, ED(N)[F(ζ)] was expressed in terms of product

of probabilities since the independence of samples x1, y1, . . . , xn, yn allows for the fac-

torization of P [X1 = x1 ∧ Y1 = y1 ∧ · · · ∧ XN = xN ∧ YN = yN ]. By instantiating

the function F(.) with GE(.), we have a formula for computing moments of GE. The

problem with this characterization is that it is highly inefficient (exponential in the

size of the input-output space). Efficient characterizations for computing the moments

were developed in [8] which we will shortly review. The characterization reduces the

number of terms in the moments from an exponential in the input-output space to

linear for the computation of the first moment and quadratic for the computation of

the second moment.

We define random variables of interest namely, hold-out error, cross-validation er-

ror and generalization error. We also define moments of the necessary variables. In the

notation used to represent these moments we write the probabilistic space over which

the moments are taken as subscripts. If no subscript is present, the moments are taken

over the original input-output space. This convention is strictly followed in this par-

ticular section. In the remaining sections we drop the subscript for the moments since

the formulas can become tedious to read and the space over which these moments are

computed can be easily deciphered from the context.

Hold-out Error (HE): The hold-out procedure involves randomly partitioning the

dataset D into two parts Dt – the training dataset of size Nt and Ds – the test datasets

of size Ns. A classifier is built over the training dataset and the error is estimated as

the average error over the test dataset. Formally,

HE =
1

Ns

X
(x,y)∈Ds

λ(ζ(x), Y (x))

where Y (x) ∈ Y is a random variable modeling the true class label of the input x, λ(., .)

is a 0-1 loss function which is 0 when its 2 arguments are equal and is 1 otherwise. ζ is

the classifier built on the training data Dt with ζ(x) being its prediction on the input x.

Cross Validation Error (CE): v-fold cross validation consists in randomly parti-

tioning the available data into v chunks and then training v classifiers using all data

but one chunk and then testing the performance of the classifier on this chunk. The

estimate of the error of the classifier built from the entire data is the average error over

the chunks. Denoting by HEi the hold-out error on the ith chunk of the dataset D,

the cross-validation error is given by,

CE =
1

v

vX
i=1

HEi

Generalization Error (GE): The GE of a classifier ζ w.r.t. the underlying distribu-

tion over the input-output space X × Y is given by,

GE(ζ) = E [λ(ζ(x), Y (x))]

= P [ζ(x) 6=Y (x)]

where x ∈ X is an input and Y (x) ∈ Y the true class label of the input x. It is thus

the expected error over the entire input.
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Moments of GE: Given an underlying input-output distribution and a classifica-

tion algorithm, by generating N i.i.d. datapoints from the underlying distribution and

training the classification algorithm on these datapoints we obtain a classifier ζ. If we

sample multiple (in fact all possible) such sets of N datapoints from the given distri-

bution and train the classification algorithm on each of them, we induce a space of

classifiers trained on a space of datasets of size N denoted by D(N). Since the pro-

cess of sampling produces a random sample of N datapoints, the classifier induced by

training the classification algorithm on this sample is a random function. The general-

ization error w.r.t. the underlying distribution of classifier ζ, denoted by GE(ζ) is also

a random variable that can be studied and whose moments are given by,

ED(N)[GE(ζ)] =
X
x∈X

P [x]
X
y∈Y

PD(N) [ζ(x)=y] P [Y (x) 6=y] (1)

ED(N)×D(N)[GE(ζ)GE(ζ′)] =
X
x∈X

X
x′∈X

P [x] P
ˆ
x′
˜
·

X
y∈Y

X
y′∈Y

PD(N)×D(N)

ˆ
ζ(x)=y ∧ ζ′(x′)=y′

˜
·

P [Y (x) 6=y] P
ˆ
Y (x′) 6=y′

˜
(2)

where X 1 and Y denote the space of inputs and outputs respectively. Y (x) represents

the true output2 for a given input x. P [x] and P
ˆ
x′
˜

represent the probability of

having a particular input. ζ′ in equation 2 is a classifier like ζ (may be same or differ-

ent) induced by the classification algorithm trained on a sample from the underlying

distribution. PD(N) [ζ(x)=y] P [Y (x) 6=y] represents the probability of error. The first

probability in the product PD(N) [ζ(x)=y], depends on the classification algorithm

and the data distribution that determines the training dataset. The second probability

P [Y (x) 6=y], depends only on the underlying distribution. Also note that both these

probabilities are actually conditioned on x but we omit writing the probabilities as

conditionals explicitly since it is an obvious fact and it makes the formulas more read-

able. ED(N)[.] denotes the expectation taken over all possible datasets of size N drawn

from the data distribution. The terms in equation 2 also have similar semantics but

are applicable to pairs of inputs and outputs. Thus, by being able to compute each of

these probabilities we can compute the moments of GE.

Moments of CE: The process of sampling a dataset (i.i.d.) of size N from a probability

distribution and then partitioning it randomly into two disjoint parts of size Nt and

Ns, is statistically equivalent to sampling two different datasets of size Nt and Ns i.i.d.

from the same probability distribution. The first moment of CE is just the expected

error of the individual runs of cross-validation. In the individual runs the dataset is

partitioned into disjoint training and test sets. Dt(Nt) and Ds(Ns) denote the space of

training sets of size Nt and test sets of size Ns respectively. Hence, the first moment of

CE is taken w.r.t. the Dt(Nt)×Ds(Ns) space which is equivalent to the space obtained

by sampling datasets of size N = Nt + Ns followed by randomly splitting them into

1 If input is continuous we replace sum over X by integrals in the above formulas, everything
else remaining same.

2 Y(.) may or may not be randomized.
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training and test sets. In the computation of variance of CE we have to compute the

covariance between any two runs of cross-validation (equation 3). In the covariance we

have to compute the following cross moment, E
Dij

t ( v−2
v N)×Di

s( N
v )×Dj

s( N
v )

ˆ
HEiHEj

˜
where Dij

t (k) is the space of overlapped training sets of size k in the ith and jth run

of cross-validation (i, j ≤ v and i 6= j), Df
s (k) is the space of all test sets of size k

drawn from the data distribution in the f th run of cross-validation (f ≤ v), Df
t (k) is

the space of all training sets of size k drawn from the data distribution in the f th run

of cross-validation (f ≤ v) and HEf is the hold-out error of the classifier in the f th

run of cross-validation. Since the cross moment considers interaction between two runs

of cross-validation it is taken over a space consisting of training and test sets involving

both the runs rather than just one. Hence, the subscript in the cross moments is a

cross product between 3 spaces (overlapped training sets between two runs and the

corresponding test sets). The other moments in the variance of CE are taken over the

same space as the expected value. The variance of CE is given by,

V ar(CE) =
1

v2
[

vX
i=1

V ar(HEi) +

vX
i,j,i6=j

Cov(HEi, HEj)]

=
1

v2
[

vX
i=1

(EDi
t(

v−1
v N)×Di

s( N
v )[HE2

i ]− E2
Di

t(
v−1

v N)×Di
s( N

v )
[HEi])

+

vX
i,j,i6=j

(E
Dij

t ( v−2
v N)×Di

s( N
v )×Dj

s( N
v )

ˆ
HEiHEj

˜
− EDi

t(
v−1

v N)×Di
s( N

v )[HEi]EDj
t (

v−1
v N)×Dj

s( N
v )

[HEj ]]

The reason we introduced moments of GE previously is that, in [8] relationships

were drawn between these moments and the moments of CE. Thus, using the expres-

sions for the moments of GE and the relationships which we will state shortly, we have

expressions for the moments of CE.

The relationship between the expected values of CE and GE is given by,

EDt( v−1
v N)×Ds( N

v ) [CE] = EDt( v−1
v N) [GE(ζ)]

where v is the number of folds, Dt(k) is the space of all training sets of size k that are

drawn from the data distribution and Ds(k) is the space of all test sets of size k drawn

from the data distribution.

In the computation of variance of CE we need to find the individual variances and

the covariances. In [8] it was shown that

EDi
t(

v−1
v N)×Di

s( N
v )[HEi] = EDt( v−1

v N)×Ds( N
v ) [CE] ∀i ∈ {1, 2, ..., v} and hence the

expectation of HEi can be computed using the above relationship between the expected

CE and expected GE. Notice that the space of training and test datasets over which

the moments are computed is the same for each fold (since the space depends only on

the size and all the folds are of the same size) and hence the corresponding moments

are also the same. To compute the remaining terms in the variance we use the following

relationships.

The relationship between the second moment of HEi ∀i ∈ {1, 2, ..., v} and the

moments of GE is given by,
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EDi
t(

v−1
v N)×Di

s( N
v )[HE2

i ] =
v

N
EDt(

v−1
v N) [GE(ζ)] +

N − v

N
EDt(

v−1
v N)

h
GE(ζ)2

i
The relationship between the cross moment and the moments of GE is given by,

E
Dij

t ( v−2
v N)×Di

s( N
v )×Dj

s( N
v )

ˆ
HEiHEj

˜
= E

Dij
t ( v−2

v N)

h
GE(ζi)GE(ζj)

i
where ζf is the classifier built in the f th run of cross-validation. All the terms in the

variance can be computed using the above relationships.

3 Overview of the customized expressions

In Section 2 we provided the generalized expressions for computing the moments of

GE and consequently moments of CE. In particular the moments we compute are:

E[CE] and V ar(CE). The formula for the variance of CE can be rewritten as a convex

combination of the variance of the individual runs and the covariance between any two

runs. Formally,

V ar(CE) =
1

v
V ar(HE) +

v − 1

v
Cov(HEi, HEj) (3)

where HE is the error of any of the individual runs and HEi and HEj are the errors

of the ith and jth runs. Since the moments are over all possible datasets the variances

and covariances are same for all single runs and pairs of runs respectively and hence

the above formula.

In the expressions for the moments the probabilities P [ζ(x)=y] and P
ˆ
ζ(x)=y ∧ ζ′(x′)=y′

˜
are the only terms that depend on the particular classification algorithm. Customizing

the expressions for the moments equates to finding these probabilities. The other terms

in the expressions are straightforward to compute from the data distribution. We now

give a high level overview of how the two probabilities are customized for DT, NBC

and KNN. The precise details are given in Appendix A.

1. DT: To find the probability of classifying an input into a particular class (P [ζ(x)=y]),

we have to sum the probabilities over all paths (path is a set of nodes and edges from

root to leaf in a tree) that include the input x and have majority of the datapoints

lying in them belong to class y, in the set of possible trees. These probabilities can

be computed by fixing the split attribute selection method, the stopping criteria

deployed to curb the growth of the tree and the data distribution from which an in-

put is drawn. The probability P
ˆ
ζ(x)=y ∧ ζ′(x′)=y′

˜
can be computed similarly,

by considering pairs of paths (one for each input) rather than a single path. The

details are given in Appendix A.1.

2. NBC: The NBC algorithm assumes that the attributes are independent of each

other. An input is classified into a particular class, if the product of the class

conditionals of each attribute for the input multiplied by the particular class prior is

greater than the same quantity computed for each of the other classes. To compute

P [ζ(x)=y], the probability of the described quantity for input x belonging to class

y being greater than the same quantity for each of the other classes is computed.

The probability for the second moment can be computed analogously by considering

pairs of inputs and outputs. The details are given in Appendix A.2.
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3. KNN: In KNN to compute P [ζ(x)=y], the probability that majority of the K

nearest neighbors of x belong to class y is found. In the extreme case when K=N

(K is the dataset size) the probability of the empirical prior of class y being greater

than the empirical priors of the other classes is computed.In this case the majority

classifier and KNN behave the same way. To compute P
ˆ
ζ(x)=y ∧ ζ′(x′)=y′

˜
the

probability that the majority of the K nearest neighbors of x belong to class y and

majority of the K nearest neighbors of x′ belong to class y′ is found. The details

are given in Appendix A.3.

By using the customized expressions we can accurately study the behavior of cross-

validation. This method is more accurate than directly using Monte-Carlo to estimate

the moments since the parameter space of the individual probabilities that need to be

estimated is much smaller than the entire space over which the moments are computed.

4 Related Work

There is a large body of both experimental and theoretical work that addresses the

problem of studying cross validation. In [9] cross validation is studied in the linear

regression setting with squared loss and is shown to be biased upwards in estimating

the mean of the true error. More recently the same author in [10], compared parametric

model selection techniques namely, covariance penalties with the non-parametric cross

validation and showed that under appropriate modeling assumptions the former is

more efficient than cross validation. [3] showed that cross validation gives an unbiased

estimate of the first moment of GE. Though cross validation has desired characteristics

with estimating the first moment, Breiman stated that its variance can be significant.

In [17] heuristics are proposed to speed up cross-validation which can be an expensive

procedure with increasing number of folds. In [23] a simple setting was constructed in

which cross-validation performed poorly. [12] refuted this proposed setting and claimed

that a realistic scenario in which cross-validation fails is still an open question.

The major theoretical work on cross-validation is aimed at finding bounds. The

current distribution free bounds [5,14,2,11,22] for cross-validation are loose with some

of them being applicable only in restricted settings such as bounds that rely on al-

gorithmic stability assumptions. Thus, finding tight PAC (Probably Approximately

Correct) style bounds for the bias/variance of cross-validation for different values of v

is still an open question [13].

Though bounds are useful in their own right they do not aid in studying trends

of the random variable in question,3 in this case CE. Asymptotic analysis can assist

in studying trends [21,20] with increasing sample size, but it is not clear when the

asymptotics come into play. This is where empirical studies are useful. Most empirical

studies on cross-validation indicate that the performance (bias+variance) is the best

around 10-20 folds [15,3] while some others [19] indicate that the performance improves

with increasing number of folds. In the experimental study that we conduct using

closed form expressions, we observe both of these trends but in addition we provide

lucid elucidations for observing such behavior.

3 unless they are extremely tight.
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Y
X y y1 2

x

x

x

2

1

n pn1 p n2

p2 p22

p12p11

1

N

Fig. 1 The above figure depicts the data generation model used in the experiments. X and
Y denote the input and output space respectively. pij where i ∈ {1, ..., n} and j ∈ {1, 2} is the

probability of sampling the datapoint (xi, yj) such that
Pn

i=1

P2
j=1 pij = 1. Given a sample

size N and these probabilities we have a multinomial data generation model.

5 Experiments

In this section we study cross-validation by explaining its behavior in detail. Especially

noticeable, is the behavior of the covariance of cross-validation which plays a significant

role in the overall variance. The role of covariance is significant since in the expression

for the overall variance given by V ar(CE) = 1
v V ar(HE) + v−1

v Cov(HEi, HEj) the

weighting (v−1
v ) of the covariance is always greater than that for the individual vari-

ances (except for v = 2 when its equal) and this weight increases as the number of folds

increases. In the studies we perform, we observe the behavior of the E[CE], V ar(HE)

(individual variances), Cov(HEi, HEj) (covariances), V ar(CE) (total variance) and

E2[CE]+V ar(CE) (total mean squared error)4 with varying amounts of the correlation

between the input attributes and the class labels for the three classification algorithms.

Data Generation Model: The data generation model we use in the experiments is

a multinomial as shown in figure 4. The details regarding the various parameters are

as follows.

Number of Classes, Number of Attribute Values and Dimensionality: We fix the

number of classes to 2. The number of distinct inputs n depends on the dimensionality

of the input space and the number of distinct values that each attribute can take. More

precisely, n = md where d is the dimensionality and m is the number of distinct val-

ues of each attribute. The results reported are averaged over multiple dimensionalities

(d = 3, d = 5, d = 8 and d = 10) with each attribute having multiple splits/values

(m = 2 and m = 3) for all three algorithms (i.e. NBC, DT and KNN). Additionally,

for the KNN algorithm the results are also averaged over multiple values of K (2, 5

and 8).

Input-Output Correlation: In the studies that follow the pij ’s where i ∈ {1, ..., n}
and j ∈ {1, 2} are varied and the amount of correlation between the input attributes

4 We drop the notation which shows the space over which the moments are taken for read-
ability purposes.



10

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

No. of Folds

V
ar

(H
E

)

N = 100

Correlation = 0.03

KNN

NBC, DT

Fig. 2 Var(HE) for small sample size and
low correlation.

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

0.12

No. of Folds

V
ar

(H
E

)

N = 100

Correlation = 0.55

KNN

NBC

DT

Fig. 3 Var(HE) for small sample size and
medium correlation.

0 20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

No. of Folds

V
ar

(H
E

)

N = 100

Correlation = 0.82

NBC

DT

KNN
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high correlation.
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Fig. 5 Var(HE) for larger sample size and
low correlation.

and the class labels is computed for each set of pij ’s using the Chi-square test [4]. In par-

ticular, we define input-output correlation to be as follows: Input-output correlation =P
i

(pij−tij)
2

tij
, where tij = (

Pn
r=1 prj)(

P2
s=1 pis) is the product of the marginals for

the ijth entry in the table in figure 4. The exact values of the probabilities for the

different correlations are given in the appendix.
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Dataset Size N : We initially set the dataset size to 100 and then increase it to a

1000, to observe the effect that increasing dataset size has on the behavior of these

moments. The reason we choose these dataset sizes is that for the dataset sizes below

and around 100 the behavior is qualitatively similar to that at 100. For larger dataset

sizes say above and around 1000 the behavior is qualitatively similar to that at 1000.

Secondly, the shift in trends in the behavior of cross-validation with increasing dataset

size is clearly noticeable for these dataset sizes. Moreover, cross-validation is primarily

used when dataset sizes are small since it has low variance and high computational cost

(compared with hold-out set for example) and hence studying it under these circum-

stances seems sensible. The experiments reveal certain interesting facts and provide

insights that assist in better understanding cross-validation.

5.1 Observations

We now explain the interesting trends that we observe through these experiments. The

interesting insights are mainly linked to the behavior of the variance (in particular

covariance) of CE. However, for the sake of completeness we also discuss the behavior

of the expected value of CE.

5.1.1 Variance

Figures 2 to 7 are plots of the variances of the individual runs of cross-validation.

Figures 8 to 13 depict the behavior of the covariance between any two runs of cross-

validation. Figures 14 to 19 showcase the behavior of the total variance of cross-

validation, which as we have seen is in fact a convex combination of the individual

variance and the pair-wise covariance.
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Linear behavior of Var(HE): In Figures 2 to 7 we see that the individual variances

practically increase linearly with the number of folds. This linear increase occurs since,

the size of the test set decreases linearly5 with the number of folds; and we know that

CE is the average error over the v runs where the error of each run is the sum of the

zero-one loss function evaluated at each test point normalized by the size of the test

set. Since the test points are i.i.d. (independent and identically distributed), so are the

5 more precisely expected test set size decreases linearly.
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corresponding zero-one loss functions and from theory we have that the variance of a

random variable which is the sum of T i.i.d. random variables having variance σ2 < ∞,

is given by σ2

T .

V-shaped behavior of Cov(HEi, HEj) : In Figure 8 we observe that the covariance

first decreases as the number of folds increases from 2 to 10-20 and then increases as the

number of folds approach N (called Leave-one-out (LOO) validation). This behavior

has the following explanation. At low folds, for example at v = 2 the test set for one

run is the training set for the other and vice-versa. Since each datapoint is in either

one of the two partitions but cannot be in both, the partitions can be seen to have

a kind of negative correlation. What we mean by this is that noticing the probability

of any datapoint lying in any one of the partitions is 1
2 and if P1 and P2 are the

random variables denoting the number of datapoints in each partition then given that

the total dataset size is N , the covariance between P1 and P2 is negative. In fact the

covariance in this case is given by, −N
4 . This implies that the test sets for the two

runs are negatively correlated. However, the two partitions are also training sets for

the two runs and hence the classifiers induced by them are also negatively correlated

in terms of their prediction on individual datapoints. Since, the test sets as well as

the classifiers are negatively correlated, the errors of these classifiers are positively

correlated. In other words, these classifiers make roughly the same number of mistakes

on the respective test sets. The reason for this is, if the two partitions are similar (i.e.

say they are representative samples of the distribution) then the classifiers are similar

and so are the test sets and hence both of their errors are low. When the two samples

are highly dissimilar (i.e. say one is representative the other is not) the classifiers built

are dissimilar and so are the test sets. Hence, the error that both of these classifiers

make on their test sets which is the training set of the other classifier are high. Thus,
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irrespective of the level of similarity between the two partitions the correlation between

the errors of the classifiers induced by them is high.

As the number of folds increases this effect reduces as the classifiers become more

and more similar due to the overlap of training sets while the test sets become in-

creasingly unstable as they become smaller. The latter (i.e. at high folds) increase in

covariance in Figure 8 is due to the case where LOO fails. If we have a majority clas-

sifier and the dataset contains an equal number of datapoints from each class, then
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LOO would estimate 100% error. Since each run would produce this error the errors of

any two runs are highly correlated. This effect reduces as the number of folds reduces.

The classification algorithms we have chosen, classify based on majority in their final

inference step i.e. locally they classify datapoints based on majority. At low input-

output correlation as in Figure 8, the probability of having equal number datapoints

from each class for each input is high i.e. in figure 4, the probability of Ni1 = Ni2

∀i ∈ {1, ..., n} is high, where Nij is the number of copies of the datapoint (xi, yj) in

the multinomial. Hence, at high folds the covariance increases. Consequently, we have

the V-shaped graphs as in Figure 8 which are a combination of the first effect and this

second effect.

L-shaped behavior of Cov(HEi, HEj) : As we increase the correlation between the

input attributes and the class labels seen in Figures 9, 10 the initial effect which raises

the covariance is still dominant, but the latter effect (equal number of datapoints from

each class for each input) has extremely low probability and is not significant enough to

increase the covariance at high folds. As a result, the covariance drops with increasing

v.

On increasing the dataset size the covariance does not increase as much (in fact

reduces in some cases) in Figures 11, 12 and 13 at high folds. In Figure 11 though

the correlation between the input attributes and class labels is low, the probability

of having equal number datapoints from each class is low since the dataset size has

increased. For a given set of parameters the probability of a particular event occurring

is essentially reduced (never increased) as the number of events is increased (i.e. N

increases), since the original probability mass has now to be distributed over a larger

set. Hence, the covariance in Figure 11 drops as the number of folds increases. The

behavior observed in Figures 12 and 13 has the same explanation as that for Figures
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9 and 10 described before.

Finally, the covariance has a V-shape for low input-output correlations and low

dataset sizes where the classification algorithms classify based on majority at least at

some local level. In the other cases the covariance is high initially and then reduces

with increasing number of folds.
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Behavior of Var(CE) similar to covariance: Figures 14 to 19 represent the behav-

ior of the total variance of CE. We know that total variance is given by, V ar(CE) =
1
v V ar(HE) + v−1

v Cov(HEi, HEj). We have also seen from Figures 2 to 7 that the

V ar(HE)’s vary almost linearly with respect to v. In other words, 1
v V ar(HE) is prac-

tically a constant with changing v. Hence, the trends seen for the total variance are

similar to those observed for the pairwise covariances with an added shift. Thus, at low

correlations and low sample sizes the variance is minimum not at the extremeties but
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somewhere in between, say around 10-20 folds as seen in 14. In other cases, the total

variance reduces with increasing number of folds.

5.1.2 Expected Value

Figures 20 to 22 depict the behavior of the expected value of CE for different amounts

of correlation between the input attributes and the class labels and for two different

sample sizes. The behavior of the expected value at medium and high correlations for

small and large sample sizes is the same and hence we plot these scenarios only for

small sample sizes as shown in Figure 22. From the figures we observe that as the

correlation increases the expected CE reduces. This occurs since the input attributes

become increasingly indicative of a particular class. As the number of folds increase the

expected value reduces since the training set sizes increase on expectation, enhancing

classifier performance.

5.1.3 Expected value square + Variance

Figures 23 to 28 depict the behavior of CE. In Figure 23 we observe that the best

performance of cross-validation is around 10-20 folds. In the other cases, the behavior

improves as the number of folds increases. In Figure 23 the variance at high folds is

large and hence the above sum is large for high folds. As a result we have a V-shaped

curve. In the other Figures the variance is low at high folds and so is the expected

value and hence the performance improves as the number of folds increases.
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6 Conclusion

In summary, we observed the behavior of cross-validation under varying amounts of

input-output correlation, varying sample size and with varying number of folds. We

observed that at low correlations and for low sample sizes (a characteristic of many

real life datasets) 10-20 fold cross-validation was the best while for the other cases

increasing the number of folds helped enhance performance. Additionally, we provided

in depth explanations for the observed behavior and commented that the explanations

for the behavior of covariance were especially relevant to classification algorithms that

classify based on majority at a global level (e.g. majority classifiers) or at least at some

local level (e.g. DT classification at the leaves). The other interesting fact was that all

the experiments and the insights were a consequence of the theoretical formulas that

were derived previously. We hope that non-asymptotic studies like the one presented

will assist in better understanding popular prevalent techniques, in this case cross-

validation.
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Appendix A.

The moments of CE are related to the moments of GE and hence if the moments of GE are
known moments of CE can be computed. The moments of GE are given by,

ED(N)[GE(ζ)] =
X
x∈X

P [x]
X
y∈Y

PD(N) [ζ(x)=y] P [Y (x) 6=y]

ED(N)×D(N)[GE(ζ)GE(ζ′)] =
X
x∈X

X
x′∈X

P [x] P
ˆ
x′

˜
·

X
y∈Y

X
y′∈Y

PD(N)×D(N)

ˆ
ζ(x)=y ∧ ζ′(x′)=y′

˜
·

P [Y (x) 6=y] P
ˆ
Y (x′) 6=y′

˜
The terms PD(N) [ζ(x)=y] and PD(N)×D(N) [ζ(x)=y ∧ ζ′(x′)=y′] in the expressions for

the first moment and second moment respectively, are the only terms that are dependent on
both the classification algorithm and the data distribution (i.e. underlying distribution and
modeling process). The other terms are dependent only on the data distribution and hence
remain unchanged for different classification algorithms. Moreover, they are straightforward
to compute. Consequently, for each of the 3 algorithms namely, NBC, DT and KNN we need
to provide customized expressions only for the stated two terms.

.1 DT

We find the moments for decision trees built using random attribute selection and with purity
as stopping criteria.

We consider the dimensionality of the input space to be d. A1, A2, ..., Ad are the corre-
sponding discrete attributes or continuous attributes with predetermined split points. a1, a2, ..., ad

are the number of attribute values/the number of splits of the attributes A1, A2, ..., Ad respec-
tively. mij is the ith attribute value/split of the jth attribute, where i ≤ aj and j ≤ d. Let
y1, y2, ..., yk be the class labels representing k classes and N the sample size.

Purity: This stopping criteria implies that we stop growing the tree from a particular split
of a particular attribute if all datapoints lying in that split belong to the same class. We call
such a path pure else we call it impure. In this scenario, we could have paths of length 1 to d
depending on when we encounter purity (assuming all datapoints don’t lie in 1 class). Thus,
we have the following two separate checks for paths of length d and less than d respectively.

a) Path mi1mj2...mld present iff the path mi1mj2...ml(d−1) is impure and attributes
A1, A2, ..., Ad−1 are chosen above Ad, or mi1mj2...ms(d−2)mld is impure and attributes
A1, A2, ..., Ad−2, Ad are chosen above Ad−1, or ... or mj2...mld is impure and attributes
A2, ..., Ad are chosen above A1.
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This means that if a certain set of d − 1 attributes are present in a path in the tree then we
split on the dth attribute iff the current path is not pure, finally resulting in a path of length
d.

b) Path mi1mj2...mlh present where h < d iff the path mi1mj2...mlh is pure and at-
tributes A1, A2, ..., Ah−1 are chosen above Ah and mi1mj2...ml(h−1) is impure or the path
mi1mj2...mlh is pure and attributes A1, A2, ..., Ah−2, Ah are chosen above Ah−1 and
mi1mj2...ml(h−2)mlh is impure or ... or the path mj2...mlh is pure and attributes A2, ..., Ah

are chosen above A1 and mj2...mlh is impure.
This means that if a certain set of h − 1 attributes are present in a path in the tree then we
split on some hth attribute iff the current path is not pure and the resulting path is pure.

The above conditions suffice for ”path present” since the purity property is anti-monotone
and the impurity property is monotone.

Some of the conditions above are sample dependent while others are sample independent
or in other words depend on the attribute selection method. Let s.c.c.s. be an abbreviation
for stopping criteria conditions that are sample dependent. With this we have the following
expression for the probability used in the first moment,

P [ζ(x)=yi] =
X

p

P[ct(pathpyi) > ct(pathpyj), pathpexists, ∀j 6= i, i, j ∈ [1, ..., k]]

=
X

p

P[ct(pathpyi) > ct(pathpyj), s.c.c.s., ∀j 6= i, i, j ∈ [1, ..., k]]

dChp−1(d− hp + 1)

where hp is the length of the path indexed by p and ct(.) is the number of datapoints
with the specified attribute values. The joint probability of comparing counts and s.c.c.s. can
be computed from the underlying joint distribution. The probability for the second moment
when the trees are different is given by,

P
ˆ
ζ(x)=yi ∧ ζ′(x′)=yv

˜
=

X
p,q

P[ct(pathpyi) > ct(pathpyj), pathpexists, ct(pathqyv) > ct(pathqyw), pathqexists,

∀j 6= i, ∀w 6= v, i, j, v, w ∈ [1, ..., k]]

=
X
p,q

P[ct(pathpyi) > ct(pathpyj), ct(pathqyv) > ct(pathqyw), s.c.c.s., ∀j 6= i, ∀w 6= v, i, j, v, w ∈ [1, ..., k]]

dChp−1dChq−1(d− hp + 1)(d− hq + 1)

where hp and hq are the lengths of the paths indexed by p and q.

.2 NBC

Consider x1, x2, ..., xd are d explanatory attributes and y1 and y2 are the class labels. N1

and N2 denote the number of datapoints in class y1 and y2 respectively in the training set.
Nxk

ij denotes number of copies of the input output pair (xki, yj) where xki is the ith value

of attribute xk, j ∈ {1, 2} and k ∈ {1, 2, ..., d}. With this the 2 probabilities required for the
computation of the first 2 moments are given by,

P [ζ(x)=y1]

= P [N
(d−1)
2 Nx1

i11Nx2
i21...Nxd

id1 > N
(d−1)
1 Nx1

i12Nx2
i22...Nxd

id2]

P
ˆ
ζ(x)=y1 ∧ ζ′(x′)=y2

˜
= P [N

(d−1)
2 Nx1

i11Nx2
i21...Nxd

id1 > N
(d−1)
1 Nx1

i12Nx2
i22...Nxd

id2,

N
(d−1)
2 Nx1

j11Nx2
j21...Nxd

jd1 ≤ N
(d−1)
1 Nx1

j12Nx2
j22...Nxd

jd2]

where x is the input vector (i1, i2, ..., id) and x′ is the input vector (j1, j2, ..., jd). It is easy to
see that the above formulas can be used for any valid input with the insertion of appropriate
indices.
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.3 KNN

The scenario wherein x is classified into class yj given j ∈ {1, 2, ..., v} depends on two factors;
1) the kNN’s of x and 2) the class label of the majority of these kNN’s. The first factor is
determined by the distance metric used, which may be dependent or independent of the sample.
The second factor is always determined by the sample. The P [ζ(x)=yj ] is the probability of
all possible ways that input x can be classified into class yj , given the joint distribution over
the input-output space. This probability for x is calculated by summing the joint probabilities
of having a particular set of kNN’s and the majority of this set of kNN’s has a class label yj ,
over all possible kNN’s that the input can have. Formally,

P [ζ(x)=yj ] =X
q∈Q

P [q, c(q, j) > c(q, t), ∀t ∈ {1, 2, ..., v}, t 6= j]

where q is a set of kNN’s of the given input and Q is the set containing all possible
q. c(q, b) is a function which calculates the number of kNN’s in q that lie in class yb. The
P [ζ(x)=y ∧ ζ′(x′)=y′] used in the computation of the second moment is calculated by going
over kNN’s of two inputs rather than one. The expression for this probability is given by,

P
ˆ
ζ(x)=yj ∧ ζ′(x′)=yw

˜
=X

q∈Q

X
r∈R

P[q, c(q, j) > c(q, t), r, c(r, w) > c(r, s)

∀s, t ∈ {1, 2, ..., v}, t 6= j, s 6= w]

where q and r are sets of kNN’s of x and x′ respectively. Q and R are sets containing all
possible q and r respectively. c(., .) has the same connotation as before. The complexity of the
above formulas is reduced to low degree polynomials for sample independent distance metrics
([6]).

.4 Setting Multinomial Probabilities

In our experiments the input-output correlation was varied from low to medium to high where
low meant the correlation was 0.03, medium meant the correlation was 0.55 and high meant
the correlation was 0.82. These correlations were obtained (using the chi-square formula) by
setting the multinomial probabilities as follows: Given n distinct inputs and 2 classes as in
figure 4, for high correlation pi1 ∀i ∈ {1, ..., n

2
} and pi2 ∀i ∈ {n

2
, ..., n} were set to 1

1.05n
. The

remaining probabilities were all equal with the constraint that all the probabilities must sum
to 1. For medium correlation pi1 ∀i ∈ {1, ..., n

2
} and pi2 ∀i ∈ {n

2
, ..., n} were set to 1

1.15n
. The

remaining probabilities were all equal with the constraint that all the probabilities must sum
to 1. Similarly, for low correlation pi1 ∀i ∈ {1, ..., n

2
} and pi2 ∀i ∈ {n

2
, ..., n} were set to 1

1.9n
.

The remaining probabilities were again all equal with the constraint that all the probabilities
must sum to 1.


