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Abstract

In modern life, the nonstop and pervasive stress tends to keep us on long-lasting high alert, which over time, could
lead to a broad range of health problems from depression, metabolic disorders to heart diseases. However, there is a
stunning lack of practical tools for effective stress management that can help people navigate through their daily stress.
This paper presents the feasibility evaluation of StressHacker, a smartwatch-based system designed to continuously
and passively monitor one’s stress level using bio-signals obtained from the on-board sensors. With the proliferation of
smartwatches, StressHacker is highly accessible and suited for daily use. Our preliminary evaluation is based on 300
hours of data collected in a real-life setting (12 subjects, 29 days). The result suggests that StressHacker is capable
of reliably capturing daily stress dynamics (precision = 86.1%, recall = 91.2%), thus with great potential to enable
seamless and personalized stress management.

Introduction

There is mounting evidence that psychological stress from work-related pressures, financial concerns, and family
responsibilities is an important public health issue in the United States1. A majority of Americans report frequently
feeling stressed and that stress negatively impacts their physical and mental well-being1. Further, psychological stress
is associated with adverse health outcomes such as cardiovascular disease, diabetes, depression, and substance use
disorders2–4. Despite the evidence that stress negatively affects health, there are few effective and practical stress
management solutions that can be seamlessly integrated into an individual’s daily life. In order to develop truly
personalized, targeted stress management solutions, we need to be able to accurately and reliably identify occasions
of stress in real-world settings.

Daily stress processes are typically assessed via self-report measures and/or biomarkers of stress system functioning,
which are limited in their ability to capture the dynamic nature of daily stress. Self-reported stress cannot be assessed
continuously and consequently may not capture all stressful events5. Further, it is subject to recall issues and self-
report bias. Biomarkers of stress commonly used in real-world settings include cortisol, ambulatory blood pressure,
and heart rate variability (HRV). Neither cortisol nor blood pressure can be measured continuously and they are also
fairly invasive6, 7. Although HRV can be assessed passively and continuously using commercially available wrist
and chest sensors, these wearable sensors do not provide automated information about stress system functioning in
real-time. Recently, numerous research efforts8–10 have been made to advance the technologies for assessing stress
in real-world scenarios using a variety of sensors including ECG (electrocardiography), RIP (respiratory inductance
plethysmography), camera, microphone, etc. However, these technologies have limited practicality as they either
require custom devices8 or are cumbersome and therefore not suited for daily use9, 10.

The present study aims to address these limitations by evaluating the feasibility of using a novel HRV-based stress
monitoring system to passively, continuously, and accurately capture occasions of stress in a person’s daily life. HRV
is a commonly used measure of autonomic nervous system (ANS) functioning, which is one of the two primary stress
systems – the other being the hypothalamic-pituitary-adrenal axis11. The ANS consists of the sympathetic nervous
system (SNS; “fight or flight”) and the parasympathetic nervous system (PNS; “rest and digest”), which work in op-
position of each other to control stress reactivity and recovery12. HRV measures the variation in time between two
consecutive heart beats13 and numerous studies have demonstrated that HRV is a valid measure of reactivity to acute
psychological stressors14–16. Our HRV-based stress monitoring system, called StressHacker, uses photoplethysmogra-
phy (PPG) sensor data that is available in commercially available wearable devices. StressHacker does not require the
use of a custom biosensor devices. Rather, it can be easily integrated into commercially available smartwatches allow-
ing for seamless integration into individuals’ daily lives. Thus, StressHacker has the potential to make automated and
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personalized stress management a reality by detecting stress and offering real-time stress reduction recommendations
in real-world settings.

In this paper we present preliminary data from an in-field study evaluating StressHacker’s ability to monitor stress
in people’s daily lives. In summary, StressHacker is a system empowered by mobile sensing technologies that can
translate continuous PPG signal or RR intervals into stress index – an indicator that is reflective of the change of stress
level. At the current stage, we evaluate StressHacker using PPG data collected from wrist-worn wearables. How-
ever, the underlining algorithms of StressHacker can be tailored to take similar signals from other devices as input
(e.g., electrocardiogram from chest band sensor). Ultimately, our hope is that through a set of data-driven analytical
tools, StressHacker will be able to uncover powerful insights about daily stress processes by identifying sources of
stress, recognizing patterns, and making personalized stress reduction recommendations. Possible real-world appli-
cations of StressHacker include corporate wellness programs, telemedicine in populations highly vulnerable to stress
(e.g., chronic health conditions, substance use disorders, depression, anxiety), and automobiles to increase safety and
enhance the driver’s experience.

In-field Experiment

The primary goal of the in-field study is to assess the feasibility of continuously monitoring daily stress using smart-
watches. To this end, we have recruited 12 subjects who are IBM employees, among which 8 are female and 4 are
male. Most of the subjects are young adults. All the subjects voluntarily agreed to contribute to the data collection,
and signed a consent form.

In order to simulate real-life scenarios, all of the experiments were un-controlled with the following procedure. Prior
to data collection, the researchers briefly informed the subject of the purpose of the experiment, types of data to be
collected, and their responsibilities. Then a wrist-worn wearable device (Empatica E4 wristband17) was provided to
the subject. The device is designed to record bio-signals for research and development purposes, and equipped with the
same sensors we intend to use in smartwatches. The device’s extended battery life allows a continuous data collection
for up to 2 days. The recorded data was stored locally in the flash memory of the device, and was later downloaded
for further analysis. We demonstrated to each subject how to start and stop the recording. The subjects were allowed
to start and stop the recording anytime, however, they were informed that a data collection that covers most of their
daily activities is preferred (e.g., a recording starting in the morning before work and ending in the evening after work
or before sleep).

After the recording was started, data including pulse wave and acceleration was continuously sampled from the PPG
heart rate sensor and accelerometer, respectively, and stored locally for off-line examination. In the current stage of our
evaluation, the subjects did not get any feedback from or have any interaction with the system during data collection.
To simulate real-life scenarios, the subject was informed to conduct their daily activities as they normally do during
data collection. After the data collection was completed, the subject was asked to provide a log containing a list of
their daily activities covered by the recording. Each entry should include a time period and a brief description of the

Table 1: An example of the logs provided by the subjects reporting their daily activities and the associated stress
information (optional). The stress information can be given in the form of a short descriptive sentence and/or perceived
stress level (PSL) on a scale from 1 to 10. In the log shown in this table, both descriptions and PSLs are provided.

Time Activity Stress Information PSL
6:30-7:30 Getting ready for work. No particular emotions, routine 1
7:30-8:56 Driving, 1-hour traffic jam on the bridge Anxious about being late. 2
8:56-11:06 Working Attentive, stuck at a problem. 2
11:06-11:31 Lunch and responding to emails Relaxed 1
11:31-12:53 Working Attentive 2
12:53-14:15 At a seminar and working Attentive. Stressed due to the multitasking. 4
14:15-15:00 Coffee break Relaxed but still thinking about things. 2
15:00-17:00 Meeting Attentive. The first half more stressed. 3
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activity, for example, “1:00-2:30 group meeting.” In addition, to help us better evaluate StressHacker, we also asked
the subjects to report stress information associated with each reported activity in the form of a short description and/or
perceived stress level (PSL) on a scale from 1 to 10. In the evaluation, such stress information was considered as
references of their daily stress dynamics, and compared with StressHacker’s result. Table 1 shows a log provided by
one of the subjects as an example. Note that the stress information is optional, meaning the subjects can choose not to
include stress information for certain or all of the activities in the log.

Figure 1: An example of StressHacker’s stress level output based on a 10-hour recording with annotated activities and
stress information from the log shown in Table 1.

Dataset

We have conducted in-field experiments across 29 days, collecting recordings from 12 subjects. The durations of the
recordings range from 3.78 hours to 46.6 hours (see Table 2 for details). The total duration of all recordings is 306.2
hours, containing a total of 237 reported activities, 130 of which were reported with associated stress information.
Among the 130 activities with stress information, 102 of them were labeled as stressful.

After the recording device was started, it continuously recorded pulse wave signal (i.e., blood volume pulse) from PPG
heart rate sensor (sampling rate = 64 Hz), and acceleration from accelerometer (sampling rate = 32 Hz), along with
their timestamps. The pulse wave collected from the PPG sensor was used to calculate HRV-based features, which
in turn were used to derive stress levels. The collected motion data was used to estimate the motion level, which
was primarily used to gauge the quality of the PPG signal. Specifically, we first extracted RR intervals from pulse
wave. Then the RR intervals contained within a 5-min window were used to calculate short-term HRV features that
have been studied and suggested to be a good indicator of stress level18, 19. We adopted the time-domain methods20

to calculate two HRV features that reflect the total power and the high frequency power of HRV. Finally, we fed the
resulted features into a model that maps the features to a stress level ranging from -1 to 1, where -1 indicates very
relaxed, and 1 represents very stressed.

Figure 1 demonstrates StressHacker’s continuous stress level output using data from a typical in-field experiment as
an example. The final output is a time series of stress levels ([-1, 1]) with a 5-minute interval. The stress level is
categorized into four states: Relaxed [-1, -0.2], Less Relaxed (-0.2, 0], Slightly Stressed (0, 0.2] and Stressed (0.2,
1]. Note that in the current stage of evaluation, we use a fixed mapping from HRV features to stress level, and a pre-
defined categorization of stress states. However, in practice, the system will be able to adjust the related parameters
over time according to the user’s feedback.
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Table 2: A list of detailed information for each individual experiment. N(Activity) is the number of activities reported
by the subjects. N(StressInfo) indicates the number of reported activities with stress information. N(Stress) is the
number of activities that have stress information and are labeled as stressful activity. The evaluation results are rep-
resented in TP (true positive), FN (false negative), TN (true negative) and FP (false positive). They are obtained by
comparing StressHacker’s stress level output against the stress information reported by the subject (precision=86.1%,
recall=91.2%, F-measure=88.6%).

Exp ID Duration (Hr) N(Activity) N(StressInfo) N(Stress) TP FN TN FP
A1 30.85 17 10 8 8 0 1 1
B1 11.77 7 6 5 3 2 1 0
C1 7.57 11 9 6 6 0 0 3
C2 7.41 7 6 6 6 0 0 1
D1 7.42 18 10 10 9 1 0 0
E1 5.74 5 0 0 0 0 0 0
E2 8.11 10 0 0 0 0 0 0
E3 6.37 6 0 0 0 0 0 0
F1 14.29 9 8 5 4 1 2 1
F2 7.5 5 5 4 3 1 1 0
F3 46.6 20 16 13 11 2 3 0
G1 8 9 6 4 4 0 1 1
G2 8.13 5 4 2 2 0 0 2
H1 22.31 9 6 4 3 1 1 1
H2 21.79 9 6 5 4 1 0 1
I1 15.49 18 12 6 6 0 4 2
I2 10.11 8 7 6 6 0 0 1
J1 8.88 5 0 0 0 0 0 0
J2 3.78 5 3 3 3 0 0 0
J3 9.54 6 3 3 3 0 0 0
K1 6.68 4 0 0 0 0 0 0
K2 7.15 6 3 3 3 0 0 0
K3 7.4 6 2 2 2 0 0 0
K4 8.1 8 4 3 3 0 1 0
L1 7.46 12 4 4 4 0 0 0
L2 7.74 12 0 0 0 0 0 0
total 306.19 237 132 102 93 9 15 15

Result

In this section, we evaluate the feasibility of continuously monitoring daily stress using smartwatches using quan-
titative metrics that reflect the correlation between StressHacker’s output and subject-reported stress information.
Therefore, the evaluation is based on the 20 in-field experiments in which the subject provided stress information (i.e.,
experiments in Table 2 with N(StressInfo)> 0).

First, we identify “stressful” activities based on the reported stress information. Specifically, we classify an activity as
“stressful” when its associated stress information satisfies one of the following two conditions: (1) it contains word(s)
such as “stressful”, “stressed”, “nervous” or “anxious”; (2) its associated perceived stress level (PSL) is larger than the
baseline 1 (in a few cases, subjects reported PSL=2 as relaxed, thus we used 2 as baseline in such cases).

Next, for the purpose of calculating the correlation, we determine a similar binary label (“stressful” or “not stressful”)
for each activity using StressHacker’s output within the activity’s associated time period. Specifically, an activity will
be labeled as “stressful” if the stress levels within its time period satisfy one of the following two conditions: (1) at
least one of the stress levels are categorized as “Stressed” (0.2, 1]; (2) at least 10% of the stress levels are categorized
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as “Slightly Stressed” (0, 0.2].

Lastly, we compare the binary labels determined by the self-report stress information and StressHacker’s output. The
detailed result of the comparison is shown in Table 2. We can see StressHacker labels 108 activities (93TP+15FP)
as “stressful,” with 93 classifications being true positives, leading to a precision of 86.1%. Out of 102 “stressful”
activities reported in the subjects’ logs, 93 activities are correctly labeled by StressHacker, resulting in a recall (sen-
sitivity) of 91.2%. Overall, StressHacker achieves an accuracy of 81.8% in the binary classification of “stressful”
activity. We believe that such evaluation results are sufficient to suggest that the stress level information provided by
StressHacker can be used to reliably monitor the dynamics of one’s daily stress.

Discussion

In this section, we look beyond the scope of quantitative evaluation and discuss StressHacker’s potential for offering
valuable and timely insights that could fuel a broad range of decision makings in not only stress management at an
individual level but also mental wellness at an organization or community level.

Figure 2: Comparing StressHacker’s stress level output across three typical work scenarios.

We first look at StressHacker’s stress level output in three typical work scenarios reported in the in-field experiment,
which are working individually (83 hours), passively attending a meeting (20 hours) and actively engaging in a meeting
(52 hours). As all of the in-field experiments were conducted during week days, the combination of these three
scenarios accounts for more than half of the overall data collection. Figure 2 shows the comparison of stress levels. A
key observation is that, overall, the subjects were most stressed while actively engaging in a meeting (40% of the time),
compared with while working individually (26% of the time) and during a passive meeting (15%). Such insight can
also be supported by the percentages of the “relaxed” state detected by StressHacker in each scenario, which suggests
that the subjects were less relaxed during active meetings (only 6% of the time), compared with 15% of the time when
working individually and 20% of the time during passive meetings. As all of the 12 subjects are employees at IBM
Research, we speculate that the result above could be reflective, to some extent, of the overall “stress profile” of the
organization under different working scenarios.

In addition to the work scenarios, we have also captured a typical non-work scenario that was labeled as “getting ready
in the morning” (reported by 4 subjects in 6 days). Figure 3 shows the percentages of different stress levels. We can
see that, although it has higher percentage of time being relaxed, the overall percentage of time being stressed ( 41%) is
similar to that in the scenario of actively engaging in a meeting. Such insights offered by StressHacker could potentially
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be used to identify major stressors and provide personalized recommendations to help users navigate through daily
stress. For instance, when significant stress has been detected on every Monday morning, the system could recommend
trying to get up half an hour earlier.

Figure 3: Percentages of stress levels detected by StressHacker in a typical non-work scenario labeled as “getting
ready in the morning.”

Figure 4: Demonstrating StressHacker’s ability to reveal fine-grained and insightful stress dynamics using two daily
events captured in the in-field experiments as examples. The continuous stress level detected by StressHacker and the
self-report activity/stress information are plotted over time.

Next, we zoom in on StressHacker’s continuous stress level output, and use two examples captured in the in-field study
to showcase that StressHacker’s result allows us to take a closer look at the dynamics of stress associated with an event
of interest, which in turn could potentially help us make more informed decision to minimize the negative impacts
of stress. Figure 4 (a) shows that StressHacker captures the subject’s stress level changes before, during and after
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her presentation. During the time when she was preparing for the meeting, we can observe the transition from being
relaxed to slightly stressed, which could be the effect of working under a close deadline and/or the anticipation of the
coming presentation. Interestingly, around the 200th minute, StressHacker’s result shows that she recovers from being
slightly stressed to less relaxed, which could be because that she had finished the preparation resulting in a reduction
in her stress from working under deadline. Unsurprisingly, StressHacker’s result shows a substantial increase in her
stress level especially in the first half of her presentation, which is confirmed by the self-reported stress information
where the subject reported as being “nervous”. In the course of the following group discussion, we can see the subject
stayed at being slightly stressed for about 10 minutes before she started recovering and became relaxed at around the
260th minute.

The second case shown in Figure 4 (b) captures the subject’s stress dynamics while watching a close basketball game.
From StressHacker’s result, we can see that overall, the subject was stressed through out the game, with a brief
recovery during the half-time break. Interestingly, StressHacker’s result reveals the the subject’s transition from being
slightly stressed to stressed in both the first and the second half of the game, which might reflect the effect of stress
accumulation. Another interesting observation is that, in the second half of the game, the subject only stayed being
slightly stressed for about 15 minutes (from around the 425th to the 440th minute) until his stress elevated to a higher
level (shown in dark bars), whereas the duration of which in the first half of the game was about twice as longer (from
around the 350th to the 380th minute).

We believe that StressHacker’s ability to offer such fine-grained and real-time stress monitoring can significantly ad-
vance the automation of personalized stress management. To put it into perspective, we compare StressHacker with
cStress10, a stress monitoring system proposed in a recent research study. Compared with StressHacker, cStress relies
on data collected from a larger set of sensors including inductive plethysmography (RIP), a two-lead electrocardio-
graph (ECG) and 3-axis accelerometers, which are integrated into a chest band that users need to wear all the time.
An in-field study had been conducted to evaluate cStress in real-life scenarios based on a similar task to the one used
in our study (identifying “stressful” and “not stressful” activities and comparing with subjects’ self-report data). The
evaluation result suggests that cStress achieves a median accuracy of 72%, whereas StressHacker’s overall accuracy
is 81.8%. Therefore, although only relying on data from PPG sensor, a less reliable heart rate sensor compared with
ECG, StressHacker is still able to provide reliable results that are sufficient for daily stress monitoring.

Limitations and Future Work

In the paper, we focus on evaluating the feasibility of using bio-signals obtained from off-the-shelf wearables to infer
daily stress. A major cause of the limited 81% accuracy is that data collected from PPG sensor is susceptible to various
interferences. We have examined the collected data in attempts to identify factors that might affect the robustness of
the system. Such factors include daily activities that involve relatively high level of motion (e.g., walking up/down
stairs). As PPG sensor is susceptible to motion artifacts, such activities can lead to unreliable or even corrupted sensor
data, which in turn, result in inaccurate stress detection results. As part of our future work, we aim to resolve this
limitation by developing algorithms that can identify and mitigate the impacts of motion artifacts. To further improve
the robustness, we plan to leverage the user’s historical data to better understand the user’s response to a certain
context. For instance, the system might be able to learn over time that the user rarely gets stressed when s/he is driving
home, and therefore classifies an isolated stress state with a short duration incorrectly detected in that scenario as false
alarm.

As a next step of this study, we will investigate how users can address their stress experiences in real time and how not
to distract users during high concentration activities. We are in the process of conducting a study aimed at providing
users with real time data on their stress levels via a smartwatch. We intend to make these devices adaptive and
personalized to deliver context aware notifications and stress management recommendations. This means that the
notification and recommendations should not be delivered when users are performing high concentration tasks or
activities. The printout of stress level output shown in Figure 1 is the first step toward such a real-time stress feedback
and management system. In future studies we will investigate if the notifications help individuals become more mindful
of stress from common daily activities and if increased mindfulness is associated with improved well-being. Further,
we will evaluate if completion of real-time stress management recommendations (e.g., meditation, deep breathing) is
associated with improved well-being.
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Conclusion

In this paper, we present the result of our uncontrolled in-field study that aims to evaluate the feasibility of continuous
daily stress monitoring using smartwatches. Based on more than 300 hours of data collected in real-life setting, the
quantitative results of the evaluation suggest that the proposed system, StressHacker, can be used as a practical tool
for effective and personalized stress management. Moreover, we have also presented analyses at both individual and
community levels to showcase StressHacker’s potential to offer valuable data and insights that can be used to advance
the automation and personalization of stress management and promote mental wellness in general.
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