
EBioMedicine 27 (2018) 3–4

Contents lists available at ScienceDirect

EBioMedicine

j ourna l homepage: www.eb iomed ic ine.com
Commentary
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People livingwith uncontrolled epilepsy face the constant fear of sei- prediction/forecasting is a reality, and that there aremanypotential suc-

zures. The mental toll of anticipation and uncertainty surrounding the
random occurrence of seizures may actually be more stressful than
the embarrassment, injury, or death caused by the seizure itself. In a re-
cent US poll of patients and caregivers by the Epilepsy Foundation, the
unpredictability of seizures was the most impactful aspect of epilepsy,
and there is great interest in providing warning to patients when sei-
zures are more likely—a “seizure prediction” device (Dumanis et al.,
2017). However, whether such a device is feasible, both scientifically
and practically, has been an unanswered question.

Seizure prediction has been the goal of many researchers ever since
digital EEG arrived in the 1990's. Early work presented amyriad of indi-
vidual algorithms but had concerns about validation, then progressed
greatly once centers began sharing data and developed methods to as-
sure statistical rigor (Mormann et al., 2007; Snyder et al., 2008). Those
new guidelines culminated in a clinical trial in Melbourne Australia, in
which patients had continuous EEG recorded from indwelling intracra-
nial electrodes over several months, attached to a portable device de-
signed to signal the risk of imminent seizures (Cook et al., 2013). That
trial demonstrated that seizure prediction was possible in some people,
though the trial and the sponsor company (NeuroVista) both terminat-
ed, in large part because therewere several patients inwhom the device
did notworkwell using the initial prediction algorithms.While thismay
appear like a failed trial, it provided the crucial groundwork for the field
to progress. One new development is in terminology: the strategy is re-
ally better described as “forecasting” rather than prediction, as identify-
ing periods of increased risk is more physiological than true prediction
of a seizure event (especially since a patient may take measures to pre-
vent a seizure). The next stepwas further optimization and aworldwide
seizure prediction competition using data from epileptic dogs and two
patients from the Melbourne study, which demonstrated remarkable
success (Brinkmann et al., 2016). A follow up competition on Kaggle.
com recently completed with many algorithms that clearly beat a
chance predictor, this timewith data from the patients thatwere unsuc-
cessful in the original Melbourne trial. These results prove that seizure
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cessful algorithms.
Perhaps themost important contribution of the early work has been

the acquisition and availability of the chronic human recordings. These
data have led to several new findings, most recently that there are long
term seizure patterns on the scale of days, weeks, and months (Karoly
et al., 2017; Baud et al., 2018). These findings have verified what pa-
tients have been saying for years: bothmen and women often have sei-
zures at the same time of the day or month, which can be exploited to
improve the accuracy of seizure prediction algorithms (Karoly et al.,
2017).

In summary, we have now shown that seizure predictionworks on a
computer…but is it practical for clinical use? The NeuroVista device re-
quired a handheld pager-like device that contained a processor, and pa-
tients had to recharge batteries regularly. The algorithms in the Kaggle
competition are not subject to any processor or battery constraints,
and many of them were very complicated and power-intensive. And
power is the primary question: complex algorithms require processors,
and processors use up battery power very fast (as any smartphone user
can attest). Thus, the next step in translating seizure prediction to pa-
tients is to address the concern of feasibility.

In EBioMedicine, Kiral-Kornek and colleagues utilize a new device
that is designed specifically to perform complex algorithms with ultra-
low power (Kiral-Kornek et al., 2018). The device is “neuromorphic”,
meaning its design mimics brain physiology, and is capable of an ad-
vanced machine learning technique known as Deep Learning. Deep
Learning is truly a “black box” approach: the goal is to teach the device
to produce desired outputs given specific inputs, and it automatically
develops the internal logic necessary to make the correct distinction.
This method, a newcomer to the field of seizure prediction, is perfectly
suited to answer the problem of feasibility: it uses extremely low
power and can adapt to each patient individually.

Adapting Deep Learning to seizure prediction required a very novel
approach. In order to present the devicewith readable information, seg-
ments of EEG were transformed into 2-D images of their instantaneous
power spectra. The device then learned how to distinguish literal “snap-
shots” from pre-ictal (before a seizure) and inter-ictal (not before a sei-
zure) EEG, using graphical interpretation to identify brain states that
forecast imminent seizures. Their final results were comparable with
the efficacy of past successful published prediction algorithms using
the same patients (Cook et al., 2013; Karoly et al., 2017), with some
-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ebiom.2018.01.006&domain=pdf
http://Kaggle.com
http://Kaggle.com
https://doi.org/10.1016/j.ebiom.2018.01.006
https://doi.org/10.1016/j.ebiom.2017.11.032
mailto:william.stacey@umich.edu
Journal logo
https://doi.org/10.1016/j.ebiom.2018.01.006
http://creativecommons.org/licenses/by-nc-nd/4.0/
Unlabelled image
http://www.sciencedirect.com/science/journal/2352396423523964
www.ebiomedicine.com


4 W.C. Stacey / EBioMedicine 27 (2018) 3–4
important differences. First, the algorithm's efficiency allowed them to
analyzemonths at a time,much longer than in previous studies. Second,
the predictive functionality was maintained over all patients over the
entire duration of the study, automatically tuning to maximize the re-
sponse. Third, the algorithm could be adaptively tuned to patient prefer-
ence (i.e. having warnings that are either more sensitive or more
specific), which is one of the features most desired by patients
(Schulze-Bonhage et al., 2010). Although these features are not neces-
sarily unique to Deep Learning, this is the first time a single strategy
has been able to accomplish them all. However, an important limitation
was that it was unable to identify “safe times” accurately, in which sei-
zures were less likely (the identification of safe times was a feature of
theNeuroVista device, and is highly desired by patients). One unexpect-
ed result of this work is that the algorithmworked best if only themost
recent 30 days of data were used, i.e. providing longer term recordings
was not helpful. This suggests some degree of month-long plasticity in
EEG signals that has not been previously recognized, andwhich requires
adaptive algorithms such as deep learning to uncover.

This work officially heralds the transition to translation of advanced
seizure forecasting. The era of “building a better mousetrap”, with new
algorithms that provide incremental improvement over past prediction
results, is all but over: there are literally hundreds of successful algo-
rithms in the Kaggle competitions. But clearly there are several aspects
that need to be improved. In the current work, the authors address two
of them: how can increasingly complex algorithms be implemented on
an implantable device, and how can they adapt to patient preference?
The neuromorphic chip provides an intriguing solution to both ques-
tions. Deep Learning uses very low power yet has tremendous capacity
to forecast oncoming seizures, while also providing straightforward
tunability. This device, or others that provide similar low power solu-
tions, have opened a new era of possibility.

There are still further challenges to address for clinical seizure fore-
casting. To date, the focus has been almost exclusively on intracranial
cerebral voltage data. Not only is this invasive, it may not provide all
the necessary information. There are many other potential modalities,
particularly those with wearable technologies and new sensors, that
may provide complementary data that could improve efficacy or reduce
invasiveness (Dumanis et al., 2017). Another limitation is that pastwork
has focused only on typical EEG frequencies (under 30Hz), but there is a
great deal of experimental work showing that higher resolution (up to
500 Hz or higher) reveals additional information such as High
Frequency Oscillations, that could be very helpful in seizure prediction
algorithms. Finally, the clinical approval process will be a challenge, as
a “forecasting device” has very little precedent, and it is difficult to
judge the risk/benefit ratio when there is no obvious intervention. Ap-
proval will require government agencies to approach these devices
with a new perspective. These new technologies and techniques pro-
vide ample room for growth, though always with the stipulation that
the technique be clinically feasible. Patients have spoken—they want
seizure prediction. But moving it into reality will require a careful bal-
ance between clever techniques and attention to patient preference.
This work provides an important first step in the right direction.
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