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Abstract
Clustering is a widely-used data mining tool, which aims to
discover partitions of similar items in data. We introduce
a new clustering paradigm, accordant clustering, which
enables the discovery of (predefined) group level insights.
Unlike previous clustering paradigms that aim to understand
relationships amongst the individual members, the goal of
accordant clustering is to uncover insights at the group level
through the analysis of their members. Group level insight
can often support a call to action that cannot be informed
through previous clustering techniques. We propose the
first accordant clustering algorithm, and prove that it finds
near-optimal solutions when data possesses inherent cluster
structure. The insights revealed by accordant clusterings
enabled experts in the field of medicine to isolate successful
treatments for a neurodegenerative disease, and those in
finance to discover patterns of unnecessary spending.

1 Introduction

As one of the most fundamental data mining tools,
clustering is employed in a variety of domains that span
from biology [6] to marketing [9], applicable in nearly
all disciplines where data is utilized. The ubiquity
of clustering is largely a result of its general and
deceptively simple aim to discover partitions of similar
items in data. Unfortunately, this aim is inherently
ambiguous, as the same dataset can often be clustered
in multiple meaningful ways. As such, the utility of
any given clustering is application-dependent. The goal
of clustering then is, not only to uncover meaningful
cluster structure but, to find a partitioning that is useful
for the application at hand.

The need for selecting among meaningful cluster-
ings arises when we wish to uncover group level insight.
For example, medical professionals may aim to gain
insight into the performance of competing treatments
through the analysis of several treatment groups. In this
case, the goal is to discover not only which treatments
are more effective, but also the demographics for which
they are best suited. As such, we may wish to cluster
patients across all treatments groups based on both de-
mographic data (such as age, race, and gender) and the
results of the treatment. While there may be several
ways to meaningfully partition the patient data, not all
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high quality clusterings will help differentiate among the
treatments. For example, a clustering in which patients
within treatment groups are evenly distributed across
the resulting clusters may not be helpful for this appli-
cation as no actionable conclusion can be drawn about
the efficacy of the treatments in relation to the demo-
graphics. Instead, we are looking for a (high quality)
clustering in which (at least some of the) clusters con-
tain a significant proportion of one or more treatment
groups.

Such a clustering will enable medical profession-
als to uncover relationships within and between the
treatment groups by identifying similar characteristics
amongst a significant portion of their members. We may
find that a certain cluster (say, young women), contain-
ing a significant proportion of the first two treatment
groups, responded well to the first, but not to the sec-
ond, treatment. In a similar way, another cluster may
reveal that a different demographic (say, older men) ex-
hibit a harmful side-effect on the third treatment. Such
insight may result in a call to action placing additional
resources into promising treatments and/or terminating
risky ones.

Despite the vast number of proposed frameworks,
existing clustering paradigms focus on discriminat-
ing between individual instances, without taking into
account the relationships amongst their underlying
groups. Supervised and semi-supervised frameworks al-
low user input to help identify a meaningful partitioning
of the individual members, but are no better than classi-
cal methods for discovering group insights (see the next
section for a more details).

In order to discover meaningful relationships within
and between groups, we propose the notion of accordant
clustering, where sufficiently many elements in the same
group are in “accordance” with respect to their cluster
assignment. In this setting, the purpose of individual
instances is to represent their underlying groups. The
objective of accordant clustering is to balance two
distinct aims, (1) discovering inherent structure in
data, an objective it shares with all other clustering
paradigms, and (2) to combine elements that belong to
the same group while minimizing violations to the first
objective. The combination of these objectives allows
accordant clustering to discover meaningful clusterings



that support the discovery of insights at the group level.
In addition to introducing this new paradigm, we

propose the first accordant clustering algorithm, which
is based on the popular k-means method. We begin with
a formal analysis of our algorithm, by first showing that
it converges as well as uncovers provably near-optimal
solutions when data possesses inherent cluster structure.
We then report results from two real domains, where the
clusterings produced by our method enabled experts to
ascertain actionable insight. Lastly, we report results on
six UCI datasets showing that our method finds higher
quality accordant clusterings relative to its adapted
competitors.

2 New Clustering Framework

We now introduce a formal framework for accordant
clustering which enables group level insights.

2.1 Formal Framework and Definitions Let the
input dataset X ⊂ Rn be the union over m groups, such
that X = {X1∪· · ·∪Xm}. A clustering of X, assuming
k clusters, is denoted C = {C1, . . . , Ck}. The proportion
of elements in a group Xi that are clustered together are
given by the vector f = 1

|Xi| [ |C1 ∩Xi|, ..., |Ck ∩Xi| ].

Clustering C is t-accordant on Xi if ∃ j ∈ {1, ..., k} such
that the jth component of f , fj ≥ t. We now introduce
our main definition.

Definition 2.1. (r, t)-accordant clustering: Given a
set X subdivided into m groups {X1 ∪ · · · ∪ Xm}, a
clustering C of X is (r, t)-accordant if there exist at least
r distinct groups on which C is t-accordant.

C is the optimal (r, t)-accordant clustering with
respect to objective function φ if it attains the best cost
among all (r, t)-accordant clusterings. That is, C =
argminC{φ(C) | C is an (r, t)-accordant clustering}.

Figure 1 depicts an example of a 0.75-accordant
clustering (defined explicitly as (1, 0.75)-accordant).
The constraints of Definition 2.1 emphasize the fact that
gaining insight into relationships amongst the groups
depends strongly on clusters representing a substantial
proportion of their data. If t = 0.75, i.e., we want some
cluster to have 75% or more instances from one of the 3
groups (happy, sad and angry) depicted, then the right
hand side clustering would be accordant since it has 3
out of the 4 happy people belonging to a cluster. The
left hand side clustering is what would be obtained for
its unsupervised counterpart. We see here that the ac-
cordant clustering is obtained for a slight penalty based
on an objective Φ(.), that the clustering algorithms try
to minimize. Hence, if C is the accordant clustering,
Φ(C) would indicate its quality.

Feasibility: Of course, given r and t, k cannot be
arbitrarily large to obtain an accordant clustering. We
thus have the following result regarding feasibility.

Lemma 1. Given a dataset X of size N partitioned into
m groups, with n1, ..., nr being the sizes of the r smallest
groups, then ∀t ∈ [0, 1] there exists an (r, t)-accordant
clustering iff k ∈ {1, ..., N −

∑r
i=1dtnie+ r}.

Proof. If k ∈ {1, ..., N −
∑r
i=1dtnie + r}, we have two

cases either r ≥ k or r < k. If r ≥ k, we can
form k clusters with dtnie instances from the smallest
k groups where i ∈ {1, ..., k}, and place the remaining
instances in the kth cluster, thus obtaining a feasible
clustering. If r < k, we can form r clusters again with
dtnie instances from the r smallest groups. With the
remaining N−

∑r
i=1dtnie instances we can perform k−r

unsupervised clustering, since k−r ≤ (N−
∑r
i=1dtnie+

r)− r = N −
∑r
i=1dtnie. This again leads to a feasible

accordant clustering.
If k > N −

∑r
i=1dtnie + r, then to have a fea-

sible clustering firstly, the maximum number of clus-
ters we can have with the instances not required to
be in accordance is N −

∑r
i=1dtnie. So with the re-

maining instances
∑r
i=1dtnie we need to form k −

(N −
∑r
i=1dtnie) > r clusters. Having to distribute∑r

i=1dtnie instances into more than r clusters leads to
infeasibility as at least one of these r smallest groups will
end up being underrepresented in all of the k clusters.

In general, feasibility is unlikely to be an issue as
k � N in most real applications.

2.2 Contrast with Other Frameworks In the
traditional clustering paradigm, the goal is to partition
data into (meaningful) clusters. To this end, a wide
variety of objective functions and algorithms have been
proposed, falling into a fairly large number of distinct
clustering paradigms, which vary in the types of input
and output required for clustering methods [3].

The most fundamental paradigms are either parti-
tional, where the output is a set of k (disjoint) clusters
or hierarchical, which simultaneously represents multi-
ple partitionings in a tree structure. Another popular
variation is soft clustering, where points may belong
to multiple clusters, compared with the classical hard
clustering model where each point is part of a unique
cluster. Naturally, variations in how the output is repre-
sented offers no way of representing from which groups
elements derive, and as such does not aid in the discov-
ery of group insights.

The type of input that different clustering tech-
niques accept is remarkably wide. One such variation al-
lows the user to specify a weight [2] representing the sig-



Not accordant Accordant Clustering

Figure 1: Two clusterings of a dataset consisting of three groups (happy, sad, and angry) are shown. Both
clusterings represent inherent structure in data. However, given a threshold ratio of 0.75, only the clustering
on the right is accordant, as it contains a cluster containing three quarters of the happy group. As such, the
clustering on the right is (1,0.75)-accordant.

Figure 2: Contrast between supervised and accordant
clustering, where the groups/labels are showed in two
colors. The figure on the left hand side depicts a cluster-
ing where each cluster has homogeneous labels, which
is one of the main objectives of supervised clustering.
However, this clustering is not accordant (for t = 0.75),
since no cluster contains at least 75% of any group. On
the other hand, the figure on the right shows an accor-
dant clustering that is not as desirable from a supervised
clustering perspective, due to the presence of a cluster
with mixed labels. This illustrates the supervised and
accordant clustering have distinct objectives, where nei-
ther paradigm is strictly stronger than the other.

nificance of individual elements, which guides the clus-
tering in terms of which instances should be given more
importance. While allowing more flexibility, a weight
is associated with a particular instance, which does not
enforce any condition on groups of instances to be as-
signed to the same cluster.

Perhaps the most popular semi-supervised setting
allows certain pairs of instances to be marked as must-
link (ML) or cannot-link (CL) [17, 7]. If such constraints
are feasible [8], the final clustering is likely to have

semantic value that is of use to the practitioner. If
the data is partially labeled, the goal often becomes
to attain an optimal objective cost while respecting the
labeling. In the extreme case of supervised clustering
[10, 11, 4] the entire dataset is labeled. Note that
the partially/fully labeled settings could be modeled
as pairwise constraints and the machinery used for
constraint based clustering could be used in this case
too, though the number of constraints could potentially
be quadratic in number of labeled examples. In both
cases though, the goal is to produce a clustering that
is more or less consistent with the labeling or pairwise
constraints.

Observe that unlike supervised clustering, accor-
dant clustering does not imply that the clusters should
be homogeneous with respect to the labels, where the
groups could be considered as proxies for class labels,
but rather a large fraction of instances belonging to
some group should be present in some cluster. This does
not penalize a cluster containing a sizable number of in-
stances belonging to other groups. In fact, if 2 or more
groups have > t fraction in the same cluster this could
lead to a unified action across the groups, which could
be highly favorable.

Moreover, a clustering which is excellent from the
supervised perspective may not be feasible relative to
our constraint, as each cluster may be homogeneous
and contain only a single group and yet no cluster may
contain at least t fraction of the instances from any
specific group. An example of this is seen in figure 2.
Given 4 clusters with t = 0.75 as before, the clustering
on the left has no impurity and is an excellent clustering
from the supervised clustering perspective. However,
it is not accordant, since a consistent strategy is hard
to put into place at the group level, given that the
instances are spread across different clusters.

In particular, the spread implies a lack of cohesion



within and amongst any of the groups, making it
difficult for practitioners to qualitatively interpret the
groups based on the clustering. The clustering on
the right is what would be reasonable in our setting.
In the cases that supervised clustering does satisfy
our constraint, we might see that it is an overkill as
it unnecessarily devalues the unsupervised clustering
objective giving us a much worse clustering since, it
strives to enforce homogeneity across all clusters. We
will see evidence of this in the experimental section.

Our definition of usefulness cannot be effectively
captured in the constraint-based or label-based semi-
supervised clustering frameworks either. The reason
being that we do not know which t fraction of the
instances belonging to a group should be assigned to
some cluster, so as to obtain a high quality clustering.

It could be argued that we could randomly choose
these instances and then perform semi-supervised clus-
tering. However, we might have missed a different set
of instances which if we had chosen as the t fraction,
would have resulted in a much better clustering. Thus,
if we knew this better set a priori, then we could model
it with ML constraints or assign its instances the same
label. Unfortunately, we do not and hence, the clus-
tering algorithm needs to find this set - in fact, finding
this set is one of the main objectives of an accordant
clustering algorithm.

Our algorithm in section 3, performs this task and
can be shown to converge. Our framework therefore
requires the dynamic identification of instances from a
group that will lie in the same cluster, which is not the
case for the semi-supervised framework.

Why cluster all the data? Our goal, as men-
tioned before, is to understand relationships within and
between groups, so the latter would be lost if we clus-
tered each group independently. For instance, consider
the application where we try to discover over/under per-
forming schools. The good students of one school may
turn out to be under-performing students when consid-
ering all schools. So independently clustering would not
readily provide the necessary insight. Moreover, inde-
pendently clustering does not make the problem com-
putationally easier as cardinality constraints are hard
to solve. Note however that one can always use only
the relevant data to perform accordant clustering by re-
moving groups that are known to be unimportant opera-
tionally or possibly because they are too small.

Our framework is also different from subgroup
discovery [13], which mainly tries to find rules in
conjunctive form relative to a given target. Our goal
is not to find rules that lead to certain characteristics
of the target, but rather to find insights about the
groups based on the inputs by having the groups well

represented in clusters. These insights could be across
groups and not distinct for each group. Moreover, there
is no restriction in having only conjunctions as at least
r groups from m may be well represented in the same
or different clusters which can also lead to disjunctions.

3 Accordant k-means

Given that k-means may be the most frequently used
clustering paradigm, it serves as a natural foundation
for developing an accordant clustering technique. Al-
gorithm 1 aims to minimize the sum of squares error
(SSE), i.e. the k-means objective. The distinguish-
ing feature of this algorithm lies in its effort to satisfy
the accordant constraint by considering the penalties as-
sociated with sub-optimal point to center assignments,
where the “penalty” of assigning point xi to center cj is
d(xi, cj)−min` d(xi, c`).

While the accordant k-means algorithm (abbrevi-
ated Akmeans) is primarily concerned with satisfying its
constraint, it does so in a way that minimizes the asso-
ciated penalty. As such, Akmeans attempts to uncover
the accordant clustering which is also optimal w.r.t. its
objective function.

Algorithm 1 Accordant k-means (Akmeans)

Choose k random centers {c1, . . . , ck} from X
repeat until convergence:

For each xi ∈ X:
For each cluster center cj , compute penalty
Pij= d(xi, cj)−min` d(xi, c`)

For each group Xj and each center ci:
Sort the points of Xj in ascending penalty.
The sum of penalties for the first t fraction
of points is the penalty of this pairing.

Choose the r lowest penalty group-center pairs.
Assign first t fraction of points in these chosen
pairings to the corresponding cluster centers.
Assign remaining points to the closest cluster
center.
Compute new cluster centers {c1, . . . , ck}.

Output final clustering C based on latest centers.

3.1 Description Our method takes as input the
groups and the fraction t, besides the standard inputs
to k-means. τ and δ can be used to specify termination
conditions, where τ is the maximum number of allowed
iterations, while δ is the maximum difference between
the objective function at successive iterations at or
below which we claim convergence. We may choose both
or either of these conditions to indicate termination of
algorithm 1.



Figure 3: Above we see the Euclidean distance squared
of instances x1 and x2 from cluster centers c1 and c2.

The crux of the algorithm and where it differs from
standard k-means is that it has to choose t fraction of
the instances belonging to r groups that must lie in up
to r clusters at each iteration. This implies that every
intermediate clustering based on our algorithm in the
path to convergence is also feasible.

As in standard k-means, in this case too we compute
a N × k distance matrix D, which stores the squared
Euclidean distances between instances and the current
cluster centers. However, for Akmeans we compute
another N × k matrix called the penalty matrix P,
which computes the penalty of assigning an instance to
a specific cluster. The penalty of assigning an instance
xi to cluster Cj is given by, Pij = Dij−mins∈{1,...,k}Dis.

Consequently, if cj the cluster center of Cj is the
closest cluster center to xi, then Pij = 0. It is greater
than zero for farther away clusters. Thus, Pij ∀j ∈
{1, ..., k} is the excess amount that would be added to
the clustering objective if xi is assigned to Cj rather
than to its closest cluster during the current assignment
step. In our algorithm, we try to choose t fraction
of the instances belonging to a particular group along
with their assignment to a specific cluster such that the
sum of their penalties is minimum. Hence, for each
group and cluster we select t fraction of the instances
belonging to that group with the lowest penalties and
compute their sum. For r group-center pairings with
the lowest penalty we assign these instances to the
corresponding clusters. The remaining instances are
assigned as in standard k-means to the closest cluster.
We then compute the means of these new clusters and
iterate through the above two steps until one of the
termination conditions is reached.

At each iteration, it is better to choose the t fraction
of the instances based on the penalty matrix than
the distance matrix, since we are deviating the least
from the unconstrained version relative to the attained
objective value. If we were to choose the instances
based on the minimum sum of the distances of t fraction
of the instances belonging to a group, then we may

not achieve reduction in objective value to the extent
possible during that iteration. A simple illustration of
this is seen in figure 3. If we are to assign one of the two
instances x1 or x2 to c2, then based on squared distances
we would assign x1 to c2 since x1 is closer to c2 than
x2 is to c2. With this assignment the objective value
has increased by 15 − 2 = 13 over the objective based
on unsupervised clustering. However, if we assign based
on our strategy of minimum penalty, then x2 would be
assigned to c2 rather than x1. This is so, since the
penalty for x1 is 13, while the penalty of assigning x2 to
c2 is just 30− 25 = 5. Thus, the objective value would
now be worse of by 5, rather than 13 relative to the
unsupervised clustering objective. This all is of course
because unsupervised clustering would assign both the
instances to c1.

3.2 Convergence and Time Complexity We now
show that, like the traditional k-means algorithm, our
algorithm provably converges.

Lemma 2. The Akmeans algorithm converges.

Proof. Since there are only a finite number of partitions
of a dataset of size N , to prove convergence, it suffices
to show that the objective is monotonically decreasing
with each iteration.

At any iteration i our algorithm produces a feasible
clustering Ci. Now at iteration i+ 1 we could maintain
the r sets of t fraction assignments as they are and only
assign the remaining points to closest centers. Let us
denote this clustering by Cri+1. This will reduce or
maintain the cost i.e. if Φ is the objective function
Φ(Ci) ≥ Φ(Cri+1). However, our method at iteration
i + 1 considers Cri+1 as one possible alternative and
chooses an assignment that is no more than Φ(Cri+1).
Hence, Φ(Ci) ≥ Φ(Ci+1). The last step of recomputing
the centers further reduces or maintains the cost thus
proving that our algorithm produces a monotonically
decreasing sequence.

The time complexity per iteration of k-means is
O(Nkρ), where N is the dataset size and ρ is the dimen-
sionality. If nmax is the size of the largest group, then
the complexity of our method isO(mnmaxlog(nmax)kρ).
The extra log factor comes from having to sort the
penalties of datapoints in each group k times.

4 Qualitative Guarantees

As is the case for any clustering paradigm, an arbitrary
partitioning of a dataset is not meaningful a priori and
as such, it is critical to identify clusterings which reveal
some inherent structure in a dataset. In addition to
revealing this structure, an accordant clustering must



Figure 4: The dataset depicted in (a) satisfies the
(c, ε)-property for the k-means objective when k = 2.
The optimal partitioning is shown by the dividing line.
Clearly, any near optimal clustering will by necessity
approximate this partitioning. Conversely, (b) depicts
data which fails to satisfy the (c, ε)-property. As shown,
there are two radically different ways to partition the
dataset for k = 2 in a way that optimizes the objective.

have some clusters that are comprised of a substantial
proportion of at least one of the groups. Hence, the goal
in this framework is to find the accordant clustering of
a dataset that best represents its natural structure. In
this section, we prove that Akmeans is opt at discovering
high quality accordant clusterings when they are present
in the data.

One of the most insightful and widely-used notions
of clusterability related to the k-means objective func-
tion is the (c, ε)-property [1, 5, 16], which describes a
dataset characterized by a unique clustering that opti-
mizes the objective (see Balcan et. al [5] for a detailed
exposition).

Intuitively, this property reflects a dataset which
has an optimal clustering that is unique in the sense that
any clustering of similar cost must be structurally sim-
ilar to the optimal, as depicted in Figure 4. Given two
k-clusterings C = {C1, . . . , Ck} and C′ = {C ′1, . . . , C ′k},
let dist(C, C′) be the fraction of points on which they
disagree under the optimal matching of clusters in C to
clusters in C′, that is, dist(C, C′) = minσ∈Sk

1
n

∑k
1 |Ci −

C ′σ(i)|, where Sk is the set of bijections from [k] to [k].

Definition 4.1. ((c, ε)-property [5]) A dataset
(X, d) satisfies the (c, ε)-property for objective
function Φ if for every k-clustering C of X where
Φ(C) ≤ c · OPTΦ, the relation dist(C, C∗) < ε holds,
where C∗ is the clustering that optimizes the value of Φ.

We show that when a data is clusterable w.r.t. the
above notion, and contains an accordant clustering of
near-optimal cost, then it can be uncovered within a
small number of points.

The cores of a clustering represent a small set of
points in each cluster for which every other point in the

Figure 5: Above we see the (mean) performance of
the different methods with varying k for t = 0.75 on
the proprietary Health Care dataset. k-means does not
satisfy our constraint. The 95% confidence intervals are
given in Table 1 in the supplementary material.

cluster is closer to than to data outside the partition.

Definition 4.2. (Core) For any clustering
C = {C1, . . . , Ck} of (X , d), the core of cluster Ci is
the maximal subset Coi ⊂ Ci such that d(x, z) < d(x, y)
for all x ∈ Ci, z ∈ Coi , and y 6∈ Ci.

The proofs for Theorem 1 and Corrolary 1 are in the
supplementary material1.

Theorem 1. Let (X, d) be a dataset which satisfies
the (α, ε)-property that contains a near-optimal (r, t)-
accordant clustering with cluster cores of size at least
ε′n. Then Akmeans outputs an (r, t)-accordant cluster-
ing that is 2ε-close to the optimal (r, t)-accordant clus-
tering CA with probability at least 1− ke−ε′k.

The following corollary extends Theorem 1 across
multiple initializations.

Corrolary 1. Let (X, d) be a dataset which satisfies
the (α, ε)-property that contains a near-optimal (r, t)-
accordant clustering with cluster cores of size at least
ε′n. If Akmeans is run m times, selecting the lowest cost
clustering, we find an (r, t)-accordant clustering that is
2ε-close to the optimal (r, t)-accordant clustering with
probability 1− (ke−ε

′k)m.

5 Experiments

When applied in practice, on two separate occasions the
notion of accordant clustering resulted in insights which

1The supplementary material is on the first authors website.



domain experts acted upon and those that couldn’t be
readily found by other methods. The first instance is
in the field of medicine, using a dataset representing
patients who suffered from a neurodegenerative disease,
each belonging to one of five distinct treatment groups
depending on the care they received. The second
instance was in the field of business, for a Spend dataset
representing two years of transactional data from a
large corporation, with each transaction falling into
one of 25 categories (such as IT, Research, Marketing,
etc.). Moreover, we also perform experiments on 6
UCI datasets showcasing the power of our method in
uncovering higher quality accordant clusterings.

These datasets provide a point of comparison for
measuring the quality of clusterings obtained by the
Akmeans algorithm relative to several other state-of-
the-art methods, both supervised and semi-supervised,
which were adapted to this setting and prepared for
these datasets so as to have a fair comparison. Specif-
ically, the methods chosen for comparison are as fol-
lows: 1) Supervised k-means (Skmeans) [4], 2) SVM
based supervised iterative k-means (SSIkmeans) [12],
3) Constrained k-means (COPkmeans) [17], 4) Con-
strained spectral clustering (CSC) [15, 18] and 5) Semi-
supervised learning based on Gaussian fields and har-
monic functions (GFHF) [19].

The quality of the clustering is measured by the
SSE, as a majority of these methods are extensions of
the k-means algorithm with the others known to be
competitive relative to this metric. Additionally, the
performance of standard k-means is included to act as
a baseline for the SSE achieved by all other methods.
Similar qualitative results were observed using other
measures, such as mutual information, silhouette and
Davies-Bouldin index. For each of these methods we
set δ = 10−7 to detect convergence.

Note that, since we cannot implicitly enforce satis-
faction of our accordant constraint for each initializa-
tion of all algorithms except for Akmeans, the reported
results represent an average over runs which resulted
in accordant clusterings. Thus, the SSE considered for
each of the methods accounts only for clusterings that
satisfied the accordant constraint, and consequently we
would prefer algorithms that provide tight clusters with
low SSE.

We have two supervised methods Skmeans and
SSIkmeans. For Skmeans we set a high weight for the
group number attribute so that it satisfied our con-
straint even for high values of t. SSIkmeans was imple-
mented by installing the python interfaces [11] to SVM-
light [14]. We use the iterative variant rather than the
spectral one, such that it is under-constrained for super-
vised clustering and hence, should yield better quality

Figure 6: Above we see the (mean) performance of the
different methods with varying k for t = 0.8 on the
proprietary Spend dataset. k-means does not satisfy
our constraint. The 95% confidence intervals are given
in Table 2 in the supplementary material.

clusterings when the accordant constraint is satisfied.
The models were trained on a random selection of k
groups from the dataset, so that each could be applied
to the entire dataset to obtain the desired k-clustering
for each trial. The results were then averaged over 100
such randomizations. This procedure is necessary for
SSIkmeans, since this method implicitly assumes that
the number of clusters is equal to the number of differ-
ent groups that it is trained on.

The remaining three methods COPkmeans, CSC
and GFHF are semi-supervised. COPkmeans and CSC
are constraint-based semi-supervised clustering meth-
ods, which are prepared by randomly selecting some t
fraction of the instances belonging to r randomly chosen
groups, and assign “must-link” (abbreviated ML) con-
straints to them. COPkmeans incorporates these ML
constraints into the k-means objective. CSC, on the
other hand, modifies the graph affinity matrix based on
these ML constraints and then performs spectral clus-
tering on the modified graph.

The GFHF method is a label-based semi-supervised
approach. Again, we randomly choose t fraction of the
instances belonging to some randomly chosen r groups,
but here we assign the same label (which may be the
group number) to the corresponding instances rather
than adding constraints. We also randomly choose a
small fraction (≈5%) of the instances from other groups,
where each small fraction belongs to a different group
and hence has a different label. In all of our exper-
iments, the number of clusters k, is bounded by the
number of groups, m, allowing us to appropriately ini-
tialize this method. Such an initialization will result in
GFHF outputting a k partition. For these 3 approaches,



we average the results over multiple (100) such random-
izations.

For the graph-based approaches (viz. CSC and
GFHF), we constructed the graphs using a radial basis
kernel after standardizing the data. For k-means and
its variants, which require initial cluster centers, we
randomly choose them such that they all belong to
different groups. Thus, when k = m we have exactly
one instance randomly chosen from each group to be
a cluster center. When k < m we have cluster centers
randomly chosen from k different groups. We report the
results averaged over multiple (100) such initializations.

5.1 Health Care dataset The health care dataset
contains demographic and clinical information from
5, 022 patients who suffer from a neurodegenerative
disorder. These patients were divided into 5 (nearly)
equisized groups based on the treatment they received.

Each patient was represented by 57 attributes cap-
turing individual information such as gender, age, race,
cognitive decay, and physical condition in addition to
treatment specific information such as duration, as
well as multiple attributes indicating whether a cer-
tain chemical/medicine was used and the corresponding
dosage. Given all of these factors, the goal is to identify
one or more treatments that may be consistently either
effective or ineffective based on the patients cognitive
and physical condition. Such information can be a big
step towards creating a successful cure for the disease.

Hence, from a modeling perspective, we have m = 5
groups. After speaking to the medical professionals, it
was decided that at least 75% of a group should be
represented in some cluster, i.e. t = 0.75. The results
from the clustering of the different methods for multiple
values of k are seen in Figure 5. Our method with r = 1
and r = 2 yielded the same results.

We see from the figure that the unsupervised objec-
tive, which does not produce accordant clusterings for
k > 1, flattens out around k = 4. This suggests that
there are probably 4 clusters in this dataset. We observe
that Akmeans, which produces accordant solutions, is
the closest in its SSE to traditional k-means. It is in
fact significantly better than its (adapted) competitors.

In the Akmeans clustering at k = 4, we observed
that treatment groups 1 and 3 ended up satisfying our
constraint and in fact lying within the same cluster.
This cluster was characterized by much better patient
condition relative to other clusters. Additionally, this
result proved to be particularly interesting since, the
mean/median conditions computed across each (entire)
group are practically indistinguishable. The medical
professionals were quite excited by this finding and have
decided to:

1. Perform further studies specifically focused on the
treatments given to groups 1 and 3.

2. Begin administering treatments corresponding to
groups 1 and 3 to a wider pool of patients in time.

5.2 Spend dataset The Spend dataset contains a
couple of years worth of transactions spread across var-
ious categories belonging to a large corporation. There
are 145, 963 transactions which are indicative of the
companies expenditure in this time frame. The dataset
has 13 attributes, namely: requester name, cost center
name, description code, category, vendor name, busi-
ness unit name, region, purchase order type, address-
able, spend type, compliant, invoice spend amount.
Given this the goal is to identify spending and/or non-
compliant tendencies amongst one or more of the 25
categories. With this information, the company would
then be able to put in place appropriate policies and
practices for the identified categories that could lead to
potentially substantial savings in the future.

Hence, we have m = 25 groups in our dataset. With
the help of domain experts, it was decided that at least
80% of the transactions belonging to a single category
should exhibit a similar tendency or pattern in order
for them to consider taking any action. Consequently,
we set t = 0.8. The results from the clustering of the
different methods for multiple values of k are seen in
Figure 6.

We see from the figure that the unsupervised ob-
jective, which does not produce accordant clusterings
above k = 2, flattens out more or less at k = 5. This
suggests that there are probably 5 true clusters in the
dataset. We observe that Akmeans, which produces ac-
cordant clusterings, is again the closest in performance
to traditional k-means at m ≥ k.

In the Akmeans clustering at k = 5, we observed
that the constraint was satisfied for the marketing cat-
egory. The corresponding transactions for this category
were characterized by high spend that was mostly non-
compliant with company guidelines. This type of in-
sight can be very useful for a company as, once aware
of this spending, it can focus its efforts on this particu-
lar category rather than spread itself thin by expending
effort across multiple areas. In fact, based on a review
of these results with domain experts they acknowledged
that this was indeed insightful and could lead to the
following actions:

1. Stricter monitoring of travel expenditure of employ-
ees in marketing.

2. Tighter controls and extra approvals for marketing
campaigns and advertisements that have expendi-
tures exceeding a certain amount.



3. Close monitoring of spend with certain vendors.

5.3 UCI datasets We also evaluated our methods
on 6 UCI datasets used in previous clustering studies
[18] namely: a) Glass, b) Heart, c) Ionosphere, d) Breast
Cancer, e) Iris and f) Wine.

The results are depicted in figure 1 in the supple-
mentary material. We consistently see across all the
datasets that Akmeans matches the performance of k-
means when our constraint is trivially satisfied, while
providing statistically significant lower error clusterings
than its adapted competitors in other cases.

6 Discussion

In this paper, we introduce a novel clustering paradigm
for the discovery of group-level insights. We propose an
algorithm based on the k-means method that outputs
accordant clusters as well as provably uncovers near-
optimal solutions on clusterable data. Moreover, we de-
scribed two real world settings where our algorithm sig-
nificantly outperformed its adapted competitors, as well
as provided actionable insight. Our algorithm’s superior
performance was further validated by experiments on
the 6 UCI datasets. In all cases, our method converged
in less than 20 iterations.

Given the novelty of our framework, here is a
realm prime for innovation – particularly in exploring
new applications that can benefit group-level insight.
Additional information on cost or penalties may also
be incorporated to enable informed action, and our
constraint would act as a starting point on top of which
additional constraints or regularization terms may be
added. A variety of algorithmic challenges may also be
addressed in the future, such as exploring methods that
discover accordant clusterings with respect to alternate
cluster structures and objective functions. One may
also try to design a metric that respects our constraint,
however, this is far from obvious as we do not want to
penalize impurity of clusters but at the same time have
≥ r groups well represented in one or more clusters.
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