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ABSTRACT
In domains such as consumer products or manufacturing
amongst others, we have problems that warrant the predic-
tion of a continuous target. Besides the usual set of ex-
planatory attributes we may also have exact (or approxi-
mate) estimates of aggregated targets, which are the sums
of disjoint sets of individual targets that we are trying to
predict. Hence, the question now becomes can we use these
aggregated targets, which are a coarser piece of information,
to improve the quality of predictions of the individual tar-
gets? In this paper, we provide a simple yet provable way
of accomplishing this. In particular, given predictions from
any regression model of the target on the test data, we elu-
cidate a provable method for improving these predictions
in terms of mean squared error, given exact (or accurate
enough) information of the aggregated targets. These esti-
mates of the aggregated targets may be readily available or
obtained – through multilevel regression – at different levels
of granularity. Based on the proof of our method we suggest
a criterion for choosing the appropriate level. Moreover, in
addition to estimates of the aggregated targets, if we have
exact (or approximate) estimates of the mean and variance
of the target distribution, then based on our general strategy
we provide an optimal way of incorporating this information
so as to further improve the quality of predictions of the in-
dividual targets. We then validate the results and our claims
by conducting experiments on synthetic and real industrial
data obtained from diverse domains.
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1. INTRODUCTION
In many industries such as consumer products, manufac-

turing where we have a supply chain consisting of a manufac-
turer who produces and sends goods to various distribution
centers (DC) who further redistribute the goods amongst
the stores, we observe a certain delay from the time that
the goods are produced to the stores finally receiving them.
As time goes by, finer and finer pieces of information become
available. From a strategic point of view, however, the man-
ufacturer may want to know initially how his goods are going
to be distributed among the various DCs and stores with as
much accuracy as possible. Based on his past experience, he
may be able to come up with predictions of how much each
store or DC might order. However, the question we ask is
the following: is it at all possible to improve the quality of
these predictions knowing the total amount of goods that
are going to be distributed for the current time period? In
this paper, we answer this question affirmatively, that is, we
provide a simple method to provably improve predictions
obtained based on past observations, by using estimates or
actual values of the target at a coarser level of granularity
for the current time period.

It is easy to see that if we have the true values (or accu-
rate estimates) at a particular level of granularity, we can
sum them up to get estimates at a coarser level of gran-
ularity. For example, if we have predictions for a coarser
level of granularity and true values at a finer level, we can
improve the predictive accuracy at the coarser level by ag-
gregating the finer estimates and using them as predictions.
This is seen in figure 1a. However, if we have the converse
problem then the solution is not obvious. What we mean
by this is that, if we knew coarser values and were trying
to improve the quality of our predictions at a finer level,
it’s not clear if there is in fact a provable way of improving
the accuracy. In other words, given predictions of the tar-
get for the current time period based on past experience –
this could be the output of a regression model or something
else – we improve (more precisely never worsen) the quality
of these predictions using aggregated target information, i.e.
using information about the sums of different sets of tar-
gets we are trying to predict. This will become clearer if we
consider figure 1b, where we have predictions for the three
datapoints (denoted by circles). The sum of the true targets
is 9 and the method we suggest in this paper uses this value
9 to improve the accuracy of the predictions. In fact, as you
will see, even if the value 9 is not the exact sum of the targets
but an ”accurate enough” estimate, our method still guar-



Figure 1: a) Using finer estimates to improve coarser
predictions. b) Using coarser estimates to improve
finer predictions.

antees that the new predictions obtained by its application
will be no less accurate than the old predictions.

Such a method can be used not only for supply chain kind
of problems but in any problem where good quality aggre-
gate information is available and we want to predict at a finer
level of granularity. A good example of this may be census
data where information at a national or state level may be
more reliable than data at a city or county level where there
might be missing data since some people may not turn in
the survey. Predicting the missing values can be done more
effectively knowing the aggregate information. If aggregate
information is available at multiple levels of granularity with
varying accuracy, choosing the right level of granularity so
as to maximize the improvement in predictions is not obvi-
ous. In this paper, we provide a criterion for choosing this
optimal level of granularity.

Information at a coarser level of granularity may not al-
ways be available as is the case in standard machine learning
settings. In this case, we could build regression models on
the historical data by aggregating it at various levels of gran-
ularity and use the ”best” model to give us estimates of the
aggregated targets at that level of granularity. These es-
timates can then be used in conjunction with our method
to improve the predictions at the finest level of granularity
which we care about. The ”best” model is not necessarily
the most accurate model amongst those built at the vari-
ous coarser levels of granularity since, as we will see later,
the amount of improvement in predictive accuracy at the
finest level by using our method is a function of both the
accuracy of the models and the level of granularity they are
built at. Consequently, we provide an algorithm for choos-
ing the model that is most likely to elevate the accuracy of
the predictions. In the trivial case, the best model might
be the model at the finest level, which would suggest that
aggregating the data isn’t too helpful. An algorithm of this
nature however, can be used for a wide variety of machine
learning tasks such as predicting time series data where the
aggregate models would predict the potential drift, if any,

Figure 2: The basic method in this paper repre-
sented in a) takes as input the raw data and the
aggregated targets (exact or estimates) at a single
or multiple levels and outputs the test predictions.
The enhanced method represented in b) takes in ad-
dition the moment information of the target distr-
bution to give further improved predictions.

over time and this drift if accurately captured can assist in
improving individual predictions [6, 1, 2]. Another example
is microarray data which is sparse and hence aggregating it
can help predictive accuracy [8].

In addition to this, we enhance our method of using aggre-
gated targets to improve finer predictions to be able to use
distribution information of the target if available. In partic-
ular, we find the optimal weighting based on the mean and
variance of the distribution of the target that will maximize
the impact on the quality of the predictions in expectation.
If this information is not available one may estimate these
moments from the data, if deemed appropriate. The input-
output of the original method and the enhanced method are
pictorially depicted in figure 2.

Using coarser information to improve predictions has been
of some interest lately [9, 7, 10, 4, 11, 5]. In [9, 7, 4, 11] the
authors employ this philosophy to improve performance of
models in certain computer vision tasks (viz. pose estima-
tion, face recognition, etc.). In [10] however, the idea is used
to improve the performance of NLP models. The primary
difference between this past literature and our work is that
the results in this paper are for the regression setting while
the past literature mainly considers the classification and
the structured prediction setting. In the regression setting,
there has been some work [5] related to using aggregate in-
formation, but this is with respect to a specific problem of
identifying socio-economic factors that may lead to hospital
admissions for heart and circulatory diseases. Our method
in contrast is not necessarily restricted to any particular do-
main. In fact, as we will see in the experimental section, it
is applicable in multiple diverse domains. Moreover, in this
paper, we explicitly provide a provable method to improve
predictions at a finer level of granularity using aggregate
information.



The rest of the paper is organized as follows: In the
next section, we first describe our method. We then for-
mally state this through lemmas and theorems (proofs in
appendix) that show that our method in fact works. We
then show that the predictions can be further improved if
the mean and variance of the target are accurately known.
Based on the proofs of these previous results, in cases where
we may have estimates at multiple (coarser) levels of granu-
larity, we provide a criterion that chooses a level that using
our method is most likely to maximize the improvement in
the quality of predictions at the finer level of granularity.
In traditional settings where these estimates may not be
available apriori, we suggest an algorithm where we build
regression models at multiple levels of granularity on the
training set in order to obtain the corresponding estimates.
We then using our criterion decide on the level and hence,
the regression model to be used to improve the quality of
predictions obtained from a regression model built at the
(finer) level of granularity that we care about. In Section
3, we present results of experiments performed on synthetic
and real datasets and empirically validate the efficacy of our
method. In Section 4, we discuss further extensions and
summarize the major findings in this paper.

2. TRICKLING DOWN AGGREGATES
In this section we first describe a simple method to trickle

down aggregate information in order to improve finer pre-
dictions. We formally state the relevant results with proofs
provided in the appendix. If estimates of the aggregated tar-
get are available at multiple (coarser) levels of granularity,
we then based on our proofs for the previous results, sug-
gest a criterion to choose the level that using our method
is most likely to maximize the improvement in the quality
of predictions at the (finest) level of granularity we want
to predict. If these estimates are not available, we suggest
an algorithm for obtaining them and using the criterion to
decide the appropriate level.

Before we start formally describing our results we define
a couple of terms.

Aggregation granularity: We define aggregation granu-
larity k as the number of values at the finest level of gran-
ularity (i.e. at the level of the original dataset) summed
together to form coarser estimates. For example, in figure
3a, the aggregation granularity is 2 since, if the circles repre-
sent datapoints at the finest level then the rectangles which
denote coarser estimates are sums of pairs of these circles.
Similarly, in figure 3b, the aggregation granularity is 3, since
the rectangles are sums of triplets of the circles.

Aggregated targets: These are sums of the individual tar-
gets in each set, where the sets form a partitioning of the
individual targets in the dataset. Note that the rectangles
in figure 3 would denote aggregated targets if the circles de-
noted individual target values.

2.1 Method and Results
An informal description of our method where the aggre-

gation granularity is k is as follows. We first sum up the
various sets of k predictions corresponding to the aggregated
targets which are already available or obtained by techniques
described before. With this we have each of the aggregated

Figure 3: a) Aggregation granularity is 2. b) Aggre-
gation granularity 3.

targets associated with its own sum of k predictions. We now
subtract each of these sums from the corresponding aggre-
gated targets which gives us the corresponding differences.
We then divide each of these differences by k and uniformly
add them to the corresponding k predictions. Thus, in fig-
ure 1b, where 9 is the aggregated target with 3, 1 and 4
being the predictions, we would first add 3, 1 and 4 which
gives us 8, then subtract 8 from 9 which gives us 1 and then
finally add 1

3
to the original predictions which would give us

10
3

, 4
3

and 13
3

as the new predictions. If additional informa-
tion regarding the distribution (mean and variance) of the
target is available, then rather than distributing the differ-
ences uniformly amongst the predictions an optimal convex
weighting scheme is derived.

With this, we now present four results which includes a
formal description of the method we described above.

• In Lemma 1 we show that knowing the true or exact
values of the aggregated targets and predictions of the
individual targets, our method can produce new mod-
ified predictions that are never worse in terms of mean
squared error (MSE) than the original predictions.

• In Theorem 1 we show that knowing approximate val-
ues (within a certain error bound) of the aggregated
targets and predictions of the individual targets, our
method can produce new modified predictions that are
never worse in terms of MSE than the original predic-
tions.

• Lemma 2 shows that even if we know the exact values
of the aggregated targets and have predictions of the
individual targets, and if we alter our method slightly
where we distribute the differences non-uniformly amongst
the predictions, then the claim made in 1 no longer
holds. In other words, the MSE of the new predic-
tions might be greater than the old predictions if all
the differences are not distributed uniformly.

• Lastly, in lemma 3 we show that in addition to know-
ing the aggregated targets and having predictions of



the individual targets, if we also know the mean and
variance of the target distribution then we can derive
optimal weights for distributing the differences which
may be non-uniform.

Lemma 1. Consider two sets of N real numbers
X = {x1, x2, ..., xN} and X̄ = {x̄1, x̄2, ..., x̄N} (estimates).
Let A = {a1, ..., am} and Ā = {ā1, ..., ām} such that if, k is
the aggregation granularity, li = min(ik,N)− (i− 1)k, m =

dN
k
e, then ai =

∑min(ik,N)

j=(i−1)k+1 xj and āi =
∑min(ik,N)

j=(i−1)k+1 x̄j. If

εi = ai − āi then,

N∑
j=1

(xj − x̄j)2 ≥
N∑
j=1

(xj − x̂j)2

where x̂j = x̄j +
ε
d j
k

e
l
d j
k

e

The result below shows that even if the values at the
coarser level of granularity are not known exactly but with
”some” error, they still can be used to enhance accuracy.

Theorem 1. Consider two sets of N real numbers X =
{x1, x2, ..., xN} and X̄ = {x̄1, x̄2, ..., x̄N} (estimates). Let
A = {a1, ..., am} and Ā = {ā1, ..., ām} where if k is the
aggregation granularity, then li = min(ik,N) − (i − 1)k,

m = dN
k
e, ai =

∑min(ik,N)

j=(i−1)k+1 xj and āi =
∑min(ik,N)

j=(i−1)k+1 x̄j.

If εi = ai − āi and δi ∈ [0, 2εi] then,

N∑
j=1

(xj − x̄j)2 ≥
N∑
j=1

(xj − x̂j)2

where x̂j = x̄j +
δ
d j
k

e
l
d j
k

e

Lemma 2. Consider two sets of N real numbers X = {x1, x2,
..., xN} and X̄ = {x̄1, x̄2, ..., x̄N} (estimates). Let A =
{a1, ..., am} and Ā = {ā1, ..., ām} where if k is the aggre-
gation granularity, li = min(ik,N) − (i − 1)k, m = dN

k
e,

then ai =
∑min(ik,N)

j=(i−1)k+1 xj and āi =
∑min(ik,N)

j=(i−1)k+1 x̄j. If

εi = ai−āi and ∀i
∑min(ik,N)

j=(i−1)k+1 αj = 1 where ∀j αj ≥ 0 with

all αj (for any i) not being equal then there always exists a
X and X̄ such that,

N∑
j=1

(xj − x̄j)2 ≤
N∑
j=1

(xj − x̂j)2

where x̂j = x̄j + αjεd j
k
e

Lemma 3. Consider two sets of N real numbers X = {x1, x2,
..., xN} and X̄ = {x̄1, x̄2, ..., x̄N} (estimates). Let A =
{a1, ..., am} and Ā = {ā1, ..., ām} where if k is the aggre-
gation granularity, li = min(ik,N) − (i − 1)k, m = dN

k
e,

then ai =
∑min(ik,N)

j=(i−1)k+1 xj and āi =
∑min(ik,N)

j=(i−1)k+1 x̄j. If

εi = ai − āi and it is known that X ∼ D where µ is the
mean of the distribution D (i.e. E[X]) and σ2 is the vari-
ance then,

E[

N∑
j=1

(xj − x̄j)2] ≥ E[

N∑
j=1

(xj − x̂j)2] (1)

Figure 4: The two methods represented in figure
2 are illustrated above. The first one evenly dis-
tributes the differences while the second one dis-
tributes the differences based on a convex weighting
scheme.

where x̂j = x̄j + α
(j mod l

d j
k

e
+1)

d j
k
e

εd j
k
e, α

(j mod l
d j
k

e
+1)

d j
k
e

≥ 0

and
∑lp
i=1 α

(i)
p = 1 ∀p ∈ {1, ..., dN

k
e}. The optimal alphas

that minimize the expectation on the right side of the in-
equality in equation 1 are given by,

α(i)
p =

1

lpε2p
[lpεp(µ− x̄i+k(p−1))− (2lp − 1)(σ2 + µ2)]; i 6= lp

α
(lp)
p =

1

lpε2p
[(2lp − 1)(lp − 1)(σ2 + µ2)− lpεp((lp − 1)µ+

x̄i+k(p−1) − ap)]

A high level description of the methods formally described
in lemma 1 and in lemma 3 are shown in figure 4.

2.2 Choosing between Multiple levels
Based on the proofs (in the appendix) of the results in

the previous subsection, we observe that the reduction in
MSE by applying our method is a function of the aggrega-
tion granularity and the accuracy of the estimates of the ag-
gregated targets. In particular, the smaller the aggregation
granularity and the lower the error the more significant the
improvement. However, if we have estimates of the aggre-
gated targets at multiple levels of granularity with varying
accuracy, in the general case, it is not clear as to which level
will lead to the most improvement. For example, at k = 2
we might have an error of 0.2 and at k = 3 we might have
an error of 0.15. In this case, it is not clear whether to use
the estimates of the aggregated target at level 2 or level 3.
Note that if the error at level 3 was more than that at level
2 then the choice is obvious and we would choose level 2.
Hence, we see that in choosing the appropriate level there
is a trade-off between the aggregation granularity and the
error of the estimates of the aggregated targets.

Criterion: If k is the aggregation granularity and MSEk



denotes the mean squared error of the aggregated targets at
aggregation granularity k then the level that is most likely
to lead to maximum improvement in the predictions of the
target is given by,

L = min
k

argmin
k
kMSEk (2)

Hence, if there are multiple k values with the same value of
the objective we choose the minimum k. If L = 1 is the an-
swer then that means that the aggregated targets at coarser
levels will most likely not help in improving the predictive
accuracy.

One may ask what the thought process is in using the
estimates of the aggregated targets if one is able to com-
pute the MSE at that level which implies one knows true
values of the aggregated targets. The point of this exercise
is to come up with a criterion that in a traditional machine
learning setting can be used to choose a regression model at
a certain level of aggregation based on the training set fol-
lowed by using this model to estimate aggregated targets on
the test set, which then can be used to improve predictions
of the target on the test set. An algorithm for the same is
described below.

Algorithm for choosing level/model in traditional
settings: In a standard machine learning setting where we
have a training and a test set, we can train M models one for
each of the M levels of aggregation on the training set and
use the criterion mentioned in equation 2 to decide the best
level and the corresponding model to be used to improve the
predictions on the test set (i.e. of a model built at k = 1).
If the test set size is N , potentially M could be N , however
it makes little sense to build models beyond a certain level
for mainly two reasons: 1) the corresponding dataset sizes
(due to aggregation) at or beyond that level or aggregation
granularity may be insufficient to train a model and 2) be-
yond a certain aggregation granularity even if we knew the
exact values of the aggregated targets at those levels, the
enhancement they produce in the quality of predictions is
minuscule. As we will witness in the experimental section
building models beyond k = 10 is quite unnecessary.

A flowchart describing the algorithm to decide the level
and model is given in figure 5. As per the flowchart, we end
up using the model RL to predict aggregated targets on the
test set. The estimates produced by RL can then be used
to improve the predictions of the model built to predict the
target by using the strategy we outlined before. Note that
the strategy changes depending on if in addition to these
estimates we also use the estimates (or actuals if available)
of the moments of the target distribution.

3. EXPERIMENTS
In this section we evaluate our proposed solutions on syn-

thetic data as well as on 3 real industrial datasets obtained
from diverse domains. In all the reported experiments we
use ridge regression – which is a commonly used regression
technique – as our baseline technique that will be used to
predict the target as well as the aggregated targets (if not
available). Moreover, whenever the algorithm in figure 5 is
used, we build models till M is the test set size. However,
we see that in each of the cases the optimal level L chosen
by our algorithm is always < 10.

Figure 5: Algorithm for choosing the appropri-
ate level and the corresponding regression function
given that models are built at M levels i.e from k = 1
to k = M .

3.1 Synthetic Data Experiments
Setup: We generate synthetic datasets from an 11 dimen-
sional Gaussian distribution, of which 10 are explanatory
attributes and the last one is the target. We set the mean
of this Gaussian to be the origin while the correlation ma-
trix takes different values so as to generate different types
of datasets. The general form of this correlation matrix is
fixed however, in that all entries corresponding to correla-
tion between two different explanatory attributes are set to
zero – this is implied since we want independent explana-
tory attributes – while the standard deviation of all of the
11 attributes is set to σ and the correlation between the
explanatory attributes and target is set to ρ. In order to
generate datasets with different amounts of correlation be-
tween the explanatory attributes and target we vary ρ while
to generate datasets with different variances of the individ-
ual attributes we vary σ. Moreover, to observe the be-
havior of our method on different dataset sizes, we create



σ ↓,ρ→ 0.8 0.6 0.4 0.2
0.8 0.15,0.27 0.09,0.23 0.11,0.33 0.31,0.42
0.6 0.19,0.20 0.04,0.13 0.03,0.33 0.52,0.47
0.4 0.16,0.22 0.03,0.12 0.01,0.16 0.31,0.45
0.2 0.27,0.41 0.18,0.32 0.37,0.36 0.48,0.61

Table 1: For dataset of size 100 we see above the
p − values of the paired t-test. The entries before
the comma are p − values for testing hypothesis H0

and entries following the comma are p − values for
testing the hypothesis T0. The entries in bold are
cases where the corresponding null hypothesis are
rejected.

σ ↓,ρ→ 0.8 0.6 0.4 0.2
0.8 0.23,0.26 0.08,0.09 0.10,0.27 0.24,0.39
0.6 0.16,0.13 0.03,0.04 0.02,0.03 0.43,0.46
0.4 0.17, 0.21 0.03,0.02 0.02,0.01 0.28,0.41
0.2 0.34,0.32 0.17,0.25 0.33,0.41 0.42,0.53

Table 2: For dataset of size 1000 we see above the
p − values of the paired t-test. The entries before
the comma are p − values for testing hypothesis H0

and entries following the comma are p − values for
testing the hypothesis T0. The entries in bold are
cases where the corresponding null hypothesis are
rejected.

datasets of size 100 and 1000 for each ρ and σ combina-
tion that we consider. In particular, we create datasets for
ρ = {0.8, 0.6, 0.4, 0.2} × σ = {0.8, 0.6, 0.4, 0.2} as seen in ta-
bles 1 (dataset size = 100) and 2 (dataset size = 1000). For
each of the combinations of these parameters we sample 100
datasets.

Each dataset that is obtained which is of a particular size
and sampled with particular ρ and σ, is randomly split into
train (70%) and test sets (30%). This is done 50 times
to generate 50 different train and test splits on the same
dataset. On each training dataset we first learn a model
using just ridge regression (R), then we learn using ridge
regression alongwith our algorithm in figure 5 (R+A) and
finally we learn using ridge regression alongwith our algo-
rithm and moment information (R+A+M) estimated from
the training set which gives us an estimate of the optimal
weights as per lemma 3. On the corresponding test sets
we compute the MSE of each of these three techniques in
predicting the target. Thus, for each combination of param-
eters we now get 50×100=5000 MSE values for the three
techniques. The aggregates are formed using consecutive
samples produced by the sampling process.

Using these MSE values we primarily want to decipher the
parameter settings when R is worse than R+A and R+A is
worse than R+A+M. To arrive at these conclusions in a
statistically sound manner, we use the paired t-test [3] to
confirm that the reductions in MSE from R to R+A and
R+A to R+A+M are statistically significant. Hence, we
carry out two hypothesis tests. The first one to see if the
differences in MSE between R and R+A are significant and
second one to see if the differences in MSE between R+A
and R+A+M are significant. The null hypothesis in the first

case is,

H0 : The models R and R+A are equivalent.

The null hypothesis in the second case is,

T0 : The models R+A and R+A+M are equivalent.

Observations: From the results in tables 1 and 2 we see
that the hypothesis H0 is rejected (i.e. p − value < 0.05)
when the correlation between explanatory attributes and the
target is neither too high nor too low and when the standard
deviation of the attributes is moderate. A possible reason
for this to happen is as follows: At high correlations the
explanatory attributes are excellent predictors of the target
and hence, a simple method is sufficient to be able to predict
the target accurately. At low correlations the explanatory
attributes contain very little information that can be used
to predict the target irrespective of the modelling method
used. At moderate correlations the explanatory attributes
are reasonable predictors of the target. In this case however,
when the variance of the target is high, aggregating using al-
gorithm in figure 5 does not reduce the variance sufficiently
until we have aggregated by more than a few levels and as
mentioned before, higher the aggregation granularity lesser
the improvement. When the variance of the target is low,
further aggregating keeps the variance in the same regime
which is low and hence the predictive power of the attributes
does not change significantly at lower levels. At mid vari-
ances however, aggregation causes the variances to fall in
the low regime and hence, at even low levels of aggregation
we predict accurately which then enhances the performance
of the model predicting the target.

From the results in tables 1 and 2 we see that the hypothe-
sis T0 is rejected when the dataset size is large and the other
conditions are the same as that for hypothesis H0 to be re-
jected. For R+A+M to work well it is required that R+A
works at least reasonably since, if our estimates of the ag-
gregated targets using algorithm in figure 5 are not accurate
then irrespective of how we distribute these estimates the
prediction quality will not improve by much. When R+A
works really well there isn’t much room for improvement.
Moreover, a larger dataset size aids in obtaining more accu-
rate estimates of the moments. Hence, the scenarios where
R+A+M shows improvement over R+A is a subset of the
cases where R+A shows improvement over R.

3.2 Real Data Experiments
We now test the efficacy of our approach on 3 real in-

dustrial datasets obtained from varied domains. Since, the
records in each of these datasets are ordered by time, we re-
spect this time ordering and use the first 70% of the records
for training and the remaining 30% (i.e. most recent 30%)
records for testing. We then report the MSE on the test set
as a measure of evaluation for the different techniques with
the results shown in figure 6.

Supply Chain Dataset: This dataset is obtained from an
actual manufacturer and contains data at two levels namely;
at the (finer) distribution center (DC) level and at the (coarser)
manufacturer level. The goal is to predict the inventory po-
sition at a DC given past inventory positions and other at-
tributes such as age of the inventory and product type (viz.



Figure 6: Comparison of three variants on three real
datasets is shown above. SC stands for a Supply
Chain dataset, CM stands for a chip manufacturing
dataset and Oil stands for an Oil production dataset.
AT implies aggregated target information.

egg beaters, pasta etc.). In addition, to this we also have
information about the total amount shipped (aggregate in-
formation) from the manufacurer to meet the demands of
the DC. Hence, in this case we do not need to use algorithm
in figure 5 since, we already have aggregate information. We
just need to use results in lemma 1 and lemma 3 (estimat-
ing the moments from the data). In our dataset there are
7 distribution centers and the data was collected daily for
about a year (dataset size is 357).

Chip Manufacturing Dataset: In the chip manufactur-
ing industry predicting speed of the wafers (collections of
chips) accurately ahead of time can be crucial in choosing
the appropriate set of wafers to send forward for further pro-
cessing. Eliminating faulty wafers can save the industry a
huge amount of resources in terms of time and money.

This dataset has 175 features where, the wafer speed is
one of them. The other features are a combination of physi-
cal measurements and electrical measurements made on the
wafer. The dataset size is 2361. In this case, aggregate in-
formation is unavailable and hence, we use the algorithm in
figure 5 to estimate the aggregated targets, which can be
viewed as estimating drift in the time series.

Oil Production Dataset: Oil companies periodically launch
production logging campaigns to get an idea of the overall
performance as well as to assess their individual performance
at particular oil wells and reservoirs. These campaigns are
usually expensive and laden with danger for the people in-
volved in the campaign. Automated monitoring of oil pro-
duction equipment is an efficient, risk free and economical
alternative to the above solution.

The dataset we perform experiments on, is obtained from
a major oil corporation. There are a total of 9 attributes in
the dataset. These attributes are obtained from the sensors
of a 3-stage separator which separates oil, water and gas.

The 9 attributes are composed of 2 measured levels of the
oil water interface at each of the 3 stages and 3 overall at-
tributes. Our target is Daily production which indicates the
amount of oil produced every day at the well. The dataset
size is 992. In this case too, aggregate information is unavail-
able and hence, we use the algorithm in figure 5 to estimate
the aggregated targets.

Observations: In figure 6, we observe the behavior of the
three variants, namely: 1) ridge regression (R), 2) ridge
regression using (actual or estimated) aggregated targets
(R+A) and 3) ridge regression using (actual or estimated)
aggregated targets alongwith estimated moments (R+A+M),
on the three datasets. First we see that the performance im-
proves consistently as we go from R to R+A and from R+A
to R+A+M. However, the extent of the improvement differs
in the 3 cases. A possible reason for the improvement from
R+A to R+A+M being more significant on CM than on the
other datasets could be that the larger dataset size leads to
more accurate estimates of the moments as compared to the
other datasets. The improvement from R to R+A is more
pronounced on CM and Oil than on SC since, the L returned
by algorithm in figure 5 is much lower than 7 – which is the
aggregation granularity for SC – and the inaccuracies in the
estimates of the aggregated targets for these two cases are
only slight.

4. DISCUSSION
In this paper, we proposed a provable way of improving

prediction quality with the help of accurate aggregate or
coarser information. In cases where we may have (estimates
of) aggregated targets at multiple levels we provided a way
of choosing the optimal level so as to maximize the improve-
ment in prediction quality. We have provided an algorithm
for the same, in standard machine learning settings where
aggregate information may not be available from an inde-
pendent source. Moreover, using estimates of the moments
of the target distribution, we have provided a way of bet-
ter distributing the aggregate information so as to further
enhance the predictive accuracy.

In the future, it may be desirable to choose multiple levels
rather than just a single level and in some provable manner
use the corresponding aggregated targets in an attempt to
obtain results superior to the ones in this paper. Moreover,
when the data is unordered one could first cluster the data
and then apply the suggested algorithms to further enhance
the predictive power. A method that encapsulates these
ideas might be of some interest. In any case, we believe
that we have laid the basic groundwork for the creation of
advanced methods such as these.
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APPENDIX
Proof of Lemma 1

Proof. Consider two sets ofN real numbersX = {x1, x2, ..., xN}
and X̄ = {x̄1, x̄2, ..., x̄N} (estimates). Let A = {a1, ..., am}



and Ā = {ā1, ..., ām} where if k is the aggregation granu-
larity, li = min(ik,N) − (i − 1)k − 1, m = dN

k
e, then ai =∑min(ik,N)

j=(i−1)k+1 xj and āi =
∑min(ik,N)

j=(i−1)k+1 x̄j . Let εi = ai − āi

and x̂j = x̄j +
ε
d j
k

e
l
d j
k

e
.

Let the mean squared error based on the original estimates
i.e. (x̄i) be given by,

MSEold =
1

N

N∑
i=1

(xi − x̄i)2 (3)

Hence, the mean squared error based on new estimates i.e.
(x̂i) is given by,

MSEnew

=
1

N

N∑
i=1

(xi − x̂i)2 =
1

N

N∑
i=1

((xi − x̄i)−
εd i

k
e

ld i
k
e

)2

=
1

N

N∑
i=1

(xi − x̄i)2 −
1

N
[

N∑
i=1

(
2

ld i
k
e

(xi − x̄i)εd i
k
e −

1

l2
d i
k
e

(εd i
k
e)

2)]

= MSEold −
1

N
A

(4)

where A =
∑N
i=1( 2

ld i
k

e
(xi − x̄i)εd i

k
e −

1
l2
d i
k

e
(εd i

k
e)

2). Now to

prove our result we have to show that A ≥ 0.

A =

N∑
i=1

(
2

ld i
k
e

(xi − x̄i)εd i
k
e −

1

l2
d i
k
e

(εd i
k
e)

2)

=

dN
k
e∑

p=1

(
2

lp
(

min(pk,N)∑
i=(p−1)k+1

xi −
min(pk,N)∑
i=(p−1)k+1

x̄i)εp −
1

l2p
lpε

2
p)

=

dN
k
e∑

p=1

(
2

lp
ε2p −

1

lp
ε2p) =

dN
k
e∑

p=1

1

lp
ε2p ≥ 0

(5)

Proof of Theorem 1

Proof. The proof of the theorem follows from the proof
of lemma 1 where we substitute εi with δi ∈ [0, 2εi] in equa-
tion 4. With this we have,

MSEnew = MSEold −
1

N
B (6)

where B =
∑N
i=1( 2

ld i
k

e
(xi − x̄i)δd i

k
e −

1
l2
d i
k

e
(δd i

k
e)

2). Now to

prove our result we have to show that B ≥ 0.

B =

N∑
i=1

(
2

ld i
k
e

(xi − x̄i)δd i
k
e −

1

l2
d i
k
e

(δd i
k
e)

2)

=

dN
k
e∑

p=1

(
2

lp
(

min(pk,N)∑
i=(p−1)k+1

xi −
min(pk,N)∑
i=(p−1)k+1

x̄i)δp −
1

l2p
lpδ

2
p)

=

dN
k
e∑

p=1

(
2

lp
δpεp −

1

lp
δ2p) =

dN
k
e∑

p=1

−1

lp
δp(δp − 2εp)

(7)

The above quadratic equation has 2 roots δp = 0 and
δp = 2εp and we already know that B ≥ 0 when δp = εp.
Since, εp ∈ [0, 2εp] and the function is a quadratic in δp we
have B ≥ 0 ∀δp ∈ [0, 2εp].

Proof of Lemma 2

Proof. In equation 5 substituting the alphas we have,

A =

dN
k
e∑

p=1

2εp

min(pk,N)∑
i=(p−1)k+1

[(xi − x̄i)αi −
εp
2
α2
i ] (8)

We thus have to show that when all alphas for a particular
p are not equal then there always exist X and X̄ such that
A < 0. We can show this by proving that there always exist
{x(p−1)k+1, ..., xmin(pk,N)} and { ¯x(p−1)k+1, ..., ¯xmin(pk,N)} such
that the above equation for any particular p is less than zero
and hence, if we replicate this case for all p then their sum
is less than zero which implies A < 0. With this we have to

show that for any p (in our setting), 2εp
∑min(pk,N)

i=(p−1)k+1[(xi −
x̄i)αi − εp

2
α2
i ] ≤ 0.

Without loss of generality (w.l.o.g.) we will prove the
above result for p = 1 and the proof should be valid for all
p. Hence, we will show that when all alphas for p = 1 are
not equal then there always exist {x1, ..., xk} and {x̄1, ..., x̄k}
such that, 2ε1

∑k
i=1[(xi − x̄i)αi − ε1

2
α2
i ] ≤ 0.

Since all alphas are not equal, w.l.o.g. assume that α1 >
α2 where α1 ≥ αi ∀i ∈ {1, ..., k} and α2 ≤ αi ∀i ∈ {1, ..., k}.
We will prove the result by dividing it into 2 cases. Case 1
is ε1 ≥ 0 and case 2 is ε1 ≤ 0. Notice that we have freedom
to choose values for X and X̄ to prove our result.
Case 1: We choose xi and x̄i such that xi = x̄i ∀i ∈ {3, ..., k}
and x2 − x̄2 ≥ x̄1 − x1 ≥ 0. This forces ε1 ≥ 0 as de-
sired. Hence, for the previous equation to be true, a suf-
ficient condition is, α1(x1 − x̄1) + α2(x2 − x̄2) ≤ 0 which
implies x̄1−x1 ≥ α2

α1
(x2− x̄2). We can always find x1, x̄1, x2

and x̄2 such that x2 − x̄2 ≥ x̄1 − x1 ≥ α2
α1

(x2 − x̄2) ≥ 0 ∀αi
where i ∈ {1, ..., k}.
Case 2: This is analogous to case 1. All the inequalities in
case 1 can be reversed and hence, we need to find x1, x̄1, x2
and x̄2 such that x2 − x̄2 ≤ x̄1 − x1 ≤ α2

α1
(x2 − x̄2) ≤ 0 ∀αi

where i ∈ {1, ..., k}, which is definitely possible.

Proof of Lemma 3

Proof. Since we take expectations with respect to the
underlying distribution for the result of this lemma the ob-
jective we have to maximize to get the optimal alphas is the
expected value of equation 8 given ap and āp, i.e. E[A|ap, āp].
This function is concave in the alphas and hence by forming
the lagrangian and maximizing the objective given the con-

straints on the alphas we get, α
(i)
p = 1

2ε2p
[2εp(µ− x̄i+k(p−1) +

λ)]; i 6= lp and λ = −2
lp

(2lp − 1)(σ2 + µ2), where λ is the la-

grange parameter. Notice that α
(lp)
p is uniquely defined since

the alphas sum to 1. With this the optimal alphas are given

by, α
(i)
p = 1

lpε2p
[lpεp(µ−x̄i+k(p−1))−(2lp−1)(σ2+µ2)]; i 6= lp

and α
(lp)
p = 1

lpε2p
[(2lp− 1)(lp− 1)(σ2 +µ2)− lpεp((lp− 1)µ+

x̄i+k(p−1) − ap)]
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